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Abstract 

Crystallographic structure models in the Protein Data Bank (PDB) are optimized against the 

crystal diffraction data and geometrical restraints. This process of crystallographic refinement 

typically ignored hydrogen bond (H-bond) distances as a source of information. However, H-bond 

restraints can improve structures, especially at low resolution where diffraction data are limited. 

To improve low-resolution structure refinement, we present methods for deriving H-bond 

information either globally from well-refined high-resolution structures from the PDB-REDO 

databank, or specifically from on-the-fly constructed sets of homologous high-resolution 

structures. Refinement incorporating HOmology DErived Restraints (HODER), improves 

geometrical quality and the fit to the diffraction data for many low-resolution structures. Using 

approximately 60 years of CPU-time in massively parallel computing, we constructed a new 

instance of the PDB-REDO databank, a novel resource to help biologists gain insight on protein 

families or on specific structures, as we demonstrate with examples. 
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Crystallographic structure models are optimized against the crystallographic diffraction data and 

a priori known geometrical observations, the geometrical restraints. We are developing the PDB-

REDO procedure, which among many decisions1 optimizes the weight between crystallographic 

and geometrical observations2 to re-refine and re-build macromolecular structures before3 or after 

they are submitted to the PDB4. In PDB-REDO and any crystallographic refinement procedure 

however, low resolution diffraction data means that fewer observations of diffracted X-rays are 

available, and as resolution declines the crystallographic refinement problem becomes 

increasingly underdetermined5. Restraint dictionaries6,7 describing ‘ideal’ refinement targets for 

bond lengths, angles, planar groups and other well-defined chemical features, at low resolution 

become gradually insufficient to yield high-quality structure models. Additional, external 

restraints8 can be defined and, for example, hydrogen bond restraints9,10 (H-bonds) and 

Ramachandran torsion angle restraints9,11 have been used to enhance protein secondary 

structure quality, particularly at lower resolution. 

Macromolecular crystals diffract X-rays to higher or lower resolution in an unpredictable manner: 

even very similar proteins or the same protein bound to different ligands (e.g. drug candidates), 

can yield crystallographic data at different resolutions. This allows refinement methods to harvest 

information from a high-resolution “reference” model and use it to refine low-resolution 

models9,10,12–15. Available implementations of this principle focus on harvesting restraints from a 

single external reference structure model of high quality, and transferring that information to the 

low-resolution structure under refinement. Thus the crystallographer is faced with the often 

difficult and inevitably subjective decision of selecting the ‘best’ model from a group of protein 

structure models as a reference16. Recently, this process was partly automated in the LORESTR 

pipeline17 which uses a series of different refinement protocols and reference restraints from 

ProSMART10,12, to ultimately return the best result using restraints from the optimal reference 

model. 

A set of reference models consisting of many available homologous higher resolution structures, 

would take conformational flexibility implicitly into account and may therefore help obtaining a 

better measure for the variation of certain distances, while idiosyncrasies of a single reference 

model will not cause bad restraint targets. However, heterogeneity in the reference data (e.g. 

multiple conformational states of a protein) will often be present in the structure ensemble. 

Therefore, flexibility toward local dissimilarities between the homologs is required. Such flexibility 

can be achieved by ignoring quasi-random distances or angles and focusing on hydrogen bonds 

(H-bonds) instead. H-bond networks are well conserved between homologous proteins18, and if a 

certain H-bond is not, inspection of the molecular geometry reveals this immediately. In addition, 

H-bonds are omnipresent in proteins: more than 90% of all main-chain donors and acceptors are 

involved in at least one H-bond and side-chain donors and acceptors make more than one H-

bond on average19. Main-chain H-bonds form the secondary structure elements18, and have been 
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restrained in low-resolution refinement before9,10. H-bonds that involve side-chains describe the 

tertiary and quaternary structure of a protein and are therefore more informative about the 

specific molecular details of a protein. 

Here, we present a system that employs H-bond restraints to improve the geometry of low-

resolution structure models. First, we optimize targets for H-bond restraints based on global high-

resolution structure data from PDB-REDO, and show that these restraints improve protein 

structure models. Then, we describe how restraint targets can be redefined based on 

homologous structure data and how both global and homology-based restraints are implemented 

in the PDB-REDO pipeline. Subsequently we apply our HOmology DErived Restraints (HODER) 

to the entire PDB data bank, using a highly parallel computational architecture that allowed 60 

CPU years of computation to be performed in a few days, allowing a new resource (https://pdb-

redo.eu/) to be made publically available. Finally, we present examples of the information that 

can be derived from this novel resource, and how this can help scientists gain a better 

understanding of protein structure. 
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Results  

Derivation, application and validation of general H-bond restraints 

We based the detection of H-bonds on the geometrical criteria defined by McDonald and 

Thornton19, which were slightly loosened to obtain a complete H-bond set (Figure 1A). This set is 

then subjected to numerous filters to finally arrive at a concise set of high-quality H-bonds that 

will be restrained. For example, we check each main-chain H-bond against secondary structure 

information derived from DSSP20,21, and donors are not allowed to donate more H-bonds than the 

number of hydrogen atoms that are bound to them. Not all H-bonds are equal: the distance 

between the donor and acceptor atom differs between different secondary structure elements 

and different types of side-chain H-bonds. Therefore, we derived specific targets for each H-bond 

type from high-quality structural data from PDB-REDO1 models with a resolution ≤ 1.8 Å and an 

Rfree ≤ 0.20, 10,173 entries in total. H-bonds were detected in all of these entries and separated 

per category. Main-chain H-bonds were separated in six secondary structure categories (α-helix, 

π-helix, 310-helix, antiparallel β-strand, parallel β-strand, and others) based on the assignments in 

DSSP. Side-chain H-bonds were divided into categories where all H-bonds have the same donor 

and acceptor type. Hence, for example, one category contains all Lys-Nζ to Gln-Oε H-bonds. The 

full procedure is detailed in the Online Methods.  

Figure 1: (a) Criteria for H-bond geometry. H is the 

hydrogen atom, D and A the donor and acceptor heavy 

atoms. Atoms attached to D and A are labelled D’, D’’ and 

A’. Each H-bond must fulfill the two distance and three 

angle criteria indicated. However, if the D-H-A angle is 

greater than 140°, we allow H-A distances up to 2.75 Å. 

These criteria were empirically optimized from original 

work by McDonald and Thornton
19

. (b) Distribution of H-

bond distances for different restraint weights and groups 

of structure models. The black line indicates the 

distribution of all H-bonds in the high-quality PDB-REDO 

structure model set (resolution < 1.8 Å and Rfree < 0.20); 

the colored lines indicate the distribution in the test set 

changes after refinement without H-bond restraints (blue) 

and after refinement with an external restraint weight of 2 

(red). The distributions for high-resolution PDB-REDO 

models and re-refined models from the test set are based 

on 3.1m and 159k H-bonds, respectively. A restraint 

weight of 2 makes the test-set distribution resemble the 

high-resolution set most; other restraint weights are 

shown in Figure S1. 
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We detected approximately two million main-chain H-bonds and two million side-chain H-bonds, 

which were used to derive a target for each H-bond type. The observed H-bond-length 

distributions were modelled with two-sided normal distribution to obtain ideal target values (see 

Online Methods). Main-chain targets vary between 2.86 Å and 2.98 Å for different secondary 

structure elements (Table S1) and side-chain H-bonds between 2.60 Å and 3.36 Å for different 

types (Table S2). Notably, H-bond restraints previously incorporated into ProSMART/Refmac512 

and Phenix9, use distance targets of 2.8 Å (Refmac5) and 2.9 Å (Phenix) for all H-bonds, hence 

the systematic mining from the homogeneously refined structures in PDB-REDO brings new 

information to the target function. 

Defining the weight of H-bond restraints against other restraints during crystallographic 

refinement is key. This weight was optimized based on the premise that high-resolution 

structures accurately reflect hydrogen bonding in proteins. Hence, the distribution of H-bond 

distances was evaluated for the same set of high-quality PDB-REDO models used to derive the 

targets and also for PDB-REDO entries with a resolution ≥ 2.5 Å. The restraint weight was 

optimized selecting a value that transformed the H-bond length distribution of the low-resolution 

set to become most similar to that of the high-resolution set after refinement (Figure 1B, S1).  

The effect of the H-bond restraints was initially evaluated by running refinements with and without 

restraints: the effect of H-bond restraints was greater at lower resolution, while at resolution 

better than 2.5 Å, the effect of H-bond restraints was negligible. We thus constructed a test set 

containing 155 low-resolution entries (for details see Online Methods) and proceeded by 

validating the effect of our method in refinement. 

H-bond restraints on the basis of general targets improve the refinement of low-resolution 

structure models in the majority of cases (Figure S2, Table S3). Mainly the geometry of the 

protein, measured by packing and Ramachandran angle quality, is improved, while marginal 

average effects are observed for Rwork and Rfree. As expected, main-chain H-bond restraints had 

more impact than side-chain restraints (Table S3). To further test the effect of our new H-bond 

detection algorithms we repeated calculations with H-bond restraints generated by ProSMART 

and Phenix: for all model quality criteria our method performs comparably or better than previous 

methods (Table S4).  

Analyzing the general H-bond restraints more specifically showed specific shortcomings: at 

places the restraints were too tight, distorting the backbone; in some categories specific H-bonds 

could be relatively weak and should be restrained at greater H-bond length; variation in H-bond 

length was larger in variable regions such as loops and side-chains; and there are small 

systematic differences within groups that were assigned a single target (e.g. a systematic 

difference in H-bond lengths between the middle of a long α-helix and its C-terminus22). Because 

the variability inherent to H-bond lengths cannot be captured in any sensible general division, we 

set out to define a target on the basis of the homologous structure models, expecting a much 

more accurate measure of the molecular context of the H-bond than the general data-mining 
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described in this section. 

Homology-based H-bond restraints 

To generate homology-based H-bond restraints, we first need to extract the protein sequence 

from the working PDB file. The program pdb2fasta (see Online Methods for details) aims to 

extract the sequence for modeled and unmodeled parts of the structure, and also maps 73 

common types of non-natural (mostly post-translationally modified) amino acids to their parent 

amino acid. The program has been tried and tested for PDB-wide stability, gives information on 

unmodeled parts of the sequence, and may therefore be used also for purposes outside the 

scope of this work. 

The sequence file produced by pdb2fasta is then passed to BLAST23, which runs it against the 

PDB-REDO databank1 that contains models of a higher average quality24 than the PDB16. BLAST 

results are passed to our new program HODER (HOmology DErived Restraints), to first identify 

suitable homologs from a databank of structural data. Briefly, we consider hits with ≥70% 

sequence identity and a resolution higher than the query (see Online Methods for details). 

Importantly, users can also add their own PDB files to HODER, to be used as extra homologs: 

this functionality is important if one is e.g. working on a series of ligand soaks. 

After the residues of the working structure are mapped onto their homologous residues, HODER 

attempts to derive the H-bond distance restraints. For every H-bond in the working structure, the 

same H-bond is computed in all homologs, wherever possible. Then, these distances are 

subjected to 1D k-means clustering25, the optimal number of clusters is determined by the 

Bayesian information criterion26, within some constraints, and corresponding target distances for 

each cluster are computed, wherever possible (for details on all the above criteria see Online 

Methods).  

We then repeated the same calculations for H-bond restraints based on general targets for 

restraints based on homology: as the latter differ from general H-bond restraints only in how their 

target is derived, the same restraint weight was used. In our test set (see above) 87±16% of the 

H-bond restraints in each structure were based on homology; for H-bonds where no homology-

based target could be defined, we resort to the general target values detailed above. Altogether, 

homology-based restraints do not deliver a uniform global improvement in performance 

compared to our general H-bond restraints, but neither did they show obvious drawbacks. 

Importantly, however, the implementation in PDB-REDO, which we shall discuss now, shows that 

homology-based restraints work better than general restraints in more extensive model 

optimization protocols. 
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Homology-based H-bond restraints in PDB-REDO 

The H-bond restraint procedures have been incorporated into the PDB-REDO pipeline (see 

Online Methods for details). About one quarter of the crystallographic structures in the PDB 

(24,506 out of 101,347 PDB-REDO databank entries) with a resolution equal to or worse than 2.5 

Å, and thus could benefit from H-bonds restrains. Homology-based restraints could be generated 

for 17,824 of these entries (73%), and 82% of the total restraints for this set were homology-

based (the remaining 18% were defined using the fallback general targets). 

In general, the PDB-REDO pipeline already improves both the geometry and the fit to the data of 

published structure models1. When H-bond restraints are used, these improvements are enlarged 

(Figure 2, Table S5). Importantly, and in contrast to refinements discussed in the previous 

section, homology-based restraints work decidedly better than general restraints in the PDB-

REDO pipeline (see Online Methods for details). 

When models are subjected to the PDB-REDO pipeline using homology-based restraints, they 

are influenced by their homologous PDB-REDO entries. In turn, the PDB-REDO models 

subjected to homology-based restraints may also become the basis of the restraints for other 

homologous structure models of even lower resolution, which could cause a feedback loop and 

structure families converging to a consensus structure over multiple rounds of optimization. Then, 

the true differences between the different structures could be lost. We assessed this risk by 

subjecting all entries in six protein families (hemoglobin, BRCA1, MutS/MutL, OmpF porin, F1-

ATPase and alcohol dehydrogenase) to PDB-REDO five times. Differences between structure 

models do not decrease when multiple cycles of PDB-REDO with H-bond restraints are applied 

(Table S6), suggesting that weight optimization and the tolerance to external restraint outliers in 

Refmac5 prevent bias toward other, possibly incorrect conformations (see Online Methods for 

details and additional observations). 
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Figure 2: Comparison of PDB-REDO runs with and without general (left) and homology-based H-bond 

restraints (right) for all entries in the test set. Each arrow represents the scores from two re-refinements on 

a single PDB entry. Arrow tails indicate scores from refinement without restraints; arrowheads indicate 

scores from refinement with restraints. Blue and red arrows indicate improvement and deterioration of the 

score, respectively. The shown scores are the first generation packing Z-score (top) and the 

Ramachandran Z-score (middle) from WHAT_CHECK
27

 and the Rfree (bottom) calculated by Refmac5
28

. 

Arrows at the same resolution have been shifted up to 0.05 Å to reduce clutter. Packing Z-score and 

Ramachandran Z-score are not shown if they were not computed by WHAT_CHECK; Rfree is not shown if a 

new Rfree set was chosen by PDB-REDO
1
. 
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Massively parallel computing for a novel PDB-REDO databank with 

homology information 

The observations that global and homology-based H-bond restraints improve low-resolution 

structure models after a single PDB-REDO refinement encouraged us to update all entries in the 

PDB-REDO databank21 with the most recent version of the (fully automated) PDB-REDO 

software that includes the refinement strategies based on H-bond restraints. 

Based on benchmarking of PDB-REDO jobs, we estimated that we would need a century of 

single core computing time to calculate all PDB-REDO entries. As this was incompatible with 

current funding constraints and academic tradition for completion of doctoral thesis work, we 

decided to deploy PDB-REDO in a High Performance Computing (HPC) environment. Self-

contained Docker (www.docker.com) and Singularity29 images with all PDB-REDO core and third-

party components (more than fifty independent pieces of software) were created to facilitate 

massive deployment on any (HPC) host (see Online Methods). Running the complete PDB-

REDO pipeline with 101.570 entries finally required about 60 CPU years (half a million hours) 

and all computations were finished within about a week using approximately 3072 cores on the 

Gordon HPC cluster, and the large memory nodes on the Comet HPC cluster, at the San Diego 

Supercomputer Centre. These runs were assembled in a new PDB-REDO databank. 

This new databank is a resource of consistent and high-quality protein structure models. The 

introduction of homology-based restraints has improved the quality of low-resolution structure 

models in a consistent manner, as all low-resolution structure models in the databank were 

allowed to refine using information derived from high-resolution homologs (Figure 3). Importantly, 

it is not only a new resource in its own right, but it can also serve for better homology restraint 

generation for future structure refinement. In addition, the entire PDB-REDO databank is 

constructed with a single software version (which has not been possible before) and with new 

algorithms: these include better treatment of twinning, general improvements to TLS, NCS, and 

ADP refinement1, validation and correction of structural zinc sites30, better handling of 

carbohydrates31, improved selection of resolution cut-off and the generation of anomalous 

difference maps when possible. All these developments are consistently and uniformly applied in 

all entries, in addition to the applicable homology-derived restraints. 
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Figure 3: Rfree and Ramachandran Z-

score as a function of crystallographic 

resolution for entries present in PDB, in 

the PDB-REDO databank prior to the 

introduction of homology-derived H-bond 

restraints (PDB-REDO version 6.23), and 

in the PDB-REDO databank calculated 

with version 7.00. Outliers are shown 

when they are located beyond 1.5 times 

the inter-quartile range. R-free for PDB 

entries was determined by PDB-REDO for 

consistency. 

 

 

 

 

 

 

 

Interestingly, the information source for homology-derived restraints can be analyzed in detail for 

every structure. In Figure 4 and interactive figures in Supplementary HTML, we show a directed 

graph to represent information transfer from any higher-resolution homolog to any lower-

resolution homolog. About half of the PDB-REDO structures (nodes) in the network are 

connected (edges) to other structures, as they donate or receive H-bond restraints by satisfying 

the criteria for homolog use (see Online Methods). The connected graphs in the network typically 

correspond to protein families. The clusters have widely varying topologies and may be highly 

connected (Figure 4a) or may consist of a few structures that receive restraints from structures 

that only donate (Figure 4b). Interestingly, we found one single very large cluster, consisting of 

many smaller clusters connected to each other mainly by antibodies and lysozyme 

(Supplementary HTML). Using community structure detection32 we show that the modules in this 

graph also correspond to clusters of homogenous function (Figure 4c, 4d and Supplementary 

HTML). Visualizing and analyzing these clusters is an important tool for detecting likely changes 

within specific family members. 
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Figure 4: Network representations of H-bond information transfer between homologs. The nodes represent structures 

in the PDB-REDO databank. Node size and color correspond to the number of incoming edges and used resolution 

(darker is lower), respectively. The edge weight corresponds to the number of homologous chains. (a) Breast Cancer 1 

(BRCA1). (b) Alcohol dehydrogenase (ADH). (c) Modules detected in the largest network. Node size reflects module 

size. The three most frequent terms in PDB TITLE records (stripped from English articles, punctuation, etc.) of the 

structure members in the labeled modules are 1) lysozyme, carbonic, anhydrase; 2) Fab, antibody, fragment; 3) 

antibody, Fab, HIV; 4) trypsin, inhibitor, thrombin; 5) HLA, peptide, class; 6) hsp90, bound, inhibitor; 7) ubiquitin, 

nucleosome, histone; 8) binding, maltose, bound. The MutS community (orange; MutS, mismatch, coli) is linked to 

community 8. (d) The MutS community. 

The family of maltose transporters is an example where examining the cluster can aid analysis: 

the 3fh633 structure in this family is receiving information from every other node/structure in this 

family (Figure 5b). Examining the structure in more detail indeed shows that the introduction of 

homology restraints has led to local improvements, i.e. better definition of the secondary 

structure content. The secondary structure for this protein became now more similar to the family 

(Figure 5a,c,d) in an unsupervised, automated manner, and would thus not mislead a potentially 

interested researcher to believe that this model is genuinely different to other homologues in 

secondary structure content. 
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Figure 5: (a) The 4.5 Å structure model of E. coli maltose transporter (PDB entry 3fh6
33

) after PDB-REDO with 

HODER. All colored residues (strand in red, helix in blue) in the full structure are residues that changed in secondary 

structure between PDB, PDB-REDO and PDB-REDO with restraints from HODER. The secondary structure is best 

defined after using homology-based restraints. (b) The network neighborhood of homologous PDB entries that were 

used to define the restraints. The target entry, 3fh6, is shown in yellow. The node size corresponds to the number of 

incoming edges and edge thickness represents the number of homologous chains used. Small nodes are the high-

resolution homologs that only donate information. (c, top) Details of a β-strand region are shown for PDB, PDB-REDO 

and PDB-REDO with HODER-generated restraints. The regularity of the strand is improved by PDB-REDO compared 

to the PDB and still further improved when restraints are used.  (c, bottom) Details of an α-helical region in the same 

structure models. At such a low resolution, PDB-REDO requires the restraints from HODER to retain helical regularity. 

(d) The average absolute difference of φ/ψ torsion angles between 3fh6 chains and homologous chains for each 

homologous chain in the PDB, in PDB-REDO and in the new version of PDB-REDO with restraints from HODER. The 

chains A, B, C and D are homologous mixed α/β domains and there are two pairs of homologous α-helical domains: 

chains F and H and G and I, respectively. These three groups of homologous chains are shown separately. Especially 

the mixed α/β domains become much more similar to their homologous counterparts. All chains become still more 

similar to homologs when restraints are applied. Some homologs are clearly more similar in conformation to 3fh6 than 

others. All average angle differences fall in the range between 20 and 62 degrees presented in the legend. 
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Apart from making changes of local interest to specific structures, the new PDB-REDO databank 

can also provide a more reliable resource for data mining: for example, properties such as the 

Molprobity34 percentile and the ΔG of folding (calculated by FoldX35) are improved and become 

more uniform for protein families in PDB-REDO (Figure 6). Such uniform distributions can be 

much better learning sets for deriving empirical information by data mining protein structures, and 

can help improve modeling and analysis initiatives. 

 

 

Figure 6: The free Molprobity
34

 percentiles (top) and energy (ΔG) of folding from FoldX
35

 (bottom) for each 

chain in the six investigated protein families. Data is shown for PDB and PDB-REDO with restraints from 

HODER. For the Molprobity percentiles, a single data point is shown per entry; for ΔG a score is shown 

per chain. The red and green horizontal bars indicate the median values. 
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Discussion 

Novel general and homology-based H-bond restraints targets, obtained by new algorithms mining 

the PDB-REDO databank, improve geometrical quality and the fit to X-ray data for low-resolution 

crystallographic structure models. This improvement often goes beyond the reach of current 

methods. In standalone refinements, homology-based restraints perform equally well to restraints 

based on general data-mining. Within the PDB-REDO pipeline, however, homology-based 

restraints perform better than general restraints.  

A difficulty with many methods based on reference structures is that their performance is 

dependent on the similarity of the reference structure to the target structure model. For example, 

in the LORESTR pipeline17, different reference models are tested. In that approach, separate 

restraints are generated for each reference model and the refinement will adhere to those 

restraints that are closest to the current model. In such an implementation, more homologs lead 

to more restraints for a single distance, and therefore distances will be restrained to a target 

more similar to the current distance. This effectively prevents the target model from changing, 

likely explaining the authors’ observation that more homologs did not improve refinement. In our 

approach, all homologs are used to generate one or a few targets per interaction, and therefore 

more homologs only lead to a better definition of the restraint targets. Using our approach also 

mitigates user dilemmas on model choice: a comprehensive search of likely models or 

combinations is computationally very expensive, but using a subset of homologs makes model 

selection semi-arbitrary. The methods presented here have the advantage of using all 

homologous structure models, making them more computationally efficient and more robust to 

differences in homologs than methods based on a single reference structure model. Additionally, 

the width of the H-bond-length distribution is represented in the restraints, allowing regions with 

more structural variation to be less tightly restrained and vice versa. This information is not 

available if only one reference model is used. 

We expect that the multi-homolog methods presented here will not work as well if random short-

range atom pairs are restrained instead of H-bonds. Unlike random distances, H-bonds can be 

validated based on well-established geometric criteria. Therefore the selection of restraints is 

much more reliable, albeit smaller than with random distances. With this in mind, the restraints 

defined here for H-bonds could be extended to other intramolecular interactions in a protein, such 

as π-π-, cation-π-, and anion-π-interactions. Unlike H-bonds, more than two atoms are involved 

in such interactions, hence more than a simple distance restraint is necessary to improve their 

geometry. The framework for restraining plane stacking interactions (as a proxy for π-π-

interactions) is available in Refmac5 and is used by the program LibG for nucleic acid 

restraints36. Detailed studies into the geometry37 and thermodynamics38 of these interactions can 

aid in inferring which geometric parameters are best restrained. 

The application of H-bond restraints PDB-wide in a massively parallel manner using HPC 
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resource has generated a new resource for the biology community: a PDB-REDO databank that 

incorporates homology information and is uniformly re-refined and re-built with a single software 

version. By eliminating software idiosyncrasies from the generation of the final structure model 

and by using homology information, structure similarity within a protein family can be analyzed 

optimally. That is, in PDB-REDO, differences between models are more likely to be true 

differences instead of refinement-related inconsistencies and the models are therefore more 

informative. Indeed, the PDB-REDO databank was previously used to systematically study OH 

cleavage from tyrosine39. Moreover, using a higher-quality structure data resource may prevent 

incorrect conclusions from dubious data. For example, a recent study40 detected a number of 

“novel zinc coordination geometries”, most, if not all, of which were simply errors in the input PDB 

data41. 

Importantly, H-bond restraints are aimed at improving the geometry of protein structure models 

and are therefore not solely applicable to models solved by X-ray crystallography, but also to 

models obtained from cryo-EM. Models solved by cryo-EM still have a relatively low resolution 

compared to X-ray crystallography and often have homologous domains of higher resolution 

present in the PDB. H-bond restraints could also be applied to NMR and homology models but 

only once there is independent evidence that H-bonding partners are actually close; in these 

cases H-bond restraints should best be introduced at a final polishing stage of model 

optimization. 

The new PDB-REDO databank is a valuable novel resource for two audiences. Structure-minded 

biologists can use the improved models to identify true features of particular structures in the 

context of a protein family. Bioinformaticians gain a resource that removes systematic errors from 

structural models to an extent that is likely to prove significant in the context of many types of 

global analyses, including homology modeling or automated feature analysis of protein 

structures. 
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Availability 

The methods discussed in this article have been incorporated into the PDB-REDO pipeline that is 

available as a webserver3 at https://pdb-redo.eu or as downloadable software. The new PDB-

REDO databank is also available at https://pdb-redo.eu. The source code of HODER, pdb2fasta, 

and detectHbonds and the containerized versions of the entire PDB-REDO pipeline are available 

on request. 
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Online methods 

Derivation, application and validation of general H-bond restraints 

Derivation of hydrogen bonds 

We have optimized our H-bond detection algorithm extensively, which lead to various cutoffs: 

unless specified otherwise, these values were empirically optimized to find the best set of H-

bonds. We detect as H-bonds all pairs of potential donors and acceptors in a protein molecule 

that are distanced less than 3.5 Å away from one another. This results in a large initial set of H-

bonds from which many will be filtered out after closer examination. 

First, hydrogen atoms are modelled at the ideal positions. For donors that have more than one 

option for the ideal position of the hydrogen atom, such as the alcohols in Thr, Ser and Tyr, the 

best hydrogen is chosen as the one closest to the acceptor; others are deleted. McDonald and 

Thornton19 established criteria for the geometry of H-bonds; we work with slightly more lenient 

criteria (Figure 1). H-bonds whose geometry does not match the criteria are discarded. 

Next, two general filters follow as a sanity check for each H-bond. First, H-bonds are filtered if the 

H-bond is physically blocked by another atom. Secondly, if the atoms in the H-bond are from 

different chains, the percentage of atoms with an occupancy not equal to 1.00 must be smaller 

than 80% for the H-bond to be kept (there are some instances in the PDB where quasi-multi-

model refinement has been applied by simply generating two chains with the identical protein in a 

slightly different conformation; this filter prevents hydrogen bonding between those different 

“chains”). 

After general filters, there are filters specific to main-chain and side-chain H-bonds. In the 

following, main-chain H-bonds are between two main-chain atoms; side-chain H-bonds are 

between two side-chain atoms or between a main-chain and a side-chain atom. The most 

important filter for main-chain H-bonds is a check for consistency with DSSP20,21: an H-bond is 

only kept if it is also a first-choice H-bond in DSSP. This immediately ensures that a main-chain 

donor does not form more than one main-chain H-bond, which is not allowed in our method 

because only one hydrogen atom can be donated. Additionally, main-chain H-bonds are only 

allowed if the donor and acceptor are at least three residues apart, and no H-bonds are allowed 

between donor and acceptor atoms that have different alternate codes.  

Filtering of side-chain H-bonds is more elaborate because the diversity in H-bonds is greater. 

First, H-bonds between two alternates are removed when the D-A distance is smaller than 2.5 Å. 

Second, bifurcated H-bonds are deleted when they are superfluous. For instance, aspartic acid 

and arginine side-chains can form two H-bonds by bifurcation, but including cross-bifurcated H-

bonds, up to four may be detected: the cross instances must then be deleted (Figure S3). Third, 
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heavy atoms are only allowed to donate as many H-bonds as the number of hydrogen atoms 

they bind. Hence, alcoholic side-chains and backbone amides can only donate one H-bond while 

a lysine may donate three. Acidic side-chains usually lack a hydrogen and are therefore 

considered to be acceptors only. Fourth, no general target could be defined for some seven H-

bond types (Figure S2) involving histidine because they are very rare: no restraints will be 

produced for those H-bonds. Finally, some H-bonds have both an ambiguous donor and acceptor 

and will be detected twice. The second instance is therefore removed. 

When all other filters have been applied, conflicts can still arise between the set of main- and 

side-chain H-bonds. If a main- and side-chain H-bond are based on the same hydrogen atom, 

the bond with the longest H-A distance is discarded. 

After applying all filters, there are still two types of side-chain H-bonds that we consider less likely 

than other H-bonds. Therefore, these H-bonds are only restrained with a homology-based target 

and not with a general one. The first case concerns H-bonds where donor and acceptor are in 

the same or sequential residues. This is uncommon and only allowed if the target can be derived 

from homologs. Serine, threonine, glutamic acid and glutamine-Oε form the exception to the rule, 

as they commonly bond to their own backbone42 and are therefore allowed to be restrained with 

general targets. Secondly, H-bonds are flagged from long side-chains of arginine, glutamic acid 

or glutamine if they only make a single side-chain H-bond. Such H-bonds are not as reliable 

because the conformation of long side-chains is often less ordered. 

Fitting H-bonds distributions 

The H-bond-length distributions were fitted with two-sided normal distributions using simplex 

optimization43,44 of least squares in combination with a linear weight on the height of the 

distribution. We give greater weight to the top of the distribution than to the edges because H-

bonds in the middle of the distribution are more likely correct. However, the normal distribution 

was fitted on two sides of the mean separately because the respective variances were very 

different for most categories. The final target distance is then defined as the fitted top of the 

distribution and the standard deviation is set as the average of the standard deviations of the two 

sides. This was necessary because the Geman-McClure restraint penalty function in Refmac528 

is symmetrical. We determined manually that distributions based on >100 observations can be 

fitted with reasonable accuracy. H-bonds of the rarest six types (out of 119) are currently not 

restrained. Since the target fitting routine is fully automated, the targets can be updated regularly 

and thus become more precise and complete when more data is available. 

For choosing the weight of H-bonds in refinement, integral weight values of 1, 2, 3, 4, 6, 8 and 10 

(ProSMART/Refmac5’s default value) were tested. The optimal restraint weight was determined 

to be 2.  
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Initial testing and validation of H-bond restraints  

A program called detectHbonds was written, which takes a PDB file and generates H-bond 

restraints in Refmac5’s external restraint format8. The effect of the H-bond restraints was 

evaluated by running refinements twice per structure model, once with and once without 

restraints. Settings for geometric restraint weight, B-factor model, jelly-body restraint weight, 

twinning settings and B-factor restraint weight were taken from PDB-REDO runs with and without 

the use of our new restraints (the implementation in PDB-REDO is discussed in the section 

“Homology-based H-bond restraints in PDB-REDO”). All refinements were run for 50 cycles to 

ensure convergence. 

The effect of H-bond restraints is greater at a lower resolution, because the effective restraint 

weight is larger and because there is generally more room for improvement. An initial survey 

showed that at a resolution better than 2.5 Å, the effect of H-bond restraints is negligible. 

Therefore, we only included structures of lower resolution in our test set. Five non-homologous 

entries (i.e. non-BLAST23 hits under default settings) were chosen at random with a resolution 

between 2.5 and 2.6 Å, then 5 entries between 2.6 and 2.7 Å, and so on up to the lowest 

resolution in the PDB. Seven very low resolution entries (5-8 Å) were removed from the test set 

because suitable refinement parameters for Refmac528,45 could not be determined. An additional 

requirement for test entries was the presence of sufficient homologous chains in PDB-REDO, 

while the test entry itself had the lowest resolution among these homologs. This criterion was 

added because of the development of homology-based restraints which are discussed in the next 

section. The final test set contained 155 entries. 

The difference between the models resulting from Refmac5 runs (version 5.8.0155) with and 

without H-bond restraints gives a direct measure for the influence of the H-bond restraints. We 

used R/Rfree to measure crystallographic fit of the model to the data and use WHAT_CHECK27 

(version 14) for geometrical validation. Specifically, we used WHAT_CHECK’s Z-scores for 1st 

and 2nd generation packing quality46, and rotamer torsion angle and Ramachandran plot normality 

(i.e.  χ1/χ2 and φ/ψ normality). Also, WHAT_CHECK’s number of unsatisfied H-bond donors and 

acceptors and the number of atomic clashes or ‘bumps’ were taken into account in geometrical 

quality analyses. The statistical language R47 was used for calculation of statistics and plotting. 

Improvement of crystallographic refinement using general H-bond restraints 

H-bond restraints on the basis of general targets improve the refinement of low-resolution 

structure models in a large majority of cases (Figure S2, Table S3). Mainly packing and 

Ramachandran angles are improved, while marginal average effects are observed for Rwork and 

Rfree. Upon adding H-bond restraints to refinement, the number of bumps decreased in 129 

cases, remained equal in 12 cases and increased in 10 cases. The number of unsaturated H-

bond donors and acceptors decreased in 84 cases, remained equal in 25 cases and increased in 

42 cases. The only metric that deteriorates on average is side-chain rotameric angle quality. 
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The torsion angles of the backbone, φ and ψ, are decidedly improved, as is reflected in the 

Ramachandran Z-score (Figure S2, Table S3), in contrast to the side-chain torsion angles χ1 and 

χ2 (rotamer Z-score). Since the patterns of the main chain are generally more well-defined as 

those in side chains, it was expected that main-chain H-bond restraints would have more impact 

than side-chain restraints. Indeed, this is the case, as the restraint effect is almost as large when 

side-chain restraints are left out (Table S3). The well-defined patterns of main-chain restraints 

also explain why main-chain torsion angles are more easily improved: the side chains do not so 

strictly follow the patterns outlined by their restraints. Therefore, the restraints are less likely to 

help a side chain find its optimal orientation. Moreover, the standard deviation of side-chain 

restraints is generally larger and the target is thus less strictly adhered to in refinement. 

Comparison restraints with ProSMART and phenix.secondary_structure_restraints 

Our H-bond restraints lead to better results with Refmac5 than the restraints generated from 

ProSMART and phenix.secondary_structure_restraints9. There are two differences between all 

implementations: the H-bond selection and the target distances. The latter do not greatly 

influence performance, because replacement of the targets in our restraints by targets of 

ProSMART (2.8 Å) or Phenix (2.9 Å) only marginally changed the total performance in simple 

refinements. Therefore, the main reason for improved performance must be better H-bond 

selection. In Figure S4, the overlap between restraints for the different programs is shown. A 

large part of the restraints is shared between all programs. Phenix makes the fewest restraints, 

because only restraints for secondary structure elements are generated in their implementation 

(from definition by ksDSSP). Such restraints generally deliver the highest benefit per restraint 

and hence, the Phenix implementation works very well. However, that implementation misses out 

on the opportunity to gain extra performance by selecting a wider range of H-bonds. ProSMART 

does select a wider range of H-bonds, but unfortunately this selection also includes some 

distances that are better not restrained. In particular, we noticed a strong tendency of ProSMART 

to restrain both i,i+3 and i,i+4 main chain pairs in α-helices, where only the i,i+4 pairs should be 

restrained. This explains why especially the Ramachandran score is not improved by H-bond 

restraints from ProSMART: the application of conflicting restraints will distort the backbone rather 

than stabilize it. A better selection of H-bonds will therefore likely make H-bond restraints 

generated by ProSMART more useful. 

Analysis and visualization of restraint satisfaction 

A python script, distel.py, has been written to analyze the satisfaction of the restraints. The script 

matches each restraint to atoms in the corresponding PDB file and then calculates the distance 

between those atoms. The target and standard deviation of the restraint are used to compute a 

Z-score. Individual outliers of > 4.0 can be shown and the script computes a global rmsz score of 

restraint obedience. Additionally, a YASARA48 scene can be generated to visualize the restraints 

(Figure S5). The violation of restraints is also visualized by color-coding the arrows that indicate 

the restraints. 
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Homology-based H-bond restraints 

Derivation of protein sequence using pdb2fasta 

The program pdb2fasta derives the sequence of a protein accurately from a PDB file. If available, 

pdb2fasta uses SEQRES records in PDB files to derive the sequence of unmodeled parts of the 

protein. Modeled and unmodeled residues are shown as uppercase and lowercase letters, 

respectively, as was done previously in the SEQATOMS tool49. In contrast to SEQATOMS, 

pdb2fasta does not use the annotation in the PDB’s mmCIF files because the annotation does 

not meet our requirements. For example, residues are labeled as modeled in mmCIF if just a 

single atom has been modeled, however, we require at least a complete backbone to look up 

homologous hydrogen bonds. Therefore, pdb2fasta also reads the ATOM records of PDB files in 

full and labels a residue as ordered only if all four backbone atoms are present. Unmodeled 

residues are found by mapping the sequence from the SEQRES records onto the ATOM 

sequence. As a special feature, pdb2fasta converts 73 types of prevalent modified amino acids to 

their base amino acid (e.g. trimethyllysine and selenomethionine are converted to lysine and 

methionine, respectively) to improve sequence alignments downstream. 

The user can also specify an input FASTA file. The sequence from this file are treated as 

SEQRES records and thus mapped to the ATOM sequence. This allows the user to specify the 

unmodeled stretches manually. Pdb2fasta attempts to map each PDB chain to one of the entries 

from the FASTA file. An exact match with the ATOM records is immediately accepted; in other 

cases it aligns the sequences from the ATOM records and from the FASTA file. This can result in 

an alignment of all ATOM records to part of the FASTA sequence: in that case, the remainder of 

the FASTA sequence is assumed to be unmodeled and the alignment is accepted. It can also 

happen that there are several mismatches between the ATOM sequence and the FASTA 

sequence. If the sequence identity is over 90%, the match is accepted and the user is alerted to 

the mismatches. The sequence that is output is then the input FASTA sequence corrected for the 

mismatches found with the PDB file. In case both an input FASTA file and SEQRES are present, 

the sequence from the FASTA file is preferred (if it is accepted as a hit). 

Selection of homologs 

Homologs are then identified in a BLAST run against a sequence database containing only PDB-

REDO entries. By default, BLAST hits are selected as a homolog if the sequence identity is at 

least 70% and the E-value is smaller than 10-3. Homologs with a resolution worse than the query 

are discarded. Fully optimized PDB-REDO coordinate files are retrieved for each homolog. 

HODER reads these PDB files and maps the residues of the BLAST hit to those of the query as 

in the BLAST alignment. Users can also add their own PDB files of homologs to HODER, which 

will be used as extra homologs provided they pass the sequence similarity criteria. If, for 

instance, one is working on a series of ligand soaks, this feature enables them to make full use of 
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their homologous data in refinement before any models are made publicly available. 

Deriving restraint target values from homologues 

After mapping homologous residues onto query residues, the distances of an interaction in all 

homologs are computed. To calculate this distance, the equivalent homologous atoms must be 

found. If the amino acid types are the same in query and hit, the homologous atoms are usually 

the same atom types in the homologous residues. An exception can occur if the residue contains 

equivalent atoms. For example, if the acceptor of a certain H-bond is an aspartic acid’s Oδ1, the 

homologous atom could be the Oδ1 or Oδ2 in the homologous aspartic acid. The homologous 

atom is then selected by picking the atom whose torsion angle most closely resembles that of the 

atom in the query. 

If no homologous atom can be identified for certain H-bond, that homolog will be skipped for that 

H-bond. However, even when the amino acid types do not match between query and homolog, 

homologous atoms can often still be found. For main-chain H-bonds, the homologous atom is 

simply the same backbone atom in the homologous residue. The backbone nitrogen of the imino 

acid proline is the only exception, because it has no hydrogen atom bound and hence cannot 

donate an H-bond. For side-chain H-bonds, homologous atoms can only be identified if the 

homologous residue contains an equivalent atom, which is the case for Asp and Asn, Glu and 

Gln and Ser and Thr. For instance, an asparagine contains an Oδ1 that can be the homologous 

atom for an aspartic acid’s Oδ1 or Oδ2. Such atoms are only assigned as homologous atoms if 

the torsion angle differs by less than 90° from the query atom. 

A final complication in assigning homologous atoms can arise if the homologous residues contain 

alternate conformations. The rotamers of the alternates of the homologous residue are then 

evaluated and only if exactly one alternate, with an occupancy greater than 0.25, matches the 

rotamer of the interaction, the homologous atoms are assigned from that alternate. 

Aside from actually being able to find homologous atoms for both donor and acceptor of an H-

bond, we apply two other filters to ensure we find homologous distances of high quality. First, the 

fit to the electron density for both hydrogen bonding partners, represented as the per-residue 

real-space correlation coefficient (RSCC)50 obtained from EDSTATS51, should be sufficient. By 

default, the worst 3% of residues in each structure model are ignored. Second, for side-chain 

interactions it is demanded that the homologous atoms are in the same rotamer as the query 

atoms. Rotamers are considered different if one of the χ angles along an sp3-sp3 bond changes 

by at least 50°, or if a χ angle along an sp2-sp3 bond (i.e. in Asp, Asn, Glu, Gln, Phe, Tyr, and 

His), changes by more than 30°. If needed, Asp, Glu and Tyr side-chains are flipped to minimize 

the change in torsion angles.  

The distances computed from all homologous H-bonds are subjected to 1D k-means clustering25 

after filtering out distances longer than 6.0 Å. A maximum of three clusters is fitted to each 
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interaction; the optimal number of clusters is determined by the Bayesian information criterion26. 

When a limited amount of homologous distances is available (< 13 data points), the maximum 

number of clusters is reduced to two. Clusters are discarded if they contain less than 5 distances 

or less than 25% of the total number of observations. Subsequently, distances are removed from 

clusters if they are an outlier according to Grubbs’ outlier test52 with a 90% confidence limit and 

deviate at least 0.25 Å from the cluster mean. If targets for the same interaction differ by less 

than 0.1 Å, the clusters are merged and a new target is defined. Finally, if all targets for a given 

interaction are longer than 3.5 Å, the maximum allowed length of a H-bond, no restraints are 

written because the H-bond is likely incorrect. All values mentioned here were chosen based on 

observations of corner cases in the data. 

Testing homology derived restraints  

We obtained a considerable improvement of the geometry of protein structure models (Figure S6, 

Table S4) in our test set, but overall improvement achieved by using homology-based restraints 

is similar to that of general restraints (Table S4). Packing is improved somewhat less; torsion 

angles are improved somewhat more. Importantly though, we find far fewer cases where the 

backbone angles are deteriorated. The torsion angle improvement can be explained by the fact 

that weak H-bonds in the main chain will no longer be restrained to a short distance at which they 

slightly deform the backbone. Similarly, the packing score will likely improve less because tight 

backbone is not enforced as much as in restraints based on general data.  

Homology-based H-bond restraints in PDB-REDO  

The new tools to generate additional restraints were added to the PDB-REDO pipeline. 

Pdb2fasta is run in the early stages of the process after the program extractor1 if that program 

establishes that the input model contains protein. If there is a user-provided FASTA file, any 

conflicts between that and the atom records of the input PDB file are reported to the user. If the 

resolution of the diffraction data is 2.8 Å or worse, or if there are fewer than 2.5 reflections per 

heavy atom, homology restraints are created automatically after the initial calculation of 

crystallographic R-factors. This behavior can be repressed, or at higher resolution enforced, from 

the command line. With the extracted FASTA sequence, BlastP23 is run against a sequence 

database that contains only entries of the PDB-REDO databank. Next, the output of the BLAST 

search is fed to HODER which automatically downloads suitable homologous structure models 

from the PDB-REDO databank or uses the corresponding files in a local copy of the databank. 

User-provided homologous structure models are also included at this stage. Users can specify at 

the command line if detectHbonds should be run instead of HODER. The restraints written by 

HODER or detectHbonds are added to all subsequent Refmac5 calculations. After the first model 

re-refinement and model rebuilding, HODER or detectHbonds is run again to update the 

restraints for the new model coordinates. 

distel.py is run after the re-refinement (against the restraints at that stage of the procedure) and 
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at the final stages of PDB-REDO with the final restraints. 

Assessing structural differences between homologues 

Homology-based restraints work decidedly better than general restraints in the PDB-REDO 

pipeline. The packing is improved for homology-based restraints by almost as much as general 

restraints while the increased performance of homology-based restraints for the torsion angles is 

more pronounced than for single refinements. In addition, we obtain an additional improvement in 

Rwork and Rfree that was not observed for single refinements. The Rfree, which was previously 

improved by PDB-REDO by 2.2% on average, is now improved by 2.5%. Expressed in Z-scores, 

this additional improvement is 0.30 ± 0.11 (average ± standard error of the mean), which is 

similar to the improvements attained for most geometrical criteria. A difference between the 

single refinements and PDB-REDO runs is that additional restraints such as local NCS 

restraints14,28 and metal geometry restraints30 are used in PDB-REDO: the combination with 

these restraints apparently gives a boost to the performance of H-bond restraints. Also, PDB-

REDO uses a two-step approach where the restraints are redefined after the first refinement 

phase. This means that the selection of restraints can be improved after an initial change of the 

structure model. 

For defining the families we used the homology criteria as implemented in HODER to group 

structures that have at least one homologous chain to a family. A noteworthy observation upon 

inspection of structural differences between PDB-REDO protein families the φ/ψ torsion angles 

between homologous residues in the protein structure families to obtain an overall average root-

mean-square fluctuation (rmsf), was that the rmsf was already decidedly lower in PDB-REDO 

than in the PDB before homology-based restraints were applied. Because homolog structures 

are often solved by molecular replacement, one might expect that they are biased in similarity 

towards one another. However, these results show this is generally not the case, as applying the 

PDB-REDO pipeline without any influence from homologous structure models actually makes 

protein structure family members more similar. Refining structure models with a consistent 

protocol therefore already removes some of the model differences that are not clearly supported 

by the experimental data. 

Massively parallel computing for a novel PDB-REDO databank with 

homology information 

The PDB-REDO core software components and third-party dependencies are under active 

development and new versions introducing new features are released frequently. PDB-REDO 

entries are generated for new Protein Data Bank entries on a weekly basis. The renewal of old 

PDB-REDO entries, however, is limited by our in-house computational resources. As a 

consequence, at any time only a small fraction of the databank reflects new functionality (Figure 

S7). The availability of homology-based hydrogen-bond restraints was a strong motivation to 
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regenerate the entire databank with PDB-REDO version 7.00, which we estimated to require 

about half a million CPU hours. We therefore decided to employ High Performance Computing 

(HPC) systems. 

Containerization 

The PDB-REDO computing pipeline consists of over 50 independent software components. 

Traditional installation of the PDB-REDO pipeline within the existing HPC system environment 

was hampered by system library restrictions and system package (dependency) issues. Recently 

the use of containers has become popular in software development. Emerging technologies like 

Docker (www.docker.com) and Singularity29 allow deployment of a consistent environment within 

a container that leverages host resources with minimal overhead (compared to Virtual Machines, 

for example). Furthermore, these technologies are highly scalable and suitable for HPC 

environments and scientific settings where reproducibility is essential29, 53, 54. We decided to 

containerize PDB-REDO to overcome the installation issues without sacrificing computation 

speed. 

 

The installation of the most recent PDB-REDO and all its dependencies into a Docker images 

was automated. Every image is tagged with a unique identifier and labeled with versions of all 

software components, allowing versioning and archiving PDB-REDO results. The Docker images 

were converted to Singularity images using docker2singularity 

(https://github.com/singularityware/docker2singularity). Docker and Singularity images with and 

without licensed components YASARA48 (www.yasara.org) and FoldX35 are available from the 

authors upon request.  

Automated image creation not only facilitated rapid in-house testing but also simple, fast and 

robust deployment of the PDB-REDO pipeline on any host supporting Docker or Singularity. The 

cross-platform portability of images guarantees reproducible results and eliminates maintenance 

tasks since it is easier to ship a new image than to update all PDB-REDO dependencies. 

Containers instantiated from an image can be executed like a normal PDB-REDO executable on 

any host that supports Docker or Singularity. 

Deployment 

The availability of the PDB-REDO image greatly simplified deployment on the San Diego 

Supercomputer Centre (SDSC) HPC systems Gordon and Comet. PDB-REDO version 7.00 was 

run with Singularity version 2.1 for 101,119 jobs in single-threaded mode to maximize the 

embarrassingly parallel throughput on the 192 compute nodes (3072 cores) on Gordon. The 451 

entries with more than 350,000 reflections were run in parallel mode on Comet’s large memory 

nodes where 460 GB of memory was available to every job. Fully optimized PDB-REDO 

structure models available d.d. 2017-02-03 were used as homology-derived H-bond restraints 

sources. These data were staged on local SSDs of every compute node for speed and 
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robustness. The output from each job was written to the parallel Lustre filesystems on Comet and 

Gordon. 

Run times 

The elapsed wall clock time for the Gordon jobs is shown in Figure S8. 
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