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Abstract 16	
  

Variability in drug efficacy and adverse effects are observed in clinical practice. While the 17	
  

extent of genetic variability in classical pharmacokinetic genes is rather well understood, the 18	
  

role of genetic variation in drug targets is typically less studied. Based on 60,706 human 19	
  

exomes from the ExAC dataset, we performed an in-depth computational analysis of the 20	
  

prevalence of functional-variants in in 806 drug-related genes, including 628 known drug 21	
  

targets. We find that most genetic variants in these genes are very rare (f < 0.1%) and thus 22	
  

likely not observed in clinical trials. Overall, however, four in five patients are likely to carry a 23	
  

functional-variant in a target for commonly prescribed drugs and many of these might alter 24	
  

drug efficacy. We further computed the likelihood of 1,236 FDA approved drugs to be affected 25	
  

by functional-variants in their targets and show that the patient-risk varies for many drugs with 26	
  

respect to geographic ancestry. A focused analysis of oncological drug targets indicates that the 27	
  

probability of a patient carrying germline variants in oncological drug targets is with 44% high 28	
  

enough to suggest that not only somatic alterations, but also germline variants carried over into 29	
  

the tumor genome should be included in therapeutic decision-making.   30	
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About three in five Americans aged 20 and above take prescription drugs every month1 and 31	
  

many either encounter adverse drug reactions or reduced treatment efficacy2. The strong 32	
  

genetic component of altered drug response in patients is well known3 and attributed to variants 33	
  

affecting drug pharmacokinetics (PK) and pharmacodynamics (PD)4. Methods to identify these 34	
  

genetic determinants have been developed in population stratified5-7 or individualized 35	
  

settings4,8. Particularly, the vast amount of genetic information now available has opened up the 36	
  

possibility to systematically study inter-individual differences in drug response using genome-37	
  

wide association (GWA) studies9,10. Results of these efforts have so far led to the 38	
  

pharmacogenomics labeling of 170 drugs by the Food and Drug Administration (FDA)11 and 39	
  

the establishment of pharmacogenomics screening in many large hospitals in the US12 and 40	
  

Europe13. 41	
  

However, typical pharmacogenomics GWA studies struggle with study sizes that are only large 42	
  

enough to detect common variants with an effect on the phenotype, but are unable to 43	
  

statistically pick up signals from rare variants with a functional effect9,10. Thus, data from 44	
  

recent genetic population catalogs such as the 1,000 Genomes project14 and the NHLBI Exome 45	
  

Sequencing Project (ESP) have been used to determine the spectrum of variation in 46	
  

pharmacokinetics-related genes. While classification of common and rare varies by study, 47	
  

especially variants considered to be on the rare end of the spectrum (minor allele frequency 48	
  

(minor AF) < 0.5%) were found abundantly in genes associated with drug absorption, 49	
  

distribution, metabolism, or excretion (ADME)15,16 as well as in potential drug targets17. Based 50	
  

on these surveys, it was estimated that at least 97% of individuals carry actionable high-risk 51	
  

pharmacological variants affecting drug ADME in their genome12,18. However, the role of 52	
  

genetic variation in pharmacologically established drug targets is less well studied. 53	
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The Exome Aggregation Consortium (ExAC)19 has aggregated data from several large 54	
  

sequencing studies comprising exome sequencing data of 60,706 individuals – nearly an order 55	
  

of magnitude larger than the public population catalogs mentioned above. Using a cohort of 56	
  

this size, it now becomes possible to study even very rare variants in drug target and ADME 57	
  

genes and to calculate the overall risk of containing a functional-variation for each patient. 58	
  

Furthermore, even though geographic ancestry is a known confounding factor for drug 59	
  

response and has been incorporated in clinical decision making in the absence of individual 60	
  

genotype data20, a comprehensive inventory of functional genetic variation in drug-associated 61	
  

genes across populations is still lacking. A cohort of the size of the ExAC catalog now allows 62	
  

determining the allele frequency of very rare variants in distinct population sub-groups and 63	
  

comparing their prevalence. 64	
  

In this study, we provide a comprehensive analysis of genetic variation predicted to result in 65	
  

altered protein function (“functional-variants”) in 806 drug-related genes including 628 drug 66	
  

targets (163 targeted by cancer-therapeutics). We further describe how this may affect the 67	
  

likelihood of 1,236 FDA approved drugs to be affected by functional-variants in their targets 68	
  

and how this likelihood varies between different populations. 69	
  

Results 70	
  

Drug-related genes show high extent of genetic variability across 60K individuals 71	
  

To explore the extent of non-synonymous genetic variation in drug-related genes in the human 72	
  

populations, we analyzed single nucleotide variants in 60,706 human individual exomes from 73	
  

ExAC19 in a set of 806 drug-related genes collated from DrugBank21 and other sources15,22 (Fig. 74	
  

1a, Supplementary Table 1). The AF distribution of non-synonymous variants in drug-related 75	
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genes is almost identical to that of all genes (n=17,758) and 97.5% of observed non-76	
  

synonymous variants have an allele frequency < 0.1% (sometimes termed a “rare variant”19) 77	
  

(Fig. 1b, Supplementary Fig. 1). Of note, 71% of the variants in the human exome, including 78	
  

drug-related genes have not been observed previously in public repositories such as dbSNP and 79	
  

therefore can be considered novel (Supplementary Fig. 1).  80	
  

To identify variants that are most likely to affect the gene function (“functional-variants”), we 81	
  

filtered the set of non-synonymous variants for those resulting in the loss of the protein product 82	
  

(“loss-of-function”, LoF)19, or predicted to be “damaging” by PolyPhen-223 and SIFT24. This 83	
  

resulted in 61,134 functional-variants in 806 drug-related genes (of which 767 genes included 84	
  

at least one LoF variant) and, not surprisingly, these functional-variants tend to have lower AFs 85	
  

than all other non-synonymous variants (98.7% have an allele frequency < 0.1%) (Fig. 1c). 86	
  

Nevertheless, 43% of the drug-related genes with predicted functional-variants have at least 87	
  

one functional-variant with AF ≥ 0.1%. The drug-related genes with the most frequent 88	
  

functional-variants are membrane transporter genes related to drug efflux and uptake such as 89	
  

ABCB5 (three LoF, six damaging), SLC22A1 (nine damaging), and SLC22A14 (eight 90	
  

damaging). In the clinically highly important polymorphic cytochrome P450 enzyme CYP2D6 91	
  

also eight damaging variants have been identified (Supplementary Table 2). Since the ExAC 92	
  

cohort contains an order of magnitude more individuals than previously available, it also 93	
  

allowed us to identify genes with many different functional-variants even though each variant 94	
  

may be individually rare. The ADME genes with the most functional-variants per residue 95	
  

reflect similar findings from smaller cohort studies and include the glutathione S-transferase 96	
  

sodium/bile transporter SLC10A1 (0.36 variants/residue), GSTA5 (0.31 variants/residue), and 97	
  

some cytochromes P450s such as CYP1A1 (0.30 variants/residue) and CYP2C19 (0.28 98	
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variants/residue)15. Furthermore, our analysis revealed drug target genes with comparable 99	
  

numbers of functional-variants per residue including the dofetilide target KCNJ12 (0.31 100	
  

variants/residue) and the target for the rheumatoid arthritis drug niflumic acid, PLA2GLB (0.30 101	
  

variants/residue) (Supplementary Table 3).  102	
  

While both metrics described above may be useful to evaluate the extent of genetic variation in 103	
  

the human population, they do not quantify the risk of an individual person in the population to 104	
  

carry functional-variants in a particular gene. In order to estimate this risk, we define a statistic, 105	
  

the “cumulative allele probability” (CAP), which captures both the number of functional-106	
  

variants and their allele frequencies per gene (Methods and Supplementary Table 2). We want 107	
  

to emphasize that the CAP score of a gene does not necessarily reflect the extent to which the 108	
  

variants change the pharmacological behavior of the drug and therefore should be regarded as a 109	
  

score solely indicating a potential pharmacogenetic risk. Amongst the genes with the highest 110	
  

CAP scores, that is the highest probability of being affected by a functional-variant, are both, 111	
  

ADME genes and drug targets. The ADME genes with the highest CAP scores include NAT2 112	
  

(81%, involved in metabolizing arylamine and hydrazine drugs), CYP2D6 (59.6%, involved in 113	
  

the metabolism of 20% of most prescribed drugs in the US25) and the transporter gene 114	
  

SLCO1B1 (26.0%, a high risk gene for simvastatin-related myopathy/rhabdomyolsis26). The 115	
  

drug target genes with comparable high CAPs scores include tyrosinase (TYR; 62.4%, targeted 116	
  

by the acne drug azelaic acid), the alpha-4 subunit of the GABAA receptor GABRA4 (53%, 117	
  

targeted by benzodiazepines) and F5 (20.1%, targeted by drotrecogin alpha which was 118	
  

withdrawn from the market due to unacceptable high number of adverse drug reactions)	
  (Fig. 119	
  

2). The major proportion of the CAP score for these highest ‘risk’ genes derives from common 120	
  

genetic variants many of which have been observed previously. Nevertheless, for many genes a 121	
  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2017. ; https://doi.org/10.1101/147108doi: bioRxiv preprint 

https://doi.org/10.1101/147108


	
   7	
  

non-negligible proportion of the score is contributed by rare functional-variants, which were 122	
  

identified through the sufficiently large cohort size (see the lines in light purple and light blue 123	
  

in Figure 2a and 2b, respectively and Supplementary Table 2). In addition, we estimate that 124	
  

more than 60% of the drug-related genes in our set are putative novel candidates for 125	
  

pharmacogenomic research, so far missing relevant information from clinical studies 126	
  

(Supplementary Fig. 2)27. 127	
  

Cancer drug target genes have many germline functional-variants. 128	
  

Especially in cancer therapy, genetic variation in drug targets has been recognized to play a 129	
  

crucial role for treatment success28,29. While some cancer drugs do not act in the tumor tissue, 130	
  

the cancer drug’s primary site of action usually is in the tumor, whose genome contains tumor-131	
  

specific somatic variants as well as a subset of patient-specific germline variants30. Information 132	
  

on somatic variants from tumor samples is thus increasingly used to enable research on drug 133	
  

design and to implement stratified or personalized cancer therapy. However, the patient’s 134	
  

germline genome is routinely masked in these tumor sequencing analysis protocols28,29 135	
  

We thus wanted to assess whether target genes of drugs used in cancer therapy contain 136	
  

germline variants in the population that may affect the drug action and may be missed by 137	
  

current tumor sequencing analysis protocols. More than 15% of the drugs in this report (193 of 138	
  

the 1,236) are used in oncology (as defined by the WHO ATC code31) and between them have 139	
  

163 gene targets. Several of these targets have high probabilities of having a functional-variant 140	
  

in the germline (Supplementary Table 2). For some of these targets the germline risk directly 141	
  

corresponds to potential altered treatment effects. This is the case for the kinase KDR (also 142	
  

known as VEGFR2) (CAP=25%), which is targeted by sorafenib and sunitib to inhibit 143	
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vascularization of the tumor site32. Other drug targets for cancer therapeutics with high CAP 144	
  

scores include MAP4 (60%) and TUBB1 (30%) that are targets of paclitaxel, MAP1A (42%) a 145	
  

target of estramustine, CD3G (39%) a target of muromonab and PARP1(37%) a target of 146	
  

olaparib (Fig. 2). Overall, 40 cancer drug target genes, including 34 target genes with kinase 147	
  

domains, show CAP scores >1%. For these examples, functional germline variants are only 148	
  

relevant for treatment response if the tumor genome also carries them. While there is not a 149	
  

complete overlap between both germline and tumor genome due to loss of heterozygosity and 150	
  

other alterations in carcinogenesis30, our analysis suggests that a large percentage of the 151	
  

population may contain functional-variants in cancer therapeutic targets in the germline that 152	
  

may carry over to the cancer genome and could be easily overlooked by current analysis 153	
  

protocols. 154	
  

 155	
  

Aggregating risk for functional-variants in targets by drug highlights drug candidates for 156	
  

future pharmacogenomics research 157	
  

About 70% of the FDA-approved drugs analyzed here do not have any pharmacogenomics data 158	
  

associated with them in public repositories27. However, our analysis shows that there are many 159	
  

functional-variants in their target genes (Fig. 3a). To estimate how much each drug can be 160	
  

affected by functional-variants in its target genes and to highlight possible candidates for future 161	
  

research, we computed the probability of containing a functional-variant in any number of its 162	
  

reported targets in DrugBank21 by combining the CAP scores of the drug’s target genes to a 163	
  

“drug risk probability” (short DRP, see Methods for details). For all FDA-approved drugs 164	
  

considered here (n=1,236), 43% have a DRP greater than 1% (Supplementary Table 4).  The 165	
  

DRPs are weakly correlated to the number of targets (linear regression, r2 = 0.28), leaving 166	
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many drugs with few targets but higher than expected DRPs (determined by root mean square 167	
  

errors, short RMSE, of the model, red circles in Supplementary Fig. 3). For instance, one of the 168	
  

two human targets of azelaic acid, tyrosinase (TYR) is highly mutated in the population causing 169	
  

a DRP of 62.5% for this drug, which results in an RMSE of 0.34. 170	
  

Drugs with the top DRP scores are paclitaxel and docetaxel (82%), quinacrine (70%), azelaic 171	
  

acid (63%), triazolam and other benzodiazepines (>50%) (Supplementary Table 4). This means 172	
  

that any individual in the population has a probability of more than 50% to carry a functional-173	
  

variant that may affect the medication outcome of these drugs. Several of the drugs with high 174	
  

DRPs are considered “essential medicines” by the WHO33. In addition to paclitaxel and 175	
  

docetaxel, these include the opioid methadone (13.6%), the diuretic amiloride (11.7%), and the 176	
  

local anesthetic lidocaine (11.4%). For instance, the drug methadone targets the D- and M-type 177	
  

opioid receptors (OPRD1, OPRM1) and whilst some non-coding variants and a single coding 178	
  

variant (rs1799971) have previously been associated with required dose adjustments and 179	
  

treatment response, we observe another 132 functional-variants in these target genes, which 180	
  

could therefore be candidates for further testing. Since variants with predicted damaging effects 181	
  

dominate especially the rather high DRPs, we filtered the variants for only those resulting in 182	
  

LoF. Restricting to these high confidence variants, the DRP decreases below 10% and the drugs 183	
  

with the highest DRP include the anti-cancer drug marimastat (8.3%), the anti-ulcer medication 184	
  

sulfacrate (8.2%), the anti-flu drug oseltamivir (6.0%) which targets human CES1 for 185	
  

activation, and several liptins used for diabetes that inhibit DPP4 (5.6%) (Supplementary Table 186	
  

4).  187	
  

We then focused our analysis on the top 100 most prescribed medications in the US (from 188	
  

201334) which results in a list of 77 unique drug compounds for further investigation. 42% of 189	
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these drugs have a DRP score greater than 1% of containing a functional-variant and the 190	
  

probability of an individual carrying a functional-variant in any of the targets for these 77 top 191	
  

prescribed drugs is 81%. For some of these drugs it is already well established that there is 192	
  

some genetic component to drug response, even if the details are debated35. For instance, five 193	
  

of the top fifteen most prescribed drugs in the US are asthma drugs (budesonide, salbutamol, 194	
  

salmeterol, fluticasone, and tiotropium). Whilst each of the DPRs is not particularly high 195	
  

(ranging from 0.06% to 0.25%), their widespread prescription rate (> 100 million prescriptions 196	
  

in 2013) still results in thousands of individuals who may be affected by a functional-variant. 197	
  

Similarly, statins (e.g., atorvastatin and rosuvastatin) are prescribed to nearly one in five adults 198	
  

in the US1 and primarily target HMGCR. Due to genetic variation in this target gene statins 199	
  

have a DRP of 0.18%. This means that of the 40 million individuals who are prescribed a statin 200	
  

in the US, more than 80,000 individuals could be at risk of altered pharmacodynamics of statin 201	
  

treatment due to a functional-variant in the target HMGCR. This finding is underlined by 202	
  

previous pharmacogenetic studies showing that HMGCR is the most important polymorphic 203	
  

gene for treatment success of statins36.  204	
  

Overall, the genetic-variability of drug targets of many of the top 100 prescribed drugs has not 205	
  

been systematically annotated so far (Supplementary Fig. 4), including the Alzheimer’s drug 206	
  

memantine (DRP=7.2%), the pain-medication acetaminophen (DRP=4.7%) and the proton-207	
  

pump inhibitor esomeprazole (DRP=3.1%) that all have high DRPs. While these drugs, to our 208	
  

knowledge, do not have known associations between functional-variants in drug targets with 209	
  

drug action, clinical studies show that certain proportions of patients treated with them do not 210	
  

respond to treatment. The extent of this non-response is reflected by the number needed to 211	
  

treat, NNT37. For instance, for every one patient successfully treated for Alzheimer’s diseases 212	
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with memantine, between two and seven patients do not respond to treatment38 (NNT=3 to 8). 213	
  

Similarly, the NNT for acetaminophen and its indication of pain is five39 and for esomeprazole 214	
  

and reflux disease is 5440.  215	
  

Drug-related genes show geographic difference in genetic variability.  216	
  

It is known that individuals with different geographic ancestry carry genetic variants with 217	
  

different frequencies41. The six populations differentiated in ExAC are of African, South Asian, 218	
  

East Asian, Finnish, Non-Finnish European, and Admixed American (Latino) ancestry19. About 219	
  

half of all functional-variants in drug-related genes (M = 54%, SD = 15.2%) are unique to only 220	
  

one of the six populations and only 0.1% of functional-variants occur with an AF ≥ 0.1% across 221	
  

all populations. Consequently, this results in drug-related genes that have a high risk of 222	
  

functional-variants depending on geographic ancestry. 	
  223	
  

For instance, using a cutoff of CAP>1%, we found that 231 drug-related genes have functional 224	
  

variants in the cohort of European ancestry compared to 298 genes with functional variants for 225	
  

the cohort of African ancestry. 226	
  

Nevertheless, 114 drug-related genes showed a CAP score above 1% in each population 227	
  

indicating that there are genes with a similar world-wide pharmacogenetic relevance. 228	
  

Not surprisingly, amongst those genes with the highest difference in CAP score between 229	
  

populations are many cytochrome P450s and phase II enzymes (Supplementary Table 5), as 230	
  

noted in previous studies of smaller population sizes22. Similarly, we observe drug target genes 231	
  

with markedly different CAP scores across populations. Among the target genes with the 232	
  

highest absolute CAP score difference are VWF (which is targeted by antihemophilic factor), 233	
  

SIRT5 (targeted by suramin for treating sleeping sickness), and the gastric lipase LIPF (targeted 234	
  

by orlistat for obesity treatment). The latter has 65 functional-variants and the most frequent 235	
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variants differ especially between African and East Asian cohorts (CAP 8% vs 51%). Target 236	
  

genes with high subpopulation differences also include several targets for antineoplastic agents, 237	
  

such as the olaparib-target PARP1, for which the CAP score ranges from 10.2% in patients of 238	
  

African ancestry to 69.6% in Latino patients. While the efficacy of olaparib depends on the 239	
  

tumor genome and not the germline, the risk to carry germline-originated variants in the tumor 240	
  

should not be ignored. We also observed population differences in the nucleoside transporter 241	
  

SLC28A1. While the CAP score is 4% in Non-Finish Europeans, individuals with an East Asian 242	
  

ancestry have a risk of 60%. Interestingly, several variants in SLC28A1 have been associated 243	
  

with different outcomes in non-small cell lung cancer and breast cancer42,43 when treated with 244	
  

gemcitabine, suggesting that variant differences across the populations may be involved. 245	
  

Analysis of the DRP score reveals a population-specific risk for several drugs   246	
  

Of the 1,236 FDA approved drugs considered, 241 have more than 10% absolute difference in 247	
  

DRP scores between at least two sub-population cohorts and 24 of these have more than 30% 248	
  

DRP difference (Supplementary Table 6). Out of this subset of drugs, 11 belong to the 100 249	
  

most prescribed drugs in the US and 28 are recommended worldwide by the WHO for their 250	
  

therapeutic use, including oxcarbazepine, amobarbital and dolasetron. 312 of the 1,236 drugs 251	
  

have a high risk (DRP>1%) in all six sub-populations  (Fig. 4A, and the DRP top 20 drugs 252	
  

stratified by population are illustrated in Fig. 4B).  253	
  

Well-known differences, such as response to disulfiram (treatment for chronic alcoholism), are 254	
  

recapitulated in the data (Fig 4B). Specifically, the genetic variant E487K in the disulfiram 255	
  

target ALDH2 (rs671) is seen in the ExAC East Asian population at similarly high frequencies 256	
  

as seen in previous genetic studies44.  257	
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The different responses in the asthma-medication salbutamol and the blood-thinner warfarin 258	
  

have been attributed to variants in their respective drug targets, including R16G in ADRB2 259	
  

(rs1042713) for salbutamol45 and 1639G>A (rs9923231) in VKORC1 for warfarin46. Since the 260	
  

well-known response altering variants were not annotated by mutation prediction software as 261	
  

functional-variants, we did not expect to see the drugs appear high in our ranked list of risk 262	
  

differences across the populations (see discussion). Nevertheless, our analysis shows that 263	
  

salbutamol still has a high risk ratio between populations, caused by 29 variants with a 264	
  

dominant contribution from one variant separating the individuals of Finnish ancestry from 265	
  

African ancestry (rs201257377, N69S, AFFIN=0.01). To our knowledge this variant has not 266	
  

been functionally characterized or previously associated with salbutamol response. Similarly, 267	
  

we observe 19 functional-variants in the warfarin target VKORC1 that are population-specific, 268	
  

including a functional-variant observed most frequently in individuals of Non-Finnish 269	
  

European or Latino ancestry, (rs61742245, D36Y, AFNFE=0.003, AFLatino=0.001), that has been 270	
  

previously associated with predisposition for warfarin resistance47. However, 16 of the 271	
  

functional-variants may be novel risk factors including a functional-variant primarily observed 272	
  

in individuals of East Asian ancestry (R53S, ENST00000394975.2:c.157C>A, AFEAS=0.001). 273	
  

Using a recent protein 3D model48,49 of VKORC1, we mapped the R53S variant to the putative 274	
  

warfarin binding pocket (Fig. 3B). Furthermore, analysis of coevolution in the protein using 275	
  

EVfold50 shows that R53 is strongly coupled to other residues in the protein and changes in this 276	
  

site are predicted by EVmutation51 to affect protein fitness due to epistatic variant effects 277	
  

(Supplementary Fig. 5).  Together, this suggests that this mutation might be negatively 278	
  

associated to warfarin binding.  279	
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Triflusal, a treatment for stroke re-occurrence, targets four genes (PTGS1 (also known as Cox-280	
  

1), NOS2, NFKB1, and PDE10A) that together have more functional-variants in the African 281	
  

population than in any other population (DRPAFR=37%, Fig. 4B). This difference between 282	
  

populations is mainly due to a SNP in NOS2, which occurs in the population of African 283	
  

ancestry with higher than average frequency (rs3730017, AFAFR=19% vs AFglobal=4%) and 284	
  

while not functionally characterized, has been associated with protection against cerebral 285	
  

malaria52. In PTGS1, three functional-variants have allele frequencies above 0.1% in the cohort 286	
  

of African ancestry. The most frequent variant (rs5789, L237M, AFAFR=0.5% vs 287	
  

AFglobal=1.7%) lies on the dimer interface and has previously been associated with reduced 288	
  

metabolic activity of the enzyme53. A second variant is an indel, which is predicted to result in 289	
  

the total loss of protein function (AFAFR=0.3% vs AFglobal=0.02%). The effects of the third 290	
  

functional-variant common in the African cohort (rs139956360, E259A, AFAFR=0.2% vs 291	
  

AFglobal=0.02%) on enzyme activity or drug binding is less clear from the three-dimensional 292	
  

structure of the protein and would require further exploration. Since triflusal is prescribed for 293	
  

prophylactic use in the same way as aspirin for stroke prevention, it is clearly worth further 294	
  

investigating the effects of these observed functional-variants.  295	
  

Population differences in functional-variants for cancer drugs. 296	
  

Our results also highlight a large DRP variability of cancer drugs between the populations. 297	
  

While for many of these drugs not the germline but the tumor genome are relevant for drug 298	
  

action, germline DRPs of these drugs give an estimate of the population risk to possess 299	
  

potentially resistance-causing variants in the tumor and should be screened accordingly. For 300	
  

instance, the DRPs of taxanes (docetaxel, paclitaxel and cabazitaxel) are 30 percentage points 301	
  

higher in the cohorts of South Asian and European ancestry compared to the cohort of African 302	
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ancestry (DRPSAS/NFE=85% vs DRPAFR=45%) due to functional-variants in the four taxane 303	
  

targets, TUBB1, MAP2, MAP4 and MAPT. Among these are three distinct positions in TUBB1 304	
  

(Q43P/H, R307C, R359W) that occur with comparably high frequencies in the South-Asian 305	
  

population. While Q43P (AFSAS=14%) has recently been associated with decreased 306	
  

progression-free survival in urothelial cell carcinoma when treated with cabazitaxel54, less is 307	
  

known about the effects of the other two variants. Mapping the affected residues onto the three 308	
  

dimensional structure of docetaxel bound to tubulin (PDB ID: 1tub55) shows that R359 interacts 309	
  

with the drug (Fig. 3C). The effect of R307C is less obvious from structural observations as it 310	
  

does not lie very close to the binding site or the interface between the monomers in the polymer 311	
  

(R307 to K124  < 15 Å, mapped on PDB ID: 3j6g56). 312	
  

Discussion 313	
  

In this study, we analyzed the extent of functional genetic variation in drug-related genes and 314	
  

its implication for 1236 FDA-approved drugs in exome sequencing data of 60,706 individuals. 315	
  

We show that not only the risk of carrying functional-variants in ADME-related genes, but also 316	
  

in drug targets is high for an individual patient. For ADME-genes this observation is in line 317	
  

with previous studies12,15,18, but novel for drug-target genes. We observed functional-variants in 318	
  

98% of the drug-related genes and at least one high confidence LoF variant in 93% of the 319	
  

genes. The prevalence of functional-variants in drug-related genes is thus higher than 320	
  

previously shown18. When considering drug target genes for the 100 most prescribed 321	
  

medications in the US the probability of carrying at least one functional-variant is above 80% 322	
  

for each patient. Together with the high risk for clinically actionable variants in ADME genes 323	
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(98%12) these findings indicate that genetic variability may contribute significantly to observed 324	
  

differences in drug response between patients.  325	
  

While individualized cancer therapies often focus on the somatic variants present only in tumor 326	
  

tissue, we can show that functional germline variants, which are routinely masked out in the 327	
  

analysis of somatic variants, are common in many cancer drug targets. By excluding germline 328	
  

variants that the tumor inherited from its progenitor cell from cancer genome analysis in the 329	
  

context of therapeutic decision-making may thus result in the oversight of important 330	
  

determinants for treatment response or resistance development. To what extent the tumor 331	
  

genome varies from the germline genome, is dependent on patient and cancer type. Loss of 332	
  

heterozygosity, where the germline allele is lost in the disease progression and copy number 333	
  

alterations can indeed result in drastic changes between genetic variants observed in the normal 334	
  

tissue of  a patient and the cancer30,57. The high prevalence of variants in systemic cancer 335	
  

therapy targets, such as KDR for sorafenib, further indicates, that the germline variants of target 336	
  

genes in addition to ADME genes should be considered for clinical decision making. 337	
  

Geographic ancestry is a well-established confounding factor for drug response, but few drugs 338	
  

have been assessed in their efficacy across global populations. Even where clinical trials have 339	
  

been carried out in different populations, particularly non-European and non-Asian individuals 340	
  

remain understudied. By calculating risk probabilities for drugs and different populations, we 341	
  

showed that the frequency of functional-variants in drug-related genes varies widely across 342	
  

populations. Even for drugs where population differences in response are observed, additional 343	
  

patient groups may be at high risk of altered PD due to genetic variants in drug targets. 344	
  

Especially for drugs commonly used around the world, such as those on the WHO Essential 345	
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Medicines list, this could result in large numbers of patients with reduced drug efficacy in 346	
  

some, but not all, of the populations they are applied in. 347	
  

The analysis in this study relied on external data for drug variant annotation and drug-gene 348	
  

associations. Even though it was possible to estimate the burden of functional variation in drug-349	
  

related genes and quantify to which extent individual drugs may be affected, there remain 350	
  

certain limitations. First of all, even manually curated drug-target associations and 351	
  

pharmacogenomics data are susceptible to spurious annotations. For example, some subunits of 352	
  

the GABA receptors including GABRA4 are generally thought to give rise to receptors resistant 353	
  

to classic benzodiazepines such as diazepam58, but have been annotated as targets for some 354	
  

benzodiazepines. Comparison to a different, independently curated set of drug-target 355	
  

associations59 further shows that annotation of drug – target pairs does not always agree. 356	
  

Furthermore, to quantify the real risk for a drug, drug-specific ADME-gene relations should be 357	
  

incorporated into the DRP calculation. For example, optimal warfarin dosing is known to be 358	
  

dependent on variants in CYP2C9 in addition to VKORC160 and variants in the ADME-gene 359	
  

UGT1A1 are documented to contribute to different responses to the cancer drug irinotecan 360	
  

around the globe61. Unfortunately, comprehensive inclusion of ADME-genes in the DRP 361	
  

calculations is currently not possible because sufficient data for ADME-genes is lacking for 362	
  

most FDA approved drugs including the relative contribution of each enzyme. Our DRP 363	
  

estimates thus probably still underestimate the drug-specific risk of functional variation as well 364	
  

as population differences. 365	
  

The vast majority of variants in drug-related genes considered in this study has not been seen 366	
  

previously and thus lacks validated knowledge about their functional impact on drug efficacy. 367	
  

We therefore had to rely on predictions of their impact on protein function. The probabilities 368	
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presented are based on the assumption that the functional classification is correct and represents 369	
  

enzyme activity or drug efficacy. The relative risk between genes is based on the assumption 370	
  

that there has not been a significant bias in assessment when genes already have known 371	
  

deleterious mutations. That these assumptions are not always correct, follows from the fact that 372	
  

variant classification tools are not exact, are often trained on disease-causing variant sets only, 373	
  

have issues with circularity in the classifier training data, and fail to sub-classify mutations62. 374	
  

Especially the distinction of activating and deactivating effects could be crucial for the 375	
  

downstream effects on therapy. 376	
  

This discrepancy between observed and predicted functional-effects can be illustrated on the 377	
  

well-studied PGx variants in the anti-asthmatics target ADRB2 (R16G/rs1042713, 378	
  

Q27E/rs1042714 and T164I/rs1800888) that all are classified as benign45,63. To alleviate this 379	
  

problem, one could include additional prediction algorithms, which comes at the risk of 380	
  

reduced specificity (in some cases more than half of all non-synonymous variants were 381	
  

classified as functional15) as all currently available methods have their individual drawbacks64. 382	
  

Reliable computational classification methods for variant effects on drug response remain 383	
  

scarce due to insufficient training data 64, but may arise in the future if efforts are increased to 384	
  

create such data, for example using novel high throughput methods such as deep mutational 385	
  

scans65,66. For the present study we chose a conservative approach to variant annotation that 386	
  

requires the complete loss of the protein product – which should have a marked impact on the 387	
  

drug – or the consensus prediction of two independent prediction tools at the expense of 388	
  

missing some known variants (Fig. 3A). It is thus not unlikely that the effect of the functional-389	
  

variants is still underestimated in our study. 390	
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Sequencing data. The use of whole exome sequencing data comes with the intrinsic limitation 391	
  

that only variants in protein coding regions can be detected, potentially missing 392	
  

pharmacologically relevant non-coding variants67 or larger structural changes of the genome. 393	
  

Furthermore, even at low false-positive rates many called variants can be inaccurate68 and 394	
  

several pharmacologically relevant gene families – namely CYPs, HLA and UGTs – are at high 395	
  

risk for variant calling errors due to the complex genetic structure of their loci69,70. While 396	
  

members of the cytochrome P450 family have indeed been found to be problematic in short-397	
  

read sequencing22, this does not apply for most other drug-related genes15,18. To reduce the 398	
  

false-positive variant calls in our survey, we included only variants of sufficient locus coverage 399	
  

and high quality.  400	
  

Furthermore, the ExAC cohort is very large in total, but not all populations are represented 401	
  

equally19. The power to detect very rare variants thus differs by an order of magnitude between 402	
  

the individual populations (from 0.01% AF for the Finnish and East Asian populations to 403	
  

0.001% for Non-Finnish European). Due to legal restrictions in the underlying exome 404	
  

sequencing projects, sample-specific data including haplotype phase is missing also in ExAC. 405	
  

Epistatic effects of variants could thus not be investigated, even though they are known to exist. 406	
  

For example, while the single variant rs12248560 (CYP2C18*17) results in increased 407	
  

CYP2C19 activity, the combination with another variant (rs28399504) is associated with loss-408	
  

of-function of the protein (CYP2C19*4B)15. 409	
  

Implications. Many major medical institutions have started implementing genotyping 410	
  

protocols for preemptive pharmacogenetic testing71-73.  However, these usually focus on a small 411	
  

number of ADME-genes12 and often only test a subset of established actionable variants using 412	
  

microarrays74. While these arrays facilitate fast and cheap screening, we show here that the vast 413	
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majority of variants in drug-related genes seen in the human population is not covered. We 414	
  

further want to motivate that the number of genes with pharmacogenomic variants should 415	
  

systematically include genes implicated in drug mechanism even though only very few 416	
  

examples in such genes have yet been characterized well enough to be part of a dosing 417	
  

guideline. Furthermore, with allele frequencies below 0.1%, many functional-variants in drug-418	
  

related genes are so rare that they cannot be observed in clinical trial cohorts, but may 419	
  

contribute to adverse events or diffuse lack of efficacy post-marketing. In the future, this should 420	
  

be in all phases of clinical drug development and the effects of genetic variants in genes 421	
  

associated with PD and PK of the drug candidate should be systematically characterized. 422	
  

In conclusion, large-scale sequencing efforts can be used to identify and quantify the extent of 423	
  

genetic variation in genes relevant for drug action and metabolism. Identification of such 424	
  

variants is only the first step towards better treatment decisions. Newly identified variants of 425	
  

pharmacogenomics importance require validation and ultimately updated dosing guidelines. 426	
  

The development of quality-controlled and patient-centered software solutions to combine 427	
  

available knowledge of pharmacologically actionable variants with a patient’s genome as well 428	
  

as fast and accurate approaches (experimental and computational) to functionally classify novel 429	
  

variants will thus be of high importance for a future of personalized medicine. 430	
  

Materials and Methods 431	
  

Data selection and handling 432	
  

Known pharmacogenomics associations between drugs and genetic variants were retrieved 433	
  

from PharmGKB27. Data about drugs and drug-related genes was collated from DrugBank 521. 434	
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Information about drug approval status, ATC code, and details about the drug – gene 435	
  

relationship (target, pharmacological action and action type) were extracted from the xml file 436	
  

using python. We further obtained a list of the top 100 most prescribed drugs of 2013 from 437	
  

drugs.com34 and the list of WHO essential medicines by parsing the Index of the 19th WHO 438	
  

Model List of Essential Medicines33. Drugs obtained from the top 100 list and WHO essential 439	
  

medicines catalog were mapped to DrugBank compounds and those where this was not 440	
  

possible were excluded. Relations between hyaluronic acid and human gene targets as well as 441	
  

between dihydropyridines and skeletal CACNA1S were removed because the literature in the 442	
  

database entry did not support the pharmacological involvement of these pairs. We further 443	
  

removed Ethanol from the list of WHO essential medicines because it is listed as a surface 444	
  

disinfectant and thus not dependent on the patient’s cellular targets.  445	
  

Drug target genes were extracted from the drug – gene relationships in DrugBank, by filtering 446	
  

this set for only those relations with established pharmacological action flag and in which the 447	
  

gene is annotated as drug target. Based on previous studies a list of pharmacologically relevant 448	
  

cellular receptors, metabolic enzymes and nuclear receptors was obtained from to recent 449	
  

pharmacogenomics surveys15,22 and comprises the set of ADME-genes. 450	
  

Genetic variant information including variant types, allele frequencies and deleterious 451	
  

prediction scores were extracted from the ExAC VCF file (release 0.3) downloaded from the 452	
  

ExAC FTP server19. Multi-allelic variants were split using vcflib breakmulti 453	
  

(https://github.com/vcflib/vcflib) and synonymous variants were excluded. We then calculated 454	
  

for each variant the allele frequency (AF) in the full cohort as well as in each ExAC population 455	
  

separately by dividing the allele count (AC) by the allele number (AN). Following information 456	
  

about ancestry were used: AFR=African, SAS=South-Asian, EAS=East-Asian, FIN=Finnish, 457	
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NFE=Non-Finnish Eurpean, AMR=Admixed American/Latino. We further excluded variants 458	
  

whose loci were not observed at least once in every geographic population and in 50% of all 459	
  

possible samples (i.e., minimal allele number of 60,706). After adding unique IDs to the 460	
  

variants based on chromosome position, reference and alternative gene, we removed duplicates. 461	
  

Identifier mapping, filtering and annotation was performed using the Konstanz Information 462	
  

Miner (KNIME) workflow system75 and the Python programming language (Python Software 463	
  

Foundation, https://www.python.org/).  464	
  

Variant subsets 465	
  

To evaluate variants with functional effects in the ExAC catalog, we created a subsets of 466	
  

variants with functional effects (“functional-variants”): 1) loss-of-function variants affecting 467	
  

stop codons, splice sites and shifts in the reading frame as annotated by the Loss-Of-Function 468	
  

Transcript Effect Estimator (LOFTEE) tool76 in the ExAC VCF file, and 2) variants predicted 469	
  

to have a damaging effect on the protein as predicted unanimously by PolyPhen-2 23 (‘possibly 470	
  

damaging’ or ‘probably damaging’) and SIFT24 (‘deleterious’) as annotated in the ExAC VCF 471	
  

file. Functional-variants with allele frequencies above 0.5 were excluded from this set after 472	
  

observing that there are annotation or reference genome mapping problems. For each gene we 473	
  

calculated the fraction of common (AF >= 0.1%) and rare (AF < 0.1%) alleles.  474	
  

Computation of cumulative probabilities for drugs and their related genes 475	
  

To quantify the risk of an individual person in the population to carry functional-variants in a 476	
  

particular gene, we define the “cumulative allele probability” (CAP) statistic, which captures 477	
  

both the number of functional-variants and their allele frequencies per gene.  Formally, this 478	
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score is the probability for an individual to carry at least one variant allele a of the observed 479	
  

alleles A in a gene g. 480	
  

𝐶𝐴𝑃 g = 1− (1−   AF 𝑎 )!
!∈!

 

Two types of CAP scores were calculated, one for all functional-variants in a drug-related gene 481	
  

and one based only on LoF variants. 482	
  

 To estimate how much each drug can be affected by functional-variants in its target genes, we 483	
  

further define the drug-specific “drug risk probability” (DRP) score by combining the CAP 484	
  

scores for all drug target genes. Formally, the DRP score is defined as  485	
  

𝐷𝑅𝑃 𝐷 =   1− (1−   AF 𝑎 )!
!∈!!!  ∈!

  

Here G is the set of all target genes for drug D, as documented in DrugBank, and Ag the set of 486	
  

all variant alleles observed in gene g. 487	
  

Correlation analysis of the DRP scores with the number of targets was performed using linear 488	
  

regression with ordinary least squares fitting using the Python package statsmodels77 to 489	
  

compute the coefficient of determination r2. 490	
  

Statistical Analysis of population differences 491	
  

 Population comparisons for CAP and DRP scores were performed using the absolute risk 492	
  

difference (RD) metric.  493	
  

𝑅𝐷 = |𝑃 event in group 2 − 𝑃 event in group 1 | 
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The RD for a drug was calculated by subtracting the score from population with the smallest 494	
  

DRP score from the score of the population with the highest DRP. To identify for which drugs 495	
  

a population has above or below average risks (Fig. 4b), we further calculated all pairwise risk 496	
  

differences between populations from which we then computed the population-specific mean 497	
  

RDs. 498	
  

Detailed variant analyses in case studies 499	
  

Protein structures for the porcine TUBB1 homologue (PDB IDs: 1tub55, 3j6g56), ADRB2 (PDB 500	
  

ID: 2rh178), PTGS1 (PDB ID: 3n8w79) and NOS2 (PDB ID: 4nos80), were obtained from the 501	
  

Protein Data Bank. Recently published homology models for VKORC1 were downloaded from 502	
  

the supplement of the respective publications48,49. Co-evolution analysis of residues was done 503	
  

using plmc-based EVcouplings50 and based on jackhmmer81 alignments created with the 504	
  

Uniprot entries of the respective protein as queries against the Uniref100 database82 (release 505	
  

01/2017). Alignment columns with more than 70% gaps and sequences with more than 50% 506	
  

gaps were excluded from the model. Functional impact was predicted using EVmutation51 and, 507	
  

in the case of VKORC1, compared to experimental warfarin binding data49. Protein structures 508	
  

were analyzed and rendered using the UCSF Chimera package from the Computer Graphics 509	
  

Laboratory, University of California, San Francisco83. 510	
  

Statistical analysis and code availability 511	
  

Statistical analysis of the data set was performed in jupyter/IPython notebooks84 using pandas85 512	
  

and other packages of the SciPy stack86. The code used to analyze the data set and produce the 513	
  

figures will be made available on github. 514	
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Figure 1. Analysis of genetic variation in drug-related genes. a) The analysis pipeline consisted of 693	
  
collation of exome data from ExAC19, identification of drug – gene relationships from DrugBank21 and 694	
  
prescription information34  followed by filtering steps and subsequent computational analysis to 695	
  
investigate drug-specific risks of pharmacogenetic alterations in patients. b) Comparison of the allele 696	
  
frequency distribution between non-synonymous variants of all human genes (n=17,758) and non-697	
  
synonymous variants in drug-related genes (n=806) collated from ExAC. c) Comparison of the allele 698	
  
frequency distribution between functional-variants as predicted by LOFTEE76, Polyphen-223 and SIFT24 699	
  
and all non-synonymous variants in the drug-related genes. 700	
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Figure 2. Drug-related genes with highest probability of having functional-variants.  a) Protein-703	
  
centered cumulative allele probability (CAP) scores for the 100 drug targets with highest scores (purple) 704	
  
and the contribution of CAP scores as determined from rare variants alone (light purple). a1) Top 20 705	
  
target genes with highest CAP score, a2) Examples of target genes with lower CAP scores, b) 100 706	
  
ADME-genes with highest CAP scores (blue), and the corresponding CAP score determined from rare 707	
  
variants alone (light blue). b1) Top 20 ADME-genes with highest CAP scores, b2) Examples of ADME-708	
  
genes with lower CAP scores. Bubble size corresponds to the number of functional-variants observed 709	
  
for the respective gene. 710	
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Figure 3. Knowledge gap between observed genetic variants in the population and documented 713	
  
pharmacogenomics data. a) Availability of documented pharmacogenetic associations for 1,236 FDA-714	
  
approved drugs in public repositories such as the PharmGKB database27 (left), is less abundant than 715	
  
functional-variants observed in the population for the drug target genes (right). b) and c) Examples of 716	
  
known and novel genetic variants (green) in the target genes of warfarin and taxanes that could affect 717	
  
drug efficacy due to effects on the binding site (ligand highlighted in purple). 718	
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  719	
  

Figure 4. Variability of drug risk probabilities across populations. a) Number of drugs with shared 720	
  
(black) or private (colored) drug risk probabilities (DRP) for functional-variants in their 721	
  
pharmacological target genes greater than 1%. DRP scores were calculated by aggregating the risk of 722	
  
functional variation across all documented pharmacological target genes of that drug. b) Drugs with 723	
  
highest (top) or lowest (bottom) mean DRP difference compared to all other populations indicating for 724	
  
which this population is at higher/lower risk of encountering functional-variation in the target for a drug 725	
  
and thus higher/lower impact on drug effect. 726	
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