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Abstract

Summary: Segway performs semi-automated genome annotation, discovering joint patterns across
multiple genomic signal datasets. We discuss a major new version of Segway and highlight its ability
to model data with substantially greater accuracy. Major enhancements in Segway 2.0 include the ability
to model data with a mixture of Gaussians, enabling capture of arbitrarily complex signal distributions, and
minibatch training, leading to better learned parameters.
Availability and Implementation: Segway and its source code are freely available for download at
https://segway.hoffmanlab.org. We have made available scripts (https://doi.org/10.5281/zenodo.802940)
and datasets (https://doi.org/10.5281/zenodo.802907) for this paper’s analysis.
Contact: michael.hoffman@utoronto.ca

1 Introduction
Segway identifies recurring combinatorial patterns in multiple genome-
wide signal datasets such as ChIP-seq or DNase-seq data (Hoffman et al.,
2012). Segway uses discovered patterns to assign a label to every position
in the genome, resulting in a semi-automated genome annotation. It is
commonly used to define chromatin state across the whole genome by
resources such as the ENCODE Project (ENCODE Project Consortium,
2012) or the Ensembl Regulatory Build (Zerbino et al., 2015). Using
chromatin data, the labels might represent genomic features such as
“enhancer” or “facultative heterochromatin”.

Since its initial publication, we have made many changes to Segway.
Release notes (https://bitbucket.org/hoffmanlab/segway/src/default/NEWS)
contain a complete list. Of the new features, we expect the new standalone
mode to interest the most users. This mode removes the requirement for
a cluster system such as Sun Grid Engine, allowing one to run Segway
easily on any Linux host. Also of interest are new features which improve
Segway’s ability to learn more complex patterns with less configuration.
Below we describe these features and demonstrate the improvement they
provide.

2 Results
Minibatch training:Segway uses the expectation-maximization (EM)
algorithm to train its statistical model. Segway previously allowed for
training only on a fixed region of the genome, such that each iteration
of expectation-maximization (EM) training uses the same fixed region.

Using minibatch learning, each EM training iteration can now train on a
different random region of the genome. For example, using a minibatch
fraction of 1%, each training iteration will now use a different random 1%
of the genome. This eliminates concerns of overfitting to a fixed region,
but since there is no longer any guarantee of convergence, the final set
of emission parameters is chosen by evaluating the likelihood on a held-
out validation set. In general, minibatch allows one to sample the whole
genome without having to use the whole genome as the training set, which
would be much slower. Since the minibatch feature selects a different
random region of the genome to train on per iteration, there is also a very
high variation in likelihood progression between instances, though the
overall likelihood progression is, however, generally more positive than
that for a fixed region.

To demonstrate, we trained Segway on ENCODE (ENCODE
Project Consortium, 2012) GRCh38/hg38 ChIP-seq datasets for
H3K4me1 (ENCFF509XSM), H3K4me3 (ENCFF745GML), H3K27ac
(ENCFF890NAY), H3K27me3 (ENCFF592CSV) and CTCF (ENCFF884IIL)
in the cell-line DOHH2 (Kluin-Nelemans et al., 1991). We did this using
a single Gaussian model for a randomly selected fixed region of size 1%,
and using minibatch training with batch size 1%. For each training round,
we evaluated the posterior log likelihood of its learned parameters on 1.5%
of the genome, which we held out from training in all cases. Minibatch
resulted in a higher log likelihood convergence on the validation set both
on average and in the final winning set of parameters (Figure 1). The fixed
case also suffered from the validation set likelihood dropping from its
initial peak due to overfitting on the training set (Figure 1).
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Fig. 1. Log likelihood progression against round for a fixed 1% of the genome and a 1%
chosen fraction for minibatch. Each series shared the same set of starting parameters and
were evaluated against the same held-out validation set. Red circles: likelihood for the final
chosen set of parameters in each series.

Gaussian mixture models: Segway learns Gaussian distributions over
signal values to represent different patterns. Previously, Segway used a
single-component Gaussian to model the signal in each dataset given some
label such that there is one learned mean parameter for each track-label
pair, and one fixed variance for a given track. To enable more complex
signal distributions, we extended Segway’s model to allow for a mixture
model with k Gaussian components. Now, there are k mean parameters
for each track-label pair, and k variances for each track. Using a mixture of
Gaussians allows learning emission distributions that can more accurately
fit data distributed non-normally.

To demonstrate, we trained Segway on signal data for the histone mark
H3K27ac in the cell line DOHH2, using a 1-component Gaussian model
and using a 3-component mixture of Gaussians. As previously described
(Roberts et al., 2016), we trained using minibatch on 1% of the genome,
for 10 labels and 100 EM training iterations. For each label learned, we
extracted all datapoints corresponding to that label in the final annotation
to generate an empirical distribution. Using the Kolmogorov-Smirnov test
statistic, D, we picked the labels that best fit the empirical distribution in
each case and compared them (Figure 2). The smaller the D statistic, the
closer the fit between the theoretical and empirical distributions. Because
Segway performs unsupervised learning, the sets of labels between each
case do not correspond identically.

In the single-component Gaussian case, the average D statistic across
all labels was 0.28, with a median of 0.29, and a best D statistic of 0.078.
In the 3-component mixture of Gaussians case, the average D statistic
across all labels was 0.16, with a median of 0.10, and a best D statistic of
0.058.

The theoretical distribution for the 3-component mixture of Gaussians
agreed with its multi-modal empirical distribution except for a slight right-
skew in the data (Figures 2, S1). In comparison, the theoretical distribution
for the single-component Gaussian model does not agree very well with
its empirical distribution, with a strong skew in the tails of the distribution
(Figure 2).

In conclusion, the mixture of Gaussians model better captures the
empirical distribution than the single-component Gaussian model both
on average and overall.

Fig. 2. Combined quantile-quantile plot demonstrating ability of 1 or 3 Gaussian
components to capture their empirical distributions.
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(a) 3-component (b) 1-component

Fig. S1. Histograms for the 3 (left) and 1 (right)-component mixtures of Gaussians showing the labels with the best D statistic in each case. The histograms are between the datapoints
underneath that label (pink bins) against the same number of datapoints drawn randomly from the theoretical distribution of that label (blue bins).
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