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Abstract

e Background and Aims Diurnal changes in solar position and intensity
combined with the structural complexity of plant architecture results
in highly variable and dynamic light patterns within the plant canopy.
This influences productivity because photosynthesis is highly respon-
sive to changes in light intensity. Current methods to characterise light
dynamics, such as ray tracing, are able to produce data with excellent
spatio-temporal resolution but are computationally intensive and the
resultant data are complex and high dimensional. This necessitates
development of more economical models to simulate realistic light pat-
terns over the course of the day.

e Methods High-resolution reconstructions of field-grown wheat canopies
were assembled in various configurations using digital imaging meth-
ods. A forward ray-tracing algorithm was employed to compute canopy
light dynamics at high (1 minute) temporal resolution. The output was
used to designate leaf sections as sunlit or shaded at each time interval.
A stochastic model for sunlit-shaded patterns was developed and fitted
using maximum likelihood estimation. Principal component analysis
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was used to study the similarities and differences in dynamic light dis-
tribution between different canopies.

o Key Results A two-state Markov chain model sufficiently replicates key
features of the light dynamics, as achieved via ray-tracing data, pro-
vided that the rates of switching (from sunlit to shaded, and vice versa)
are assumed to be distinct and to be functions of the time of day and
the height within the canopy.

e (Conclusions The Markov chain model captures the essential features
of light dynamics within a canopy and enables a clear understanding
of how position, time of day, and canopy characteristics affect light
patterns. Furthermore, the model provides a cheap way to simulate
realistic light patterns, which we anticipate being important for feed-
ing into larger scale photosynthesis models for calculating how light
dynamics affects the photosynthetic productivity of a canopy.

Keywords: 3D architecture, crop canopy, ray tracing, Markov model,
emulation, photosynthesis

Introduction

Plant canopies are complex three-dimensional (3D) structures which in-
fluence light dynamics during a day, largely as a result of solar movement.
Due to diurnal changes in solar position and occlusion caused by overlapping
leaves and canopy architectural characteristics, leaves will alternate between
sunlit and shaded periods. Bright periods of full sunlight which temporarily
penetrate to lower layers of the canopy (‘sun-flecks’) can have a high de-
gree of temporal variability. The dimensions and spatio-temporal dynamics
of direct light influence many fundamental physiological functions, such as
photosynthesis, photoacclimation, and photoinhibition [13, 1, 3, 19], and sec-
ondary biophysical processes such as drought tolerance, water-use efficiency
[12], plant growth and crop yield [9]. This is because photosynthesis does not
accurately track the fluctuations in light and there may be delays in response
to a change in conditions. For example, a delay in photosynthetic induction
to high light can result from the time taken to activate enzymes in the Calvin
cycle, open stomatal pores and build up metabolite pool sizes [13, 1]. The
speed of recovery from photoprotection in low light has recently been shown
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to determine productivity [7, 8]. This demonstrates that improvements to
crop yield by optimizing photosynthesis will come from an understanding
of how photosynthesis responds in naturally dynamic environments, rather
than steady-state conditions. However, our understanding of how photosyn-
thesis is integrated into canopies is hampered somewhat by the complexity
and computational burden of using ray-tracing methods for analyzing light
dynamics in 3D canopy reconstructions [6].

Sunlit and shaded patterns may be measured using various empirical tech-
niques, such as hemispherical canopy photographs [10], a photosynthetically
active radiation (PAR) sensor moving on a horizontal track [15], an electro-
magnetic 3D digitiser [17], or a near-ground imaging spectroscopy system
[20]. However spatial resolution of these techniques is typically very poor.
This limitation is overcome by digital reconstruction of plants and canopies
[11] and digital ray tracing [18].

Current ray-tracing approaches for calculating the positions and dynam-
ics of light in canopies can consume substantial time and computer resources.
This is especially the case where large numbers of analyses are required si-
multaneously. To accurately and rapidly simulate sunlit-shaded patterns
within complex canopies, a novel mathematical approach has been devel-
oped here. This uses a two-state Markov chain model, where states switch
from sunlit to shaded and from shaded to sunlit with rates dependent on
time and depth in the plant canopy. Ray-tracer outputs during the whole
day were compared to the values corresponding to direct light in the absence
of any shading and light patterns subdivided into a series of time points
separating sunlit and shaded periods. These then were used to draw space-
time diagrams of shading history over each leaf surface. The sets of time
points, evaluated for canopies with different leaf area indices (LAI), were
used to model the switching times as events arising from a non-homogeneous
Poisson process (NHPP) [16]. We found a strong sunlit-shading switching
dependence on depth and decreasing length of sunlit periods with increasing
planting density. We suggest that this simplified approach can be applied
to physiological studies where economical descriptions of 3-D light dynamics
are required, complementing more complex ray tracing procedures.
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Materials and Methods

Digital canopy reconstruction and ray tracing
To investigate differences in sunlit and shaded patterns between wheat
canopies with varying LAI, and among different lines, we used field-grown
wheat plants which have structures reconstructed as described in [1]. The
reconstructions in [1] represent the surface of a plant with a large number, N,
of small triangular patches. Figure 1A shows an example of a reconstructed
wheat plant, with an individual leaf at the lower part of the plant shown in
blue. A particular triangular patch indexed, say, by j is defined by the set
of coordinates {xy;,Xa;,X3;} of its three vertices. We denote the centroid of
this patch by x; = (1/3) 3.7, x;;, and its normalised height by
(Xj)fi — Zmin

hj B Zmax — “min ’
in which (X;)3 denotes height from the ground of the jth patch’s centroid, and
Zmin = Min;; {(xij)3}, Zmax = IAX;; {(Xij)3} are respectively the minimum
and maximum heights amongst all the vertices in the canopy. The models
developed later involve dependence on these normalised heights.

The light distribution inside a 3D canopy was computed using the fast-
Tracer v3.0 [18] implementation of a forward ray-tracing algorithm. The
software fastTracer simulates three categories of light (direct, diffuse and
scattered light), and determines where individual rays of light are eventually
absorbed on leaf surfaces. For this study we have considered only direct light.
Figure 1B shows a configuration for the ray tracer software [18]. Rays are
arranged over a grid above the plant. The direction and amplitude of each
ray depends on latitude and time of day. Ray tracing is performed in a cubic
domain with periodic boundary conditions on the vertical faces so that when
a ray exits one boundary of the domain it re-enters on the opposite verti-
cal face. Latitude was set to 53° (for Sutton Bonington, UK), atmospheric
transmittance 0.5, light scattering 7.5%, light transmittance 7.5%, day 182 (1
July). Those parameters were chosen for ray-tracing as that was the location
and day that the wheat plants were taken and imaged in accordance with
Burgess et al. (2015). We calculated the direct light intercepted during the
day at 1 minute resolution for every patch in the canopy. The high temporal
resolution enabled us to investigate even short-term light fluctuations in the
canopy. See Figure 1E for an example of the light pattern computed for a
particular patch. The high amplitude envelope, shown in red in Figure 1E,
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depends on the angle between the surface of the patch and the straight line
path between the patch and the sun. Periods of shading occur when this path
is blocked by a leaf or stem higher in the canopy, as illustrated in Figure 1C.

To construct canopies in silico based on the individual-plant reconstruc-
tions of [1], we exploited the periodic boundary conditions of the ray-tracer
which give a natural way to “tile” individual plants to form an effective
canopy. We investigated two ways to do this: (i) by putting the bounding
box just outside the plant (as shown by the red rectangle in Figure 1D); or
(ii) arranging plants on 3 x 3 square lattice a distance d apart, and putting
the bounding box through the centres of boundary plants (as shown by the
blue rectangle in Figure 1D). The periodic boundary conditions mean that
case (i) amounts to considering an infinite square lattice of identical copies of
the same plant. Case (ii) is similar, but it introduces additional heterogeneity
through randomising the orientation of the different plants. We positioned
the plants at distances d equal to 200mm, 150mm, 125mm and 100mm. In
case (ii), we analysed the light dynamics for the plant in the centre of the 3 x
3 lattice. By changing configurations we constructed canopies with different
LAL

Constructing sunlit-shaded patterns

To construct sunlit-shaded patterns for each patch, we compared values
of direct light computed by the ray-tracing algorithm [18] to the direct light
irradiance on a unit surface in the absence of any shading [4]. Details of the
latter equations are given in the Appendix; these equations are given in terms
of latitude, day of year, time of day, and coordinates of three vertices; the
latter are used to calculate the angle between a light ray and the normal to the
trianglular patch. Figure 1E shows the direct light pattern for a particular
patch in the lower part of a plant, obtained from ray-tracing software (black
curve) and calculated from the equations in the Appendix (red curve). We
designate a patch at a given time point as being shaded if the absolute
difference between two values of the direct light was more then 10% (grey
vertical lines). The shaded periods are indicated in Figure 1E by vertical
grey bars. The substatial shaded period between 10 and 11 o’clock shown in
Figure 1E is a consequence of the shading shown in Figure 1C. The output
of the ray-tracer, used as an input to the models below, are time series
with binary states (sunlit or shaded) charaterising the light pattern for every
individual patch in the canopy.
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We can visualise spatiotemporal variation in the light patterns for dif-
ferent patches in the canopy via diagrams as shown in Figure 1F. Each row
in this diagram corresponds to a particular patch in the canopy, with the
patches (and hence rows) having been ordered according to the normalised
heights of the patch centroids. A horizontal blue line indicates a shaded
period, and white indicates sunlit. A space-time diagram of a shading for
the leaf shown in blue in Figure 1A is plotted in Figure 1F, with a particu-
lar direct light pattern from Figure 1E shown in red. The diagram reveals
an intricate pattern, with shadows from the upper leaves moving along the
surface of the leaf as the sun changes position in the sky.

Sunlit-shaded dynamics: Model 1

We use a simplified model (Model 1) to illustrate our methodology, before
implementing the full two-state model (Model 2) below.

Within some time interval of interest, ¢ € (0, T), a particular patch within
the canopy is either sunlit or shaded. In this first model, we consider only
a single patch and are interested in how the rate of switching (from sunlit
to shaded or vice versa) changes with time, t. At this point we do not
distinguish between sunlit-to-shaded and shaded-to-sunlit events: we denote
the times of such switching events by 0 < v; < -+ < v, < T (we introduce
this distinction in Model 2 below).

The assumption of Model 1 is that switching events arise from a non-
homogeneous Poisson process (NHPP). This is a stochastic process defined
in terms of an intensity function A(¢) > 0 such that, for 0 < 6t < 1,

Prob {event in interval (¢,t -+ 6t)} = \(t)dt + O(6t?), (1)

where O(+) is the standard big-O asymptotic notation. A property of NHPP
is that the probabilities of events in distinct intervals are independent. From
this independence, together with equation (1), it follows that for any interval

(t,t+u) C(0,7),

t+u
Prob {no events in interval (¢,t+ u)} = exp {— / )\(t’)dt’} @)
t
=exp{—A(t+u) +A(t)},

where A(t) = fot A(t)dt'. Equation (2) is useful in the following section for
constructing expressions needed for fitting the model to data.
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Fitting Model 1

The goal is to fit the model by estimating the intensity function A(t)
based on an observed set of switching times vq,--- ,v,. We will do so by
the standard statistical approach of maximum likelihood estimation (MLE).
This involves constructing the likelihood function, which is the probability
(density) function evaluated at the observed realisation of switching times,
but regarded as a function of the parameter A(t) to be estimated. The
likelihood function is

L) =[exp {=A(01) + AO)}] [H exp {—A(vg) + A(vi_o}]

. (3)
x [exp{_A(T) + A@n)}} [H A(m] .

Expression (3) is straightforward to derive by discretising the interval (0,7)
with increments of size 0t and writing the likelihood as a product of factors
(using independence of increments) with each factor either (1) or its comple-
ment, depending on whether or not the increment contains an event, then
taking the limit 6¢ — 0. The four factors in square brackets in (3) can be
interpreted as follows: the first factor is a contribution from having no events
in the interval (0,v;), the second factor from having no events in (v;, v;_1)

for i = 1,...,n, the third from having no event in the interval (v,,T), and
the fourth is the contribution from the switching events occurring at times
V1, ...,Uy. Such intuition will be helpful when constructing the likelihood

functions for Model 2, but in the present case expression (3) simplifies, ow-
ing to telescoping in the exponent, to

n

LA(t) = exp {=AD)} [T Aw). (4)

i=1

Maximising (4) with respect to an unrestricted A(t) is ill-posed (since the
maximising A(¢) would be unboundedly large at the switching instants ¢t =
v1, -+, Up, and zero elsewhere). We will hence impose restrictions on A(¢) by
defining a set of basis functions g(t) = (¢1(t),- - , gp(t)) such that

A(t) =Db'g(t),

is smooth function of ¢. Then the fitting problem becomes one of estimating
the vector of parameters b = (by,---,b,)" by maximising the likelihood
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function for b,
n

L(b) = exp {~b'G(T)} [ [ b &(w), (5)

i=1

where G(t) = f(f g(t")dt’. We may equivalently, and more conveniently, max-
imise the log of the likelihood, which is

((b) =log L(b) = =b"G(T) + > log (b"g(v;)) . (6)

i=1

Although there is no simple closed-form solution for b, equation (6) is a
concave function of b, hence its maximum is unique and is easy to determine
by numerical optimisation routines; see the Appendix for details.

Simulating from Model 1

It follows from (1) (see [16] for details) that the distribution function for
the additional time until the next event occurs given that an event occurred
at time v is

F,(s) =1—exp(—=A(v+s) + A(v)) (7)

The distribution (7) is easy to simulate, for example using the inversion
method [16].

An algorithm to simulate a sequence of event times vy, vy, v3, ... is as

follows. let v; be a simulated value from the distribution Fy. Then let vy
equal v; plus a simulated value from the distribution F,,. Continue in this
way, letting v;11 equal v; plus a simulated value from the distribution £},
until v > 7T.

Model 1: an example of simulation and model fitting

To illustrate the above ideas we use a simple model with g = (1,¢, (¢t — 6)?),
for which the intensity function A(¢) = 3 + 0.05¢ — 0.075(¢ — 6). Here time
t is measured in hours over a 1" = 12hr period starting at 6am, so that
t = t,,qg = 6hr represents noon. A realisation of the model is shown in Fig-
ure 2A. The switching rate function is shown in grey in Figure 2B. In this
example, switching increases from sunrise to sunset, reaches its maximum at
noon, and decreases from noon to sunset.

If we proceed with MLE based only on the single realisation in Figure
2A, we obtain the estimated intensity function \(t) = 2.2+ 0.14¢ — 0.061(¢t —

8
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6)? (green curve in Figure 2A). The estimated intensity function matches
reasonably well with the time intensity function, but not exactly because the
estimate is based on a fairly small amount of data. A characteristic of the
MLE is that the estimate tends to get increasingly close to the true answer as
the amount of data increases. This is illustrated by the blue and red curves
in Figure 2B, which are the MLE based on data from multiple realisations.

Sunlit-shaded dynamics: Model 2

The main contribution of this paper is to extend Model 1 in two ways: (i)
to incorporate distinct rate functions, A\°"(¢) and A\°f(¢), for switching “on”
(from shaded to sunlit) and “off” (from sunlit to shaded), respectively; and
(ii) to describe multiple patches, with the rate functions for different patches
depending on the normalised height, h, within the canopy (in addition to
time, ¢, as in Model 1).

Extension (i) requires that we distinguish notationally between on-switching
events, at times denoted x;, and off-switching events, at times denoted y;. For
a given patch, since on- and off-switching events must alternate, the switch-
ing is characterised by the ordered set of times {1, y1, 2, Y2, ..., Tn, Yn}. The
possibility that the state is initially “on” at time 0 is represented by having
1 < 0, and similarly being “oft” at time T is represented by vy, > T'. The
particular values of z; and vy, in these cases do not need to be specified.
Besides these exceptions, we otherwise assume that 0 < z; < y; < T for all
1. Figure 3 illustrates the notation, with the four different examples showing
the four possible cases involving the different combinations of “on” and “off”
statesat t =0 and t =T.

Fitting Model 2

In terms of the switching times, {x1,y1, %2, Y2, ..., 20, yn}, for a given
patch, the likelihood functions for A°*(¢) and A\°%(¢) are then

LA™ = H exp {—A"(z;) + A (yi—1) } A™ ()

X [exp {_Aon(xl)} )\On(x1>]1(:c1>o)
X [exp{_Aon(T) + Aon(yﬂ)}][(yn<T)
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and
n—1
LX) = H exp { =AM (ys) + A (@) } A" ()

x exp {—A"(y1)} A" (1) [exp {/\Off(xl) 1] 1(z1>0) 9)
xexp {=A(T) + A ()}
x [exp {=A(y,) + AT(T) Y XF(y,)] "

Here I(-) denotes the indicator function which equals one if its argument
is true and zero otherwise. Equations (8,9) generalize Equations (3, 4) to
distinguish sunlit-to-shaded from shaded-to-sunlit events.

The final step is to generalise to multiple patches, and introduce depen-
dence of the rates on the height of each patch. Let j = 1,...,m index the
different patches, and suppose that quantities specific to the jth patch are
indicated by a suffix j. We assume x;; < 0 and y,,; > T if the state is
“on” at the beginning and end, respectively, of the interval (0,77). We let h;
denote the height of the jth patch and use subscripts on the rate functions to
denote their dependence on height, i.e., the rate functions for the jth patch
are A" (t) and )\?g(t).

Assuming independence of patches, the likelihoods can be constructed as
a product of factors of the form (8) or (9) over index j = 1,...,m. The
log-likelihoods are then

e(xm):z{z — A (i) + A (i LJ)—I—log)\OH(x”)}

j=1 =2
Iy > 0) { AR (1) +log A1)} (10)
+ I(yn,g < T) {=A2(T) + A1)}
and
() = zm: {”231 AOff (vij) + AOH(x”) + log )\Oﬂ(yz)}
il G
= A3 (y1,5) +1og Al (y1,5) + L(wey > 0)AT (21,) (11)

— AT + A, )

1y < T) {5 (g, ) + AT) +1og Xy, 5) |
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Once again, we need to specify particular models for the rate functions. We
will consider models of the factorised forms

A (t) = (@) £ (h) x (b™) ' g(t), (12)
A (1) = (™) TE(h) x (b°F) Tg(1), (13)

where f(h) = (fi(h),..., fy(h)) and g(t) = (g1(¢),...,g,(t)) are vectors of
prescribed basis functions. Fitting the model by maximum likelihood estima-

tion then requires maximising the log-likelihood functions (10) and (11) with
respect to parameter vectors ((a®)" (b‘m)T)T and ((a°®)" (b‘)ﬁ)T)T respec-
tively. Some constraints on these parameter vectors are required in order that
they can be uniquely identified from data: see the Appendix for discussion.

Simulating from Model 2

For the model, we make a distinction between whether at time t = 0 a
patch is a sunlit or shaded state. In simulations, we used random starting
states, distributed as

Prob {sunlit at t = 0;h} = h, (14)

where h is the normalised height of the patch’s centroid, so that patches high
in the canopy tend to start off sunlit whereas those at the bottom tend to
start shaded. It is easy to reproduce (14) with a different distribution, for
example and empirical distribution determined from ray-tracing data.

For this model, the distribution for the time until next event depends on
whether switching from sunlit to shaded or vice versa. Analogous to (7),
we denote the distribution for time to next "on” event given an "off” event
occurred at time z; by F*; and the time to the next "off” event, given an
"on”event occurred at time y; by Fyoff.

An algorithm to simulate from Model 2 is thus as follows. Simulate the
initial state as either sunlit or shaded. Supposing it is sunlit, let x; be a
simulated value from F$T. Then let y; equal z; plus a simulated value from
Fpt. Continue letting x;1; equal y; plus a simulated value from FZ’Z’H and y;41
equal z;;; plus a simulated value from F" until either z;,; > T or y;41 > T'.

If the initial state were instead shaded, then the only difference in the
above would be in the first step, in which we would simulate y; from F$",
then the algorithm proceeds in the same way.

The R source code for the emulator is available on request and will be in-
corporated into an R package together with digital reconstructions of plants.

11
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Results

Results and analysis of fitting Model 2 to ray-tracing data

We assembled canopies with varying LAI using reconstructions of high
spatial-resolution images of wheat plants. Figure 4 shows images of the
canopies we analysed: the original plant; the original plant rotated 90°, 180°,
and 270° the original plant randomly rotated and positioned at distances
d = 200mm, 150mm, 125mm, and 100mm from a replica of a plant from the
same line; and plants from two different lines.

Each of the configurations can be described by the individual profile of
cumulative LAI (cLAI), which shows how leaf mass is accumulated from
the top to the bottom of a canopy. Figure 4 shows the profiles of cLAI
for all canopies we used for the analysis. Here canopies (A)-(D) and (I)-(J)
correspond to configurations where we put the bounding box just outside the
plant (as shown by red rectangle in Figure 1 D); and canopies (E)-(H) are
constructed by arranging plants on a 3 x 3 square lattice at a distance d
apart. The cLAI profiles for canopies (A)-(D) are identical, as rotation of
the plant does not change the spatial distribution of leaf mass.

For the choice of basis functions in the rates (12, 13) we use f(h) = (1,h) "
and g(t) = (1,(t —t2 )", where t,,4 = 6hr is the time at midday. In other
words we assume that the switching rates have linear dependence on height,
h, and parabolic dependence on ¢. The switching rates are then:

A (1) = (1= a®h) (9" + b3 (t — tna)?) , (15)
MNE(E) = (1= ah) (55" + 63 (t — tna)?) , - (16)

We estimate the parameters {a®®, b5, b3, a®, 9T b3} for the ray-tracing
data by maximum likelihood estimation, as described above. Table 1 shows
the fitted parameters for the different canopies we considered. Also shown
in the table is the LAI for each canopy computed directly from the recon-
struction data. Notable from the table is that a®® and a°® are both close to
1. This indicates that the switching rates are very strongly dependent on
depth within the canopy. In particular, a®® tends to be very close to 1, so
that the off rate at the very top of the canopy is close to zero, since patches
are not obstructed by other leaves and hence are permanently sunlit. Typ-
ically the parameters 03T and 63T contributing to the off rate are larger for
canopies with higher LAI and the corresponding parameters 0" and b3" in
the on rate are slightly smaller. This is consistent with the intuition that in
dense canopies sun flecks are typically shorter and less frequent.
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The information in Table 1 can be visualised in two dimensions using
Principal Component Analysis (PCA). We performed PCA based on the cor-
relation matrix of the fitted parameters. The first PC, which explains 59% of
the variability, has loadings (0.08,0.51,0.51, —0.50, —0.2, —0.43) suggesting
the interpretation that it contrasts the off and on rates, or in other words
that it is a measure of typical "shadedness” within the canopy. Indeed the
first PC correlates very strongly with LAI (Pearson correlation coefficient of
0.984, p-value < 1077) as shown in Figure 4. The second PC, which explains
20% of the variability has loadings (0.37,0.18, —0.06, 0.26,0.75, —0.44). Here
by" is dominant in this PC, and contrasts with 05" suggesting that this PC
measures overall on rate and the shape of its time dependence (note, for ex-
ample, that in canopies F,G, and H 03" is negative indicating the on rate is
lower at midday than at the start or end of the day, in contrast to the other
canopies).

The plot in Figure 4, of PC1 versus PC2, shows some very clear clustering
of canopies we expect to be similar, suggesting that the PCs (and the fitted
parameters from which they were computed) encode physiologically relevant
information about the canopies.

Simulating realistic dynamic direct light flux density

Model 2 describes only binary sunlit-shaded dynamics. The direct light
flux density during sunlit periods is given by Ag. defined in (22) in the Ap-
pendix. We can hence model the direct light flux density for a particular
patch as

flux density (t) = Ag-(t)I(patch sunlit at time t ) (17)

in which A4 depends on patch orientation, as well as latitude and day of the
year, as described in the Appendix.

We compare the simulations from this model to ray-tracing data from
canopy H. Figure 5A shows a comparison for individual patches between
patterns generated by the ray-tracer (left column) and emulator (right col-
umn) at the top, middle and bottom of the canopy. In order to compare
emulator performance over a whole canopy, we calculated the daily light in-
tercepted per unit leaf area at each patch from light patterns produced by
the ray-tracer (Figure 5B) and the emulator (Figure 5C). As can be seen
from the figures, the emulator gives good results at a fraction of the compu-
tational cost. The differences can be explained by the assumption of spatial
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independence of patches for the emulator, in contrast to the ray-tracer, where
neighbouring patches will be shaded at similar times.

Discussion

In this work, the effect of shading has been quantified by analysing pat-
terns of intercepted direct light in complex canopies. A novel model was
developed which provides an alternative to traditional ray-tracing that is
more accessible and requires fewer resources to implement. The emulator
approach, based on a two-state Markov process model, is computationally
more efficient than a ray-tracing algorithm, especially when dealing with
large canopies and inferring light profiles at a high temporal and special
resolution. The computationally cheap way to simulate light dynamics we
have proposed will be important for feeding into larger-scale photosynthesis
models for calculation of the absorbed radiation and photosynthetic produc-
tion by a canopy, and so useful for crop-productivity models in addition to
leaf-level physiological analyses.

This is also of importance in the new field of plant and crop phenotyping
where high resolution reconstructions can now be developed routinely but
bottlenecks exist in terms of their analysis for physiological functioning. For
example, using the reconstructions available in Pound et al. [11], running
the ray-tracer FastTracer3 to provide data for a 24 hour period can take
several days. In comparison the Markov emulator takes less then a minute
to generate an individual direct light pattern without the need to run calcu-
lations for all of the canopy. The emulator can produce a comparable set of
data that can be used to analyse light dynamics and compare to photosyn-
thetic responses. This provides a convenient and high resolution approach for
characterizing the canopy light environment where physical sensors cannot be
used since they do not provide adequate spatial resolution and obstruct light.
Such sunlit-shaded dynamics can be used in order to analyse multiple aspects
of crop cultivation such as varietal selection and altered architectural char-
acteristics, cultivation practice (such as cropping system, row spacing etc) or
for photosynthetic modelling.

There are many natural extensions to the modelling we have introduced.
We developed the simulation and fitting sections in terms of general ba-
sis function, but in this paper have considered only one simple special case,
which amounts to imposing that the switching rate functions (15, 16 ) depend
linearly on h and parabolically on t. Particularly with very large data sets
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that arise from ray-tracing studies, there is scope for investigating much more
flexible basis functions, for example spline bases, and for considering more
general forms for the rate functions than the factorised forms (12, 13) that
we have so far assumed. The maximum likelihood framework in which we
have developed the model fitting naturally extends to model selection, which
will enable formal comparison between different candidate models (i.e., as de-
fined through different choices of basis function) for the empirical data. Our
emulator focuses specifically on direct light, with the sunlit/shaded state
modelled stochastically and the amplitude during sunlit periods modelled
by a deterministic light amplitude envelope function. We could straightfor-
wardly further introduce effects of diffused and scattered light, perhaps as
deterministic components contributing additively to the total incident light
flux.

The heterogeneity of the light environment influences how plants respond
to and exploit available resources, i.e. photosynthesis and crop-production.
This has been recently demonstrated using recovery from photoprotection
[7]. However, to quantify the impact of a particular photosynthetic process
(Rubisco activation, stomatal opening, photoprotection) on productivity re-
quires knowledge of the precise ‘signature’ of light - shade dynamics. For
example longer periods in high light and low light are likely to be less pro-
ductive than rapid fluctuations [14, 2|. Hence the emulator described in this
paper represents a significant step towards rapid prediction of the impact
on dynamic photosynthesis that a particular canopy architecture is likely to
have.

Here we have quantified the mechanistic nature of light variability by
analysing diurnal light patterns in canopies with different LAI. The results
of the current study highlight and quantify a negative relationship between
height and the expected length of sunlit periods and a positive relationship
between LAI and the expected length of sunlit periods. To fully explore light
environment in leaf canopy, we intend to expand the emulator to simulate
dffiused and scattered light. These sources of irradiance will depend mostly
on leaf aggregation, i.e. patches at the same level of cumulative LAI will be
exposed to similar values of diffused and direct light [5]. A similar methodol-
ogy as we used for direct light characterisation can be applied to determine
the type of dependence of diffused and direct light on the height.
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Appendix
Direct light

Solar ray direction depends on the time and location: day, d, hour, ¢, and
latitude, I, [4]. The sun declination angle is

d+ 10
=—-235 . 18
s cos ( 365 ) (18)
The hour angle is
hang = 0.262(t — t,,,), (19)
where ¢, is time of solar noon. The solar elevation angle is
65 = arcsin (sin(s) sin(l,) + cos(s) cos(l,) cos(hang)) - (20)
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The solar azimuth angle is

. = — arccos (sin(s) c0s(ly) — cos(hang) cos(s) sin(la)) o (21)
cos(s)
Then the direction of direct light is given by a vector (z,y, z) with
r = rcos(ps),
y = =rsin(ps),
z = —cos(m—0y);
r sin(m — 6y).
Here y > 0 if ¢ < 6hr, and y > 0 if ¢ > 6hr.
Direct light irradiance on a unit surface is given by
Agy = Ao cos(f), (22)

where « is atmosphere transmittance, A, is a solar constant (= 2600x mol
m~2s7!), and B is the angle between the light ray and the normal to the
surface.

Concavity of Model 1’s log-likelihood function

Although there is no closed-form solution for b as the optimal argument
that maximises (6), the optimum can nevertheless be computed easily by
numerical optimisation, because (6) is a concave function. This can be seen
by computing the derivatives

gf; )+ Z {bT v; } g(v;), (23)

8b8bT_ Z{bT vz} g(v)g(v;) . (24)

Since the Hessian (24) is negative semidefinite, the objective function (6) is
concave. Together with the concave constraint A\(t) = b'g(t) > 0, for which
b'g(t) is concave (indeed affine), the numerical optimisation for estimating
b is hence a concave maximisation. This means that the global optimum
is the unique optimum, so numerical optimisation routines will not become
trapped in local optima. Some numerical algorithms for such task benefit
from an analytic expression for the gradient (23).
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Comments on fitting Model 2

Some comments on the model and fitting are as follows. Comments focus
on \o*(¢) but apply analogously to AT ().

1. The model specified by (12) does not lead to uniquely identifiable pa-
rameter values since, for example, transformations a®® — ¢ - a°" and
b°" — ¢! b°" lead to an unchanged A\¢"(t). To overcome this, without
loss of generality we assume that (a°); = 1.

2. The log-likelihood function (10) is not in general a concave function

of the concatenated parameter vector ((a™)’ (bon)T)T. A possible
strategy for numerical maximisation is to iterate between maximising
with respect to a®® with b°" fixed, and maximising with respect to b°"
with a°" fixed. In this case each maximum is the concave. However,
for the calculations in this paper we found that using the Nelder-Mead
algorithm to optimise directly with respect to the concatenated vector
reliably found the global maximum.
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LAI [ a | 69" | b5» | a°f | 09 | o5t
0.69 | 0.85 | 3.83 | 0.031 | 1. | 1.75 | 0.099
0.69 | 0.85[4.19 ] 0.043 | 1. | 1.54 | 0.10
0.69 | 0.85 | 4.40 | 0.017 | 1. | 2.12 | 0.087
0.69 | 0.85 | 4.35 ] 0.057 | 1. | 2.01 |0.099
1.15 [ 0.79 | 3.29 | 0.063 | 0.94 | 1.92 | 0.24
2.11[0.62 [ 3.32 [ -0.017 [ 0.99 | 4.83 | 0.38
2.89 [ 0.54 | 3.17 [ -0.021 [ 0.99 | 5.58 | 0.43
4.1810.34 [ 214 ]-0.026 | 1. | 829 | 0.55
1.230.78 [ 1.73 | 0.047 | 1. | 1.36 | 0.072
0.76 | 0.66 | 2.39 | 0.096 | 1. |1.053 | 0.19
1.32 [ 0.64 | 1.77 | 0.051 | 0.99 | 1.33 | 0.16

S| | = T Q| = o QW] = 5

Table 1: Parameter estimation for the model Eq.(15)-(16). Here ID corresponds to the
canopy configuration shown in Fig.4
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Figure 1: Quantifying sunlit and shaded dynamics. (A) Reconstructed wheat plant from
[1]. (B) Set up for a ray tracer [18]. Red arrows show direct light; once a ray hits the
boundary, it is moved to the opposed vertical face of the box. (C) Shading will occur when
a ray is obstructed by other leaves or a stem. (D) Construction of canopies was done in two
ways: putting the bounding box just outside the plant (red rectangle) or putting plants
on 3 x 3 grid at a distance d apart and putting the bounding box through the centres of
boundary plants (blue rectangle). (E) Diurnal dynamics of light at a particular triangle:
ray-tracer simulation (solid black curve), light amplitude envelope (solid red curve) and
inferred shading periods (horizontal grey lines). Time resolution is 1 minute. One of the
shading periods is extended to (C) to indicate actual obstruction of the light ray. (F)
Spatiotemporal dynamics of shaded periods on a leaf shown in blue in (A). All triangles
were ranked according to their centre, each line corresponds to a shaded period. Red lines
indicate shaded periods from the pattern shown in (E). (G) Two-state Markov model: for
switching on (from shaded to sunlit) with rate A\°"(¢, k) and for switching off (from sunlit
to shaded) with a rate \°f(¢, h).
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Figure 2: Maximum likelihood estimation for Model 1. (A) A realisation of a two-state
Markov model with A\°"(t) = \°f(¢) = 3+0.05¢ —0.075(¢t —6)2. (B) The shape of switching
rate, showing convergence of the MLE to the true value with an increasing number n of

realisations.
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Figure 3: Illustration of the notation for Model 2. Shown are the four possible combi-
nations of states at the beginning and end of the interval [0,T]. At time ¢t = 0 sunlit is
indicated by x; < 0 and shaded by xz; > 0; time ¢t = T sunlit is indicated by y, > T
and shaded by y,, < T. The different sections are colored to indicate how they contribute
to the (log) likelihood functions: red denotes contribution to on-switching functions (7,9)
and yellow to off-switching function (8,10).
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Figure 4: Relationship between the two-state Markov model and canopy physiology: (i)
Reconstructed plants (A-K), (ii) cumulative leaf area index as a function of depth (bottom
left), (iii) principal component analysis of fitted parameters, and (iv) relationship between
the first principal component and LAI. Images of original plant (A); original plant rotated
90° (B), 180° (C), and 270° (D); original plant randomly rotated and positioned at dis-
tances 200mm (E), 150mm (F), 125mm (G), and 100mm (H); replica of a plant from the
same line (I); plants from two different lines (J and K). For more detailed description of
the lines used and information on the trial see Burgess et al. (2015).
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Figure 5: Results comparing ray tracer and emulator. Analysis and parameter values are
for the reconstructed canopy shown in Figure 4 H. (A) Direct light pattern (left column)
vs emulator (right column) for patches at top (i,ii), middle (iii, iv) and bottom (v, vi) of
the canopy. Daily light intercepted per unit leaf area at each patch calculated from light
patterns from obtained using the ray tracer (B) and generated by the emulator (C).

26


https://doi.org/10.1101/147553

