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ABSTRACT 

Genetic factors contribute to the risk for developing alcohol use disorder (AUD). In collaboration with the 

genetics company 23andMe, Inc., we performed a genome-wide association (GWAS) study of the Alcohol 

Use Disorder Identification Test (AUDIT), an instrument designed to screen for alcohol misuse over the past 

year. Our final sample consisted of 20,328 research participants of European ancestry (55.3% females; 

mean age = 53.8, SD = 16.1) who reported ever using alcohol. Our results showed that the ‘chip-heritability’ 

of AUDIT score, when treated as a continuous phenotype, was 12%. No loci reached genome-wide 

significance. The gene ADH1C, which has been previously implicated in AUD, was among our most 

significant associations (4.4 × 10-7; rs141973904). We also detected a suggestive association on 

chromosome 1 (2.1 × 10-7; rs182344113) near the gene KCNJ9, which has been implicated in mouse 

models of high ethanol drinking. Using LD score regression, we identified positive genetic correlations 

between AUDIT score and AUD, high alcohol consumption, and cigarette smoking. We also observed an 

unexpected positive genetic correlation between AUDIT and educational attainment, and additional 

unexpected negative correlations with BMI/obesity and attention-deficit/hyperactivity disorder (ADHD). We 

conclude that conducting a genetic study using data from a population unselected for AUD and responding 

to an online questionnaire may represent a cost-effective strategy for elucidating the etiology of AUD. 
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INTRODUCTION 

The heritability of AUD and associated symptomatology such as high alcohol consumption has been 

estimated at ~50% by family and twin studies (Mbarek et al., 2015; Verhulst, Neale, & Kendler, 2015), with a 

smaller proportion being attributable to additive effects of common genetic variation (e.g. 33% for AUD 

(Mbarek et al., 2015); 18% (Vrieze, McGue, Miller, Hicks, & Iacono, 2013) and 13% (Clarke et al., 2017) for 

alcohol consumption). 

The search for specific genes that convey risk for AUD has been an active area of research for several 

decades. There have been numerous family-based linkage studies of AUD (Agrawal & Bierut, 2012; 

Edenberg & Foroud, 2014; Enoch, 2013; Rietschel & Treutlein, 2013), as well as candidate gene 

association studies. Robust linkage signals have been found near the cluster of aldehyde dehydrogenase 

(ALDH) genes on chromosome 12 (Wall, Luczak, & Hiller-Sturmhöfel, 2016), and alcohol dehydrogenase 

(ADH) genes on chromosome 4 (Long et al., 1998; Williams et al., 1999), a result that has also been 

replicated by candidate gene association studies (Li, Zhao, & Gelernter, 2011, 2012; Luo et al., 2006; 

Macgregor et al., 2009; Thomasson et al., 1991; van Beek, Willemsen, de Moor, Hottenga, & Boomsma, 

2010).  

More recently, genome-wide association studies (GWAS) have been used to explore the genetic basis of 

AUD (Hart & Kranzler, 2015; Tawa, Hall, & Lohoff, 2016). The most robust and replicated risk alleles in 

European, African American, and Asian ancestry populations map to alcohol-metabolizing enzyme genes 

on chromosome 4q22-23 and 12q24: ADH1B (Gelernter et al., 2014; Clarke et al., 2017; Xu et al., 

2015), ADH1C (Clarke et al., 2017; Edenberg et al., 2010; Frank et al., 2012; Gelernter et al., 2014; 

Treutlein et al., 2009), ADH5 (Clarke et al., 2017), ADH7 (Park et al., 2013) and ALDH2 (Jorgenson et al., 

2017; Park et al., 2013; Quillen et al., 2014; Takeuchi et al., 2011; Yang et al., 2013). More recent GWAS 

that target alcohol consumption rather than AUD have identified novel genes including KLB, which influence 

both high alcohol consumption in humans (Clarke et al., 2017; Jorgenson et al., 2017; Schumann et al., 

2016) and ethanol preference in mice (Schumann et al., 2016).  

In collaboration with the genetics company 23andMe, Inc., we performed a GWAS for alcohol misuse using 

the Alcohol Use Disorders Identification Test (AUDIT), a questionnaire developed to screen for alcohol 

misuse in the past year (Saunders, Aasland, Babor, de la Fuente, & Grant, 1993a). The estimated 

heritability of AUDIT score is 60%, similar to the heritability of AUD (Mbarek et al 2015). Self-reported 

AUDIT scores are predictive of future problematic drinking and higher AUD risk (Allen, Litten, Fertig, & 

Babor, 1997; Boschloo et al., 2010), perhaps because the AUDIT includes questions that are related to the 

criteria for AUD (e.g. DSM-V, criterion 2: “More than once wanted to cut down or stop drinking, or tried to, 

but couldn’t?” versus AUDIT, item 4: “How often during the last year have you found that you were not able 

to stop drinking once you had started?”). A previous GWAS of dichotomized AUDIT scores in 7,842 
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individuals in an unselected Dutch population did not reveal any significant associations (Mbarek et al 

2015). Here, to maximize power and to capture the dimensionality of alcohol misuse, we treated AUDIT 

scores from 20,328 research participants as a continuous trait rather than dichotomizing it by using a 

threshold score. We hypothesized that a GWAS for AUDIT scores might identify some of the same alleles 

that influence AUD, even though our cohort had relatively modest AUDIT scores.   

MATERIALS AND METHODS 

Sample 

All participants included in the analyses were drawn from the customer base of 23andMe, Inc., a consumer 

genetics company. Participants provided informed consent and answered surveys online under a protocol 

approved by Ethical and Independent Review Services, an independent AAHRPP-accredited institutional 

review board (http://www.eandireview.com). We restricted the original sample (~25,000 individuals) to a set 

of unrelated participants of European ancestry (>97% as determined through an analysis of local ancestry 

[Durand, Do, Mountain, Macpherson, 2014]; see Supplementary for additional details) for whom AUDIT 

data were available. Participants were excluded if they reported that they never drank alcohol (N = 1,376). 

The final number of participants included in the analysis was 20,328. Recruitment occurred over an 

approximately four-month period in 2015. Sociodemographic details are described in the Supplementary 

Table 1.  

AUDIT scores 

To evaluate alcohol misuse in the past year, participants completed the AUDIT (Saunders, Aasland, Babor, 

de la Fuente, & Grant, 1993). We only included subjects who answered yes to the question “Have you ever 

in your life used alcohol” (i.e., “ever drinkers” vs “never drinkers”). The ten-item AUDIT questionnaire yields 

scores from 0 to 40. Since the scores were not normally distributed (by visual inspection), we used a log-10 

transformation, which is frequently employed to approximate a normal distribution for AUDIT 

(Supplementary Table 2). 

Genotyping, quality control and imputation 

DNA extraction and genotyping were performed on saliva samples by the National Genetics Institute, a 

CLIA-certified laboratory. Samples were genotyped on 23andMe custom genotyping array platforms 

(Illumina HumanHap550+ Bead chip V1 V2, OmniExpress+ Bead chip V3, Custom array V4). Quality control 

of genetic variants and imputation were performed by 23andMe (see Supplementary Table 3). A full 

description of the methods have been reported elsewhere (Hyde et al., 2016; Lo et al., 2016). 

Estimation of variance in AUDIT scores explained by the genotyped SNPs 

To estimate the proportion of phenotypic variance explained (‘chip heritability’; hg
2), we used a genomic 
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restricted maximum likelihood (GREML) method implemented in Genetic Complex Trait Analysis (GCTA; 

Yang, Lee, Goddard, & Visscher, 2013). In brief, the GREML method estimates the proportion of variation in 

a phenotype that is due to all SNPs, and exploits the fact that genotypic similarity (i.e., “relatedness”, 

measured using genotyped SNPs) will be correlated with phenotypic similarity for heritable traits. Individual-

level quality control was implemented, and distantly related individuals with pair-wise relationships were 

filtered at two thresholds (KIBS < 0.05 and KIBS < 0.03). We included age (inverse-normalized), self-reported 

sex (male/female), genotyping platform and top four principal components as covariates. GREML analyses 

were run using only directly genotyped SNPs to construct the GRM.  

Chip-heritability using LD Score Regression  

We used a second method to measure chip heritability of AUDIT that is implemented by Linkage 

Disequilibrium Score Regression Coefficient (LDSC; Bulik-Sullivan et al., 2015a). To standardize the input 

file (GWAS summary statistics), we followed quality controls as implemented by the LDSC python software 

package. We used pre-calculated LD scores (“eur_w_ld_chr/” files (Finucane et al., 2015); MHC region 

excluded) for each SNP using individuals of European ancestry from the 1000 Genomes project, suitable for 

LD score analysis in European populations. We restricted the analysis to well-imputed SNPs: the SNPs 

were filtered to HapMap3 SNPs (International HapMap 3 Consortium et al., 2010), and were required to 

have a minor allele frequency (MAF) above 1%. InDels, structural variants, strand-ambiguous SNPs, and 

SNPs with extremely large effect sizes (χ2 > 80) were removed. In addition, this approach allowed us to 

distinguish between genomic inflation attributed to polygenic signal, from confounding biases such as 

population stratification or polygenicity (LD Score regression intercept > 1; Bulik-Sullivan et al., 2015a; Bulik-

Sullivan et al., 2015b). As expected under polygenicity, we observed inflation of the median test statistic 

(Mean χ2 = 1.05), and adjusted for a genomic control inflation factor λ (the ratio of the observed median χ2 to 

that expected by chance) = 1.02. LD score intercept of 1.01 (SE = 0.01) suggested that deviation from the 

null was due to a polygenic structure rather than inflation due to population structure biases. 

Genome-wide association analysis 

For quality control of genotyped GWAS results, we removed SNPs with MAF of < 0.1%, a Hardy-Weinberg 

P <10−20 in Europeans, or a call rate of < 90%. We also removed SNPs that were only genotyped on the 

23andMe V1 platform, due to limited sample size, and SNPs on chrM or chrY. Using trio data, we removed 

SNPs that failed a test for parent-offspring transmission; specifically, we regressed the child’s allele count 

against the mean parental allele count and removed SNPs with fitted β < 0.6 and P < 10-20 for a test of β < 

1. We also tested genotyped SNPs for genotype date effects, and removed SNPs with P < 10-50 by ANOVA 

of SNP genotypes against a factor dividing genotyping date into 20 roughly equal-sized buckets. For 

imputed GWAS results, we removed SNPs with average r2 < 0.50 or minimum r2 < 0.30 in any imputation 
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batch, as well as SNPs that had strong evidence of an imputation batch effect. The batch effect test is an F 

test from an ANOVA of the SNP dosages against a factor representing imputation batch; we removed 

results with P < 1 × 10-50. We also removed linear regression results for SNPs with MAF < 0.1% because 

tests of low frequency variants can be sensitive to violations of the regression assumption of normally 

distributed residuals. We performed association tests by linear regression assuming an additive model. We 

included age (inverse-normal transformed), sex, the top four principal components of genotype, and 

indicator variables for genotype platforms as covariates (Supplementary Table 4).  

Phenotypic and genetic correlation analyses 

We examined two distinct types of correlations: phenotypic correlations, where both variables were 

measured in the same individuals, and genetic correlations, where we used AUDIT data from this cohort in 

conjunction with summary statistics for GWAS conducted in other cohorts (Supplementary Table 9). The 

interpretation of these is different, since phenotypic correlations can be due to a combination of genetic and 

non-genetic factors, whereas genetic correlations measure only genetically driven correlations.  

We used bivariate correlations to examine the direct phenotypic correlations between AUDIT and several 

variables of interest (age, gender, race, education, annual household), and to identify significant covariates 

for inclusion in GWAS analysis (Supplementary Table 5).  

We calculated genetic correlations (rg) between AUDIT and 30 other complex traits or diseases using LDSC. 

References for the datasets used are identified in Supplementary Table 9. Files were standardized using 

the steps described in the section above (“Chip-heritability using LD Score Regression”). We did not 

constrain the intercepts in our analysis because the degree of sample overlap was unknown. We used 

False Discovery Rate (FDR) to correct for multiple testing (Benjamini & Hochberg, 1995). 

Query for expression quantitative trait loci (eQTL) 

We queried eQTL evidence for our top (P < 10-7) GWAS SNPs using public online resources. We used the 

Genotype-Tissue Expression Portal (GTEx) to identify eQTLs associated with the SNPs; and the 

RegulomeDB (Boyle et al., 2012) to identify regulatory DNA elements in non-coding and intergenic regions 

of the genome in normal cell lines and tissues.  

RESULTS 

Demographics 

Demographic data are shown in Supplementary Table 1. Mean age was 53.8 years (SD = 16.1), and 

55.3% were women. The annual household income ranged from less than $14,999 (13.5%) to greater than 

$75,000 (21.5%), and the mean years of education completed was 16.8 (SD = 2.6). About half of the 

participants (49.3%) were married/partnered. Participants showed low to moderate alcohol use, average 

frequency of alcohol use was ~9 days per month (mean = 8.78, SD = 9.82); during the period of heaviest 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 15, 2017. ; https://doi.org/10.1101/147397doi: bioRxiv preprint 

https://doi.org/10.1101/147397


7 

 

lifetime use, subjects reported reaching an average of 13.78±10.96 days over a 30-day period. Over the 

prior year, 78% of the participants reported drinking 1 or 2 drinks on a single day, and only 28% reported 

drinking more than 6 drinks on one occasion. Also over the prior year, 92% of the participants were able to 

stop drinking once they started, and 85% drank alcohol without feeling guilt or remorse.  

AUDIT scores 

The distribution of the AUDIT scores is shown in Supplementary Table 2. The phenotypic correlations 

between AUDIT and demographic variables measured in the same cohort are shown in the Supplementary 

Table 4. Age and sex were negatively correlated with AUDIT scores; younger individuals and males showed 

higher AUDIT scores (r = -0.15, P < 0.0001; r = -0.17, P < 0.0001, respectively). BMI was negatively 

associated with AUDIT (r = -0.07, P < 0.0001), whereas household income was positively correlated with 

AUDIT (r = 0.07, P < 0.0001). AUDIT scores were slightly higher in unmarried individuals (r = -0.02, P = 

0.013) but we did not observe significant correlations with years of education (r = 0.01, P = 0.085). 

Measures of alcohol use were positively correlated with AUDIT scores (r = 0.50-0.52, P < 0.0001).  

Chip-heritability estimates 

We estimated the chip-heritability of AUDIT at 12.05% (± 1.91%, P = 2.70 x 10-11), which is lower than 

previous chip-heritability estimates based on dichotomized AUDIT data (30% ±12%; Mbarek et al., 2015), 

and considerably lower than twin based heritabilities of alcohol abuse, dependence and alcoholism (~50%, 

(Enoch, 2013; Goldman, Oroszi, & Ducci, 2005).  

GWAS of AUDIT 

The Manhattan and quantile-quantile (QQ) plots for AUDIT are shown in Figure 1 and Supplementary 

Figure 4, respectively. The most significant association was at rs182344113, located on chromosome 1 (P 

= 2.10 × 10-7; β = 0.168, SE = 0.03; MAF = 0.002; Supplementary Fig. 1). The association was in an 

intergenic region of the gene PIGM, and near KCNJ9 (GIRK3), which has been implicated in preclinical 

models of ethanol sensitivity. G-protein–gated inwardly rectifying potassium (GIRK) channels, which are 

coupled to GABA-B receptors, can be activated by ethanol (Aryal, Dvir, Choe, & Slesinger, 2009; 

Bodhinathan & Slesinger, 2013). Interestingly, Kcnj9 knock-out mice exhibit excessive alcohol drinking 

(Dere et al., 2015).  

Several other SNPs also showed suggestive associations (Supplementary Table 6), including 

rs141973904 (P = 4.40 × 10-7, β = -0.05, SE = 0.01; MAF = 0.02; Supplementary Fig. 2) in an intron of 

ADH1C, replicating previous findings for that same SNP in a GWAS of alcohol consumption in males 

(Clarke et al., 2017), and broadly consistent with numerous previous genetic studies of AUD (Biernacka et 

al., 2013; Edenberg, 2007; Hn et al., 2013; Thomasson et al., 1991).  

Another suggestive association was at rs8059260 (P = 1.6 × 10-6, β = 0.017, SE = 0.004; MAF = 0.160; 
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Supplementary Fig. 3), which is near the first exon of CLEC16A. Using the Genotype-Tissue Expression 

Portal (GTEx) database, we identified a cis- expression quantitative trait loci (eQTLs) for CLEC16A that co-

localized with rs8059260 (r2 > 0.79; see Supplementary Table 7). We also found evidence of regulatory 

elements associated with rs8059260 using the RegulomeDB (Boyle et al., 2012; Supplementary Table 7).  

Previously studied candidate genes 

Our results did not strongly support any of the previously published candidate gene studies of AUD 

(reviewed in Bühler et al., 2015; Supplementary Table 8); various differences including the distinction 

between AUD and AUDIT, demographics characteristics and especially the low prevalence of AUD in our 

cohort could partially account for the lack of replication. 

Genetic correlations 

LD score regression (Bulik-Sullivan et al., 2015b) showed a genetic overlap between AUDIT and numerous 

traits (Fig. 2 and Supplementary Table 9). Both alcohol consumption and AUD showed the steepest 

correlations with AUDIT score (rg = 0.68 for both), while the better powered alcohol consumption trait (N = 

70,460) yielded a significant result (P = 3.40 × 10-3) the P value for the genetic correlation with AUD (N = 

7,280) fell just short of nominal significance (P = 6.41 × 10-2). We detected a significant negative genetic 

correlation between AUDIT and ADHD (rg = -0.29; P = 1.43 × 10-3). We observed a positive genetic 

correlation between AUDIT and lifetime tobacco use (rg = 0.42; P = 1.52 × 10-3). Unexpectedly, we identified 

a positive correlation between AUDIT and years of education (rg = 0.27; P = 3.14 × 10-5), college attainment 

(rg = 0.26; P = 8.11 × 10-3) and childhood IQ (rg = 0.42; P = 6.26 × 10-3). Also surprisingly, AUDIT was 

negatively genetically correlated with BMI (rg = -0.25; P = 1.48 × 10-4) and adulthood obesity (rg = -0.23; P = 

2.06 × 10-3). Height, which is not strongly influenced by individual behavior and thus can be viewed as a 

negative control, was not genetically correlated with AUDIT (rg = 0.02; P = 7.12 × 10-1). 

DISCUSSION 

With over 20,000 research participants, ours is by far the largest genetic study of AUDIT. By using a self-

report measure of alcohol misuse, as opposed to recruiting a clinically-diagnosed population, we were able 

to rapidly and inexpensively ascertain a large number of participants. We identified rs141973904 

(Supplementary Fig. 2) in the ADH cluster on chromosome 4q23, which has been previously associated 

with AUD (Edenberg et al., 2010; Frank et al., 2012a; Gelernter et al., 2014; Treutlein et al., 2009a). The 

same SNP has recently been associated (P = 1.22 x 10-15) with alcohol consumption using 53,089 males of 

European ancestry (Clarke et al., 2017). Furthermore, the most associated signal, rs182344113, which 

resides near the KCNJ9 (GIRK3) gene, was unknown, and is consistent with mouse studies of the 

homologous gene. The signal at rs182344113 was not significant and it will have to be replicated. We also 

identified a number of genetic correlations that have behavioral precedents, such as lifetime tobacco use, 

and several others that were unexpected, including lower BMI and obesity rates, and higher education. We 
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found that AUDIT was genetically correlated with AUD and alcohol consumption, suggesting that a non-

clinical population can be used as an alternative approach to study the genetics of AUD.  

We identified modestly associated variants in alcohol metabolizing genes. Genes influencing 

pharmacokinetics have previously been identified through linkage, candidate gene and genome-wide 

association studies for AUD and related traits (reviewed in Tawa et al., 2016). The most robust signal was 

located in the ADH1C gene, which contributes to ethanol oxidation. This signal was also identified in earlier 

GWAS studies for alcohol consumption (Clarke et al., 2017) and AUD status in both European (Clarke et al., 

2017; Frank et al., 2012) and African American (Gelernter et al., 2014) populations, suggesting that 

pharmacokinetic factors are an important contributor to differences in both AUDIT score and AUD.  

In addition to SNPs in the alcohol metabolizing genes, linkage and candidate gene studies have identified 

the GABRA2, OPRM1, DRD2 and ANNK1 genes, as candidate genes associated with AUD phenotypes 

(Bühler et al., 2015). However, we did not find robust signals for any of them (Supplementary Table 8), 

suggesting that previous studies may have overestimated the effects of these genes, or that these genes 

are associated with AUD but not AUDIT. 

The strongest association we observed resides near KCNJ9; the frequency of the implicated allele was very 

low (MAF = 0.002). KCNJ9 encodes one of the G protein-activated inwardly rectifying K+ channels (GIRK3), 

which are expressed in the brain (Aguado et al., 2008; Koyrakh et al., 2005), and can be directly activated 

by ethanol (Herman et al., 2015), even at low concentrations. In humans, two linkage studies have mapped 

this region for AUD (Hill et al., 2004), age of onset of drinking, harm avoidance, and novelty seeking (Dick et 

al., 2002). Additionally, DNA methylation levels of CpG in the promoter region of the GRIK3 gene showed 

altered expression in postmortem prefrontal cortex tissue of male alcoholics (Wang, Xu, Zhao, Gelernter, & 

Zhang, 2016). In mice, Kcnj9 also harbors a QTL for a variety of alcohol-related behaviors, including: 

ethanol preference (Tarantino, McClearn, Rodriguez, & Plomin, 1998), ethanol aversion (Risinger & 

Cunningham, 1998), acute sensitivity to ethanol (Tipps, Raybuck, Kozell, Lattal, & Buck, 2016), and 

hypersensitivity to ethanol withdrawal (Kozell, Walter, Milner, Wickman, & Buck, 2009). Mice lacking GIRK3 

in the brain have elevated alcohol drinking, without affecting the sensitivity to ethanol intoxication (Tipps, 

Raybuck, Kozell, Lattal, & Buck, 2016). Collectively, these results could provide an example of convergent 

results from humans and mice; however, until this non-significant observation is replicated it should be 

viewed with caution.  

We hypothesized that the genetic risk for AUD is likely to overlap with numerous traits relevant to addiction 

and psychiatric phenotypes, based on previous epidemiological data (Compton, Thomas, Stinson, & Grant, 

2007), twin studies (Kendler, Heath, Neale, Kessler, & Eaves, 1993; Knopik, Heath, Bucholz, Madden, & 

Waldron, 2009; Pickens, Svikis, McGue, & LaBuda, 1995) and recent genetic correlations between alcohol 

consumption and neuropsychiatric traits (Clarke et al., 2017). We showed positive genetic correlations 
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between AUDIT and lifetime cigarette smoking, as previously observed between alcohol consumption and 

daily cigarettes, and tobacco initiation (Nivard et al., 2016; Vink et al., 2014). We also observed shared 

genetic architecture across AUDIT and two other AUD traits: alcohol consumption (Schumann et al., 2016), 

and AUD diagnosis (P = 0.062; Gelernter et al., 2014). With regards to other psychiatric traits, we found a 

negative correlation with ADHD; but there were no other significant genetic correlations between AUDIT and 

psychiatric traits. This result is generally consistent with a recent GWAS by Clarke and colleagues (2017), 

where they did not observe strong correlations between alcohol consumption and psychiatric conditions, 

with the exception of schizophrenia. This difference between our results and those of Clarke et al (2017) 

may be due to differences in cohorts used.  

Unexpectedly, we found positive genetic correlations between AUDIT and years of education, college 

attainment and childhood IQ. This association was suggestive for the within-sample phenotypic correlation 

(Supplementary Table 5) and was significant for the genetic correlation (Supplementary Table 9). 

Consistent with this finding, Clarke and colleagues (2017) reported that college attainment and years of 

education were positively genetically correlated with alcohol consumption in females but not males.  

Also unexpectedly, we observed negative genetic correlations between AUDIT and BMI and obesity. We 

also observed a phenotypic correlation between high AUDIT scores and low BMI. Previous studies have 

shown both positive and negative phenotypic correlations between alcohol use and BMI and obesity 

(Breslow & Smothers, 2005; Green et al., 2016; Hn et al., 2013; Sobczyk-Kopciol et al., 2011; Tolstrup et 

al., 2005), which may reflect differences in the populations used. The generalizability and biological 

meaning of these observations will require further research.  

Our study is not without limitations. Cumulative AUDIT scores reflect two distinct constructs: one measuring 

alcohol consumption and another measuring alcohol-related problems; thus, AUDIT scores may conflate 

multiple genetic signals (Bergman & Källmén, 2002; Shevlin & Smith, 2007). In addition, our study focused 

on a cohort with relatively low levels of alcohol use; the unexpected positive genetic correlation between 

AUDIT and educational attainment, and the negative genetic correlation between AUDIT and both 

BMI/obesity and ADHD, may not generalize to cohorts with higher levels of alcohol use (Goldman et al., 

2005). Another limitation of this study is the reliance on self-reported alcohol consumption, which may have 

induced biases and result in a more heterogeneous sample (Agrawal et al., 2012). Finally, AUDIT explicitly 

asks about alcohol use in the past year (i.e. state rather than trait), this temporal specificity is suboptimal for 

a genetic study.  

Although we used a unique and potentially powerful technique to examine the genetic basis of alcohol 

misuse, we recognize that alcohol consumption, misuse and dependence are influenced by numerous 

factors, both genetic and environmental (e.g. availability of alcohol, social norms, laws, psychosocial and 

personality factors, expectancies, health factors). Further, individuals vary in susceptibility at every stage of 
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alcohol use from initiation to severe dependence, including the continued use after a first drink, the direct 

subjective and behavioral effects of the drug, withdrawal severity, tolerance and susceptibility to relapse, 

among others. Genetic factors are likely to influence variability at each of these stages, but different stages 

may be influenced by different sources of genetic variability. Thus, whereas we have investigated genetic 

variance related to an intermediate outcome measure of alcohol misuse (as measured by the AUDIT), it 

remains to be determined exactly how genetic sources of variation influence alcohol consumption. This 

ambiguity limits our ability to elucidate the underlying molecular mechanisms identified by GWAS of alcohol 

use and abuse. 

Nonetheless, unlike studies of disease traits, which require careful diagnosis and ascertainment, we rapidly 

obtained a large cohort for which genotype data were available. We replicated a previously identified signal 

(ADH1C), and identified a novel GWAS signal (near KCNJ9) that has preclinical correlates. Our approach 

shows that genetic studies of AUDIT in community-based samples are an economical and effective 

alternative to rigorously diagnosed AUD cohorts that can nevertheless be used to gain insight into the 

biology of AUD, and comorbid psychopathology. 
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FIGURE LEGENDS 

Figure 1 Results of GWAS on AUDIT. (a) Manhattan plot of GWAS results indicating the strongest 
associations between the 22 autosomes, X chromosome, and AUDIT. Line denotes genome-wide 
significance (P < 5 x 10-8).  

Figure 2 Genetic correlations between AUDIT and several traits: (a) neuropsychiatric, (b) smoking, (c) 
personality, (d) cognition, (e) anthropomorphic. * P < 0.05, ** P < 0.01, *** P < 0.0001. 
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Supplementary Figure 1 Regional association plot focusing on top SNP rs182344113 on 

chromosome 1.
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Supplementary Figure 2 Regional association plot showing the second index SNP, 

rs141973904, located in the gene ADH1C on chromosome 4. 
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Supplementary Figure 3 Regional association plot showing the index SNP rs8059260, 

located in the gene CLEC16A on chromosome 16. 
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Supplementary Figure 4 Quantile-Quantile (QQ) plot of AUDIT. The results have been adjusted for 
a genomic control inflation factor λ=1.021 (sample size = 20,328).   
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Supplementary Table 1  

Demographic characteristics of the 23andMe cohort 
 

 

  23andMe Cohort * N ** 

Demographics     

Age in years (mean, S.D) 53.79 (16.08) 23,677 

Age in years (range) 18-101 23,677 

Female  55.30% 23,677 

BMI (mean, S.D) 27.00 (5.79) 22,889 

Years of education (mean, S.D) 16.75 (2.62) 20,460 

Household income (mean, S.D) 6.07 (1.98) 17,919 

Marital status (married vs. unmarried) 49.30% 21,862 

Alcohol use 1     

Alcohol lifetime use (N, never/ever) 1,376 / 23,108 24,484 

Days of alcohol use (past 30 days) 8.78 (9.82) 21,727 

Days of alcohol use (heaviest, lifetime, 30-day period) 13.78 (10.96) 21,229 

 

Abbreviations * European Ancestry only; ** N prior to GWAS analysis (final sample size = 20,328); N 

sample size; BMI Body Mass Index; Household income 9 categories from 10K to 500K 

References 

1 https://www.phenxtoolkit.org  
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Supplementary Table 2  
Distribution (%) of AUDIT scores 

    Sex Age 

AUDIT scores Total M F 18-30 30-45 45-60 >60 

0 - 0.301 5085 32.60% 67.40% 6.60% 19.20% 28.80% 45.30% 

0.301 - 0.602 6452 42.30% 57.70% 8.50% 21.10% 28.80% 41.50% 

0.602 - 0.778 4742 51.70% 48.30% 9.50% 22.90% 24.00% 43.70% 

0.778 - 1.61 4049 59.20% 40.80% 15.40% 32.10% 25.00% 27.50% 

Higher values indicate higher AUDIT (log10 transformed) scores. Sample range from 0-40 

(Mean= 3.84, Standard Deviation= 3.47). Abbreviations AUDIT Alcohol Use Disorder 

Identification Test Total sample size M males F females 18-30 / 30-45 / 45-60 / >60 years 

of age 

References               

Saunders JB, Aasland OG, Babor TF, Fuente JR de la, Grant M (1993). Development of the Alcohol Use 
Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection of Persons with 
Harmful Alcohol Consumption--II. Addict Abingdon Engl 88: 791–804. 
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Supplementary Table 3 

Quality Control filters at SNP-level for genotyped and imputed dosage data, and association test results data 

 

 Genotyped Imputed Dosage Association Results 

no filters 1,050,074 15,574,220 - 

not V1/V2-only platforms, chrM, chrY 1,015,755 - - 

parent-offspring test 1,012,649 - - 

Minor Allele Frequency > 0% 1,008,228 15,574,220 - 

Hardy-Weinberg Equilibrium > 1e-20 954,373 - - 

genotype call rate > 90% 934,855 - - 

imputation quality - 13,230,301 - 

batch effects 926,512 13,204,909 - 

imputed only - - 12,354,282 

both passed - - 13,204,463 

genotyped only - - 13,280,794 

no test result - - 12,010,653 

Minor Allele Frequency < 0.1% * - - 11,508,740 

Notes * poor residual behavior 
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Supplementary Table 4  

Null model with covariates 

 

Covariates Estimate SE t Pr(>|t|) 

Sex −0.1093 0.0037 −29.3 2.1 × 10−184 

Age (inverse normalized) −0.0516 0.0023 −23.0 2.3 × 10−115 

PC 0 0.0199 0.0019 10.8 6.3 × 10−27 

PC 1 −0.0005 0.0019 −0.3 0.76 

PC 2 −0.0042 0.0019 −2.3 0.023 

PC 3 −0.0064 0.0019 −3.5 5.4 × 10−5 

PC 4 0.0066 0.0019 3.5 4.4 × 10−4 

Platform v2 0.0221 0.0103 2.1 0.032 

Platform v3.1 0.0183 0.0063 2.9 3.7 × 10−3 

Platform v4 0.0174 0.0059 3.0 0.003 

 

Notes Results of fitting a model for delay discounting based on covariates. Principal components (PC) computed from all 23andMe research 

participants with European ancestry. Effect sizes are in units of standard deviations. 
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Supplementary Table 5 

Phenotypic correlations between AUDIT scores and demographic, drug (alcohol, tobacco, 

marijuana; current/heaviest use) and caffeine use, and impulsivity traits 

 

Phenotype Pearson r P value N 

Demographics    

Age in years * -0.15 4.71 x 10-109 20,746 

Sex * -0.17 3.83 x 10-136 20,754 

BMI * -0.07 1.46 x 10-21 20,098 

Household income * 0.07 < 0.0001 15,818 

Marital status  -0.02 0.013 19,177 

Years of education 0.01 0.085 17,948 

Alcohol Use    

Days of use (Past 30 days) * 0.52 < 0.0001 20,185 

Days of heaviest use (Lifetime, 30-days period) * 0.50 < 0.0001 20,521 

 

Notes Pairwise phenotypic correlations (r) Abbreviations * P < 0.001 ** Prior to GWAS 

analysis (Final sample size (N) = 20,328) 
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Supplementary Table 6 

Common genetic variants for strongest associations (P < 10-7) with AUDIT 

 

SNP id chr cytoband bp alleles EAF P value β 95% CI localization 

rs182344113 1 1q23.2 159964442 C/G 0.002 2.1×10−7 0.168 [0.105,0.232] intergenic 

rs141973904 4 4q23 100262242 C/T 0.023 4.4×10−7 -0.047 [-0.065,-0.029] intron 

rs183472573 1 1p36.12 22469072 A/C 0.976 1.3×10−6 -0.052 [-0.074,-0.031] intron 

rs4791735 17 17p13.1 8599007 C/T 0.276 1.3×10−6 -0.015 [-0.021,-0.009] intron 

rs8059260 16 16p13.13 11060151 A/G 0.160 1.6×10−6 -0.017 [-0.024,-0.010] intron 

 

Abbreviations SNP id marker name chr chromosome bp position alleles Other Allele/Effect Allele EAF effect allele frequency β beta effect size 

CI confidence interval 
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Supplementary Table 7 SNP-gene expression associations for the lead SNPs: a nerby expression QTL b nearby coding SNPs c nearby DNAse 

Hotspots 

   a Nearby expression QTL  b Coding SNPs  c DNAse Hotspots 

SNP id region bp r2 SNP id 
distance 

(bp) 
gene P value r2 tissue r2 gene hgvs 

consequ
ence 

r2 best tissue 
best 
score 

hotspot end 

rs8059260 16p13.3 11060151 

0.79 rs7192695 −53398 CLEC16A 1.3×10−7  
Whole 
Blood, 
Brain 

0.81 
CLEC1

6A 
c.344-
7N>T 

splice 
region 
variant 
& intron 
variant 

1 
gum tissue 
fibroblasts 
(AG09319) 

871 11060310 

0.81 rs7195509 −14722 

CLEC16A,
LOC10013
0276,LOC
10013207

1 

6.5×10−7 0.19 
Tempo

ral 
Cortex 

NA NA NA NA  NA NA NA 

0.81 rs2302558 2860 CLEC16A 9.6×10−4  
Whole 
Blood 

NA NA NA NA  NA NA NA 

rs182344113 1p23.2 159964442 NA NA NA NA NA NA NA NA NA NA NA 1 

fetal 
buttock/thig
h fibroblast 
(AG04449) 

224 159964450 

rs183472573 NA NA NA NA NA NA NA NA NA NA NA NA NA 1 
cervical 

carcinoma 
(IFNa4h) 

1000 22469475 

Notes Association results between a index SNP within 500 kb and r2> 0.50 with a SNP associated with expression of a nearby gene (expression QTL 

or eQTL) c index SNP within 500 kb from reported DNase hotspots. Abbreviations hgvs Human Genome Variation Society annotation bp position
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Supplementary Table 8  

 

See Online Material for a comparison between previous single nucleotide polymorphisms associated with alcohol-related traits, as 

reviewed by (Bühler et al, 2015), and AUDIT scores 
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Supplementary Table 9 Extension of Figure 2  

Genetic correlations between AUDIT scores and other relevant traits using LD Regression Score (LDSC) 

Phenotype Sample Size Reference Genetic correlation (rg) Standard error P value FDR < 0.05 

Years of education 293,723 (Okbay et al, 2016b) 0.27 0.06 3.14E-05 Yes 

BMI 339,224 (Locke et al, 2015) -0.25 0.06 1.48E-04 Yes 

ADHD 53,293 (Demontis et al, 2017) -0.29 0.01 1.43E-03 Yes 

Smoking lifetime 74,035 (Furberg et al, 2010) 0.42 0.13 1.52E-03 Yes 

Obesity class 1 98,697 (Berndt et al, 2013) -0.23 0.08 2.06E-03 Yes 

Alcohol consumption 70,460 (Schumann et al, 2016) 0.68 0.23 3.40E-03 Yes 

Years of education 101,069 (Rietveld et al, 2013) 0.27 0.09 6.08E-03 Yes 

Childhood IQ 12,441 (Benyamin et al, 2014) 0.42 0.16 6.26E-03 Yes 

College attainment  95,427 (Rietveld et al, 2013) 0.26 0.10 8.11E-03 Yes 

Cannabis lifetime use 32,330 (Stringer et al, 2016) 0.38 0.17 2.60E-02 No 

Daily cigarettes  68,028 (Furberg et al, 2010) -0.31 0.16 6.19E-02 No 

Alcohol dependence 7,280 (Gelernter et al, 2014) 0.68 0.37 6.41E-02 No 

Intracranial brain volume 13,171 (Hibar et al, 2015) 0.33 0.20 8.91E-02 No 

Anorexia nervosa 17,767 (Boraska et al, 2014) 0.21 0.14 1.29E-01 No 

Loneliness 10,760 (Gao et al, 2017) -0.39 0.31 2.08E-01 No 

Hippocampus  30,717 (Hibar et al, 2015) -0.21 0.18 2.38E-01 No 

Childhood obesity 13,848 (Bradfield et al, 2012) -0.12 0.12 3.04E-01 No 

Schizophrenia 77,096 (Ripke et al, 2014) 0.05 0.07 4.95E-01 No 

Neuroticism 170,911 (Okbay et al, 2016a) 0.06 0.09 5.08E-01 No 

Former smoker 70,675 (Furberg et al, 2010) -0.11 0.18 5.58E-01 No 

Bipolar disorder 16,731 (Sklar et al, 2011) 0.05 0.10 6.11E-01 No 

Extraversion 63,030  (van den Berg et al, 2016) 0.07 0.16 6.43E-01 No 

Neuroticism 106,716 (Smith et al, 2016) -0.04 0.09 6.57E-01 No 

Height 253,288 (Wood et al, 2014) 0.02 0.05 7.12E-01 No 

Major depressive disorder 18,759 (Ripke et al, 2013) 0.06 0.17 7.22E-01 No 

Depressive symptoms 161,460 (Okbay et al, 2016a) -0.04 0.11 7.38E-01 No 

Nucleus accumbens 30,717 (Hibar et al, 2015) 0.08 0.24 7.43E-01 No 

Caudate 30,717 (Hibar et al, 2015) -0.02 0.13 8.87E-01 No 

Neo-openness to experience 17,375 (de Moor et al, 2012) 0.02 0.18 8.93E-01 No 

Smoking age onset 47,961 (Furberg et al, 2010) 0.01 0.22 9.40E-01 No 

Subjective wellbeing 298,420 (Okbay et al, 2016a) -0.01 0.11 9.64E-01 No 
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Supplementary Table 9 Continued 
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Extended Methods 

A maximal set of unrelated individuals was chosen for the analysis using a segmental identity-by-descent 

(IBD) estimation algorithm (Henn et al, 2012) to ensure that only unrelated individuals were included in 

the sample. Individuals were defined as related if they shared more than 700 cM IBD, including regions 

where the two individuals shared either one or both genomic segments identical-by-descent. This level of 

relatedness (~20% of the genome) and corresponds approximately to the minimal expected sharing 

between first cousins in an outbred population.  

We imputed participant genotype data against the September 2013 release of 1000 Genomes phase 1 

version 3 reference haplotypes. We phased and imputed data for each genotyping platform separately. We 

phased using an internally developed phasing tool, Finch, which implements the Beagle haplotype graph-

based phasing algorithm (Browning and Browning, 2007), modified to separate the haplotype graph 

construction and phasing steps. In preparation for imputation, we split phased chromosomes into segments 

of no more than 10,000 genotyped SNPs, with overlaps of 200 SNPs. We excluded SNPs with Hardy-

Weinberg equilibrium P<10−20, call rate < 95%, or with large allele frequency discrepancies compared to 

European 1000 Genomes reference data. Frequency discrepancies were identified by computing a 2x2 table 

of allele counts for European 1000 Genomes samples and 2000 randomly sampled 23andMe research 

participants with European ancestry, and identifying SNPs with a �2 P < 10−15. We imputed each phased 

segment against all-ethnicity 1000 Genomes haplotypes (excluding monomorphic and singleton sites) using 

Minimac2 (Fuchsberger et al, 2015), using 5 rounds and 200 states for parameter estimation. After quality 

control, we analyzed 11,508,740 SNPs.  

For the X chromosome, we built separate haplotype graphs for the non-pseudoautosomal region and each 

pseudoautosomal region, and these regions were phased separately. We then imputed males and females 

together using Minimac2, as with the autosomes, treating males as homozygous pseudo-diploids for the 

non-pseudoautosomal region. 

For tests using imputed data, we use the imputed dosages rather than best-guess genotypes. We imputed 

HLA allele dosages from SNP genotype data using HIBAG (Zheng et al, 2014). We imputed alleles for HLA-

A, B, C, DPB1, DQA1, DQB1, and DRB1 loci at four-digit resolution. To test associations between HLA allele 

dosages and phenotypes, we performed linear regression using the same set of covariates used in the SNP 

based GWAS. We performed separate association tests for each imputed allele. 
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