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Abstract 20 
Background: Investigators often interpret genome-wide data by analyzing the expression levels of genes 21 
within pathways. While this within-pathway analysis is routine, the products of any one pathway can affect 22 
the activity of other pathways. Past efforts to identify relationships between biological processes have 23 
evaluated overlap in knowledge bases or evaluated changes that occur after specific treatments. 24 
Individual experiments can highlight condition-specific pathway-pathway interactions; however, 25 
constructing a complete network of such relationships across many conditions requires analyzing results 26 
from many studies.  27 
Results: We developed the PathCORE software to predict global pathway-pathway interactions, i.e. 28 
those evident across a broad data compendium. PathCORE starts with the results of robust feature 29 
construction algorithms, which are now being developed and applied to transcriptomic data. PathCORE 30 
identifies pathways grouped together in features more than expected by chance as functionally co-31 
occurring. We performed example analyses using PathCORE for a microbial compendium for which 32 
eADAGE features were already available and a TCGA dataset of 33 cancer types that we analyzed via 33 
NMF. PathCORE recapitulated previously described pathway-pathway interactions and suggested 34 
additional edges with biological plausibility that still remain to be explored. The software also identifies 35 
genes associated with each relationship and includes a user-installable web interface where users can (1) 36 
visualize the resulting network and (2) review the expression levels of associated genes in the original 37 
data, which helps biologists using the PathCORE software design experiments to test the relationships 38 
that were identified. 39 
Conclusions: PathCORE is a hypothesis generation tool that identifies co-occurring pathways from the 40 
results of unsupervised analysis of the growing body of gene expression data. Software that steps 41 
beyond within-pathway relationships to between-pathway relationships can reveal levels of organization 42 
that have been less frequently considered. 43 
Keywords: gene expression; unsupervised feature construction; crosstalk; unsupervised, pathway 44 
interactions 45 
 46 
Background 47 

The number of publicly available genome-wide datasets is growing rapidly [1]. High-throughput 48 
sequencing technologies that measure gene expression quickly with high accuracy and low cost continue 49 
to enable this growth [2]. Expanding public data repositories have laid the foundation for computational 50 
methods that consider entire compendia of gene expression data to extract biological patterns [3]. These 51 
patterns may be difficult to detect in measurements from a single experiment. Unsupervised approaches, 52 
which identify important signals in the data without relying on prior knowledge, may discover new 53 
expression modules [4, 5].  54 

 55 
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Feature extraction methods are a class of unsupervised algorithms that can reveal unannotated 56 
biological processes from genomic data [5]. Features can be constructed as representative “meta-genes”: 57 
each feature has a set of influential genes, and these genes suggest the biological or technical pattern 58 
captured by the feature. However, these features are often designed to be independent or may be 59 
considered in isolation [6, 7]. When examined in the context of knowledgebases such as the Kyoto 60 
Encyclopedia of Genes and Genomes (KEGG) [8], most features are significantly enriched for more than 61 
one pathway [5]; it follows then that such features can be described by a set of functionally related 62 
pathways. We introduce the PathCORE (pathway co-occurrence relationships) software, an approach for 63 
connecting features learned from the data to known biological gene sets, e.g. pathways from KEGG or 64 
other databases.  65 

 66 
PathCORE offers a data-driven approach for predicting and visualizing global pathway-pathway 67 

interactions. Interactions are drawn based on the sets of pathways, annotated in a resource of gene sets, 68 
occurring within constructed features. To avoid simply discovering relationships between gene sets that 69 
share many genes, PathCORE incorporates an optional pre-processing step that corrects for a situation 70 
Donato et al. refer to as pathway crosstalk [9]. Donato et al. recognized that pathways with shared genes 71 
were often discovered together due to overlapping genes in gene sets. We implement Donato et al.’s 72 
maximum impact estimation in a Python package separate from, but used in, PathCORE (PyPI: crosstalk-73 
correction). With this correction, the PathCORE software allows a user to examine how pathways 74 
influence each other in a biological system based on how genes are expressed as opposed to which 75 
genes are shared.  76 

 77 
We demonstrate PathCORE by applying the software to both a microbial and a cancer 78 

expression dataset. Briefly, for the microbial analysis we created a network of KEGG pathways from 79 
recently described ensemble Analysis using Denoising Autoencoders for Gene Expression (eADAGE) 80 
models trained on a compendium of Pseudomonas aeruginosa (P. aeruginosa) gene expression data [5]. 81 
We provide a live demo of the PathCORE web application for the P. aeruginosa KEGG network at 82 
pathcore-demo.herokuapp.com/PAO1. PathCORE can be used with other feature construction 83 
approaches as well. For example, we perform PathCORE analysis of the same P. aeruginosa 84 
compendium using non-negative matrix factorization (NMF) on expression datasets [10, 11]. We also 85 
demonstrate PathCORE’s use in large cancer genomics data by creating a Pathway Interaction Database 86 
(PID) [12] pathway-pathway network of NMF features extracted from a The Cancer Genome Atlas 87 
(TCGA) pan-cancer dataset of 33 different tumor types [13]. In these applications, PathCORE 88 
successfully discerns biologically important pathway-pathway interactions from the constructed features.  89 
 90 
Related work 91 

Most published approaches that capture pathway-pathway interactions from gene expression 92 
experiments were designed for disease-specific, case-control studies [14, 15]. Pham et al. developed 93 
Latent Pathway Identification Analysis to find pathways that exert latent influences on transcriptionally 94 
altered genes [16]. Under this approach, the transcriptional response profiles for a binary condition 95 
(disease/normal), in conjunction with the pathway specified in the KEGG and functions in Gene Ontology 96 
(GO), are used to construct a pathway-pathway network where key pathways are identified by their 97 
network centrality scores [16, 17]. Similarly, Pan et al. measured the betweenness centrality of pathways 98 
in disease-specific genetic interaction and coexpression networks to identify those most likely to be 99 
associated with bladder cancer risk [18]. These methods captured pathway relationships associated with 100 
a particular disease state. Our approach diverges from such studies in its intent: PathCORE finds 101 
pathway relationships within a biological system that are discernable in features constructed from diverse 102 
transcriptomic data--not necessarily specific to any one condition or disease. 103 

 104 
  Fewer publications to date have focused on the construction of a general pathway-pathway 105 
interaction network. Those that did determined the absence or presence of a pathway-pathway interaction 106 
based on shared genes between gene sets, protein-protein interactions or other curated knowledgebases 107 
[19-22]. A function-based method of constructing a global network, detailed by Li et al., relied on publicly 108 
available protein interaction data to determine pathway-pathway interactions [21]. Two pathways were 109 
connected in the network if the number of protein interactions between the pair was significant with 110 
respect to the computed background distribution. Networks of this kind rely on databases of interactions, 111 
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though they can be subsequently used for pathway-centric analyses of transcriptomic data [21, 23]. Glass 112 
and Girvan described another network structure that relates functional terms in GO based on shared 113 
gene annotations [24]. In contrast with this approach, PathCORE specifically removes gene overlap in 114 
pathway definitions before they are used to build a network. Our software reports pathway-pathway 115 
connections from global gene expression patterns, as opposed to protein-protein interactions, while 116 
controlling for the fact that some pathways share genes. 117 
  118 

 119 
Figure 1 The approach implemented in PathCORE to construct a pathway co-occurrence network from 120 
an expression compendium. 121 
(a) A user-selected feature extraction method is applied to expression data. Such methods assign each 122 
gene a weight, according to some distribution, that represents the gene’s contribution to the feature. The 123 
set of genes that are considered highly representative of a feature’s function is referred to as a feature’s 124 
gene signature. The gene signature is user-defined and should be based on the weight distribution 125 
produced by the unsupervised method of choice. In the event that the weight distribution contains both 126 
positive and negative values, a user can specify criteria for both a positive and negative gene signature. A 127 
test of pathway enrichment is applied to identify corresponding sets of pathways from the gene 128 
signature(s) in a feature. We consider pathways significantly overrepresented in the same feature to co-129 
occur. Pairwise co-occurrence relationships are used to build a network. Each edge is weighted by the 130 
number of features containing both pathways.  131 
(b) N permuted networks are generated to assess the statistical significance of a co-occurrence relation 132 
in the network. Two invariants are maintained during a permutation: (1) pathway side-specificity (positive 133 
and negative, when applicable) and (2) the number of distinct pathways in a feature’s (side-specific) gene 134 
signature. 135 
(c) For each edge observed in the co-occurrence network, we compare its weight against the weight 136 
distribution generated from N (default: 10,000) permutations of the network. Edges with a q-value below 137 
alpha (default: 0.05) are kept in the final co-occurrence network. 138 
 139 
Implementation 140 

PathCORE identifies functional links between known pathways from the output of feature 141 
construction methods applied to gene expression data. The result is a network of pathway co-occurrence 142 
relationships that represents the grouping of biological processes or pathways within those features. We 143 
correct for gene overlap in the pathway annotations to avoid identifying co-occurrence relationships 144 
driven by shared genes. Additionally, PathCORE implements a permutation test for evaluating and 145 
removing edges—pathway relationships—in the resulting network that cannot be distinguished from a null 146 
model of random associations. Our software is written in Python and pip-installable (PyPI package name: 147 
pathcore). Each of the functions that we describe here can be used independently; however, we expect 148 
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most users to employ the complete approach for interpreting pathways shared in extracted features (Fig. 149 
4). 150 
 151 
Data organization 152 
PathCORE requires the following inputs: 153 

(1) A weight matrix that connects each gene to each feature. We expect that this will be generated 154 
by applying a feature construction algorithm to a compendium of gene expression data. In 155 
principal component analysis (PCA), this is the loadings matrix [25]; in independent component 156 
analysis (ICA), the unmixing matrix [26]; in ADAGE or eADAGE it is termed the weight matrix [5, 157 
7]; in NMF it is the matrix W, where the NMF approximation of the input dataset A is A ~ WH [10]. 158 
The primary requirements are that features must contain the full set of genes in the compendium 159 
and genes must have been assigned weights that quantify their contribution to a given feature. 160 
Accordingly, a weight matrix will have the dimensions n x k, where n is the number of genes in 161 
the compendium and k is the number of features constructed. 162 

(2) A gene signature definition. To construct a pathway co-occurrence network, the weight matrix 163 
must be processed into gene signatures by applying a threshold to weights. Subsequent pathway 164 
overrepresentation will be determined by the set(s) of genes within these signatures. These are 165 
often the weights at the extremes of the distribution. How gene weights are distributed will 166 
depend on the user’s selected feature construction algorithm; because of this, a user must 167 
specify the criterion for including a gene in a gene signature. PathCORE permits rules for a single 168 
gene signature or both a positive and a negative gene signature. The use of 2 signatures may be 169 
appropriate when the feature construction algorithm produces positive and negative weights, the 170 
extremes of which both characterize a feature (e.g. PCA, ICA, ADAGE or eADAGE). 171 

(3) A list of pathway definitions, where each pathway contains a set of genes (e.g. KEGG 172 
pathways, PID pathways, GO biological processes). 173 

 174 
Weight matrix construction and signature definition 175 

In practice, users can obtain a weight matrix from many different methods. For the purposes of 176 
this paper, we demonstrate generality by constructing weight matrices via eADAGE and NMF. 177 
 178 
eADAGE  179 

eADAGE is an unsupervised feature construction algorithm developed by Tan et al. [5] that uses 180 
an ensemble of neural networks (an ensemble of ADAGE models) to capture biological signatures 181 
embedded in the expression compendium. By initializing eADAGE with different random seeds, Tan et al. 182 
produced 10 eADAGE models that each extracted k=300 features from the compendium of genome-scale 183 
P. aeruginosa data. Because PathCORE supports the aggregation of co-occurrence networks created 184 
from different models on the same input data, we use all 10 of these models in the PathCORE analysis of 185 
eADAGE models (doi:10.5281/zenodo.583172).  186 

 187 
Tan et al. refers to the features constructed by eADAGE as nodes. They are represented as a 188 

weight matrix of size n x k, where n genes in the compendium are assigned positive or negative gene 189 
weights, according to a standard normal distribution, for each feature k. Tan et al. determined that the 190 
gene sets contributing the highest positive or highest negative weights (+/- 2.5 standard deviations) to a 191 
feature described gene expression patterns across the compendium, and thus referred to the gene sets 192 
as signatures. Because a feature’s positive and negative gene signatures did not necessarily correspond 193 
to the same biological process or function, Tan et al. analyzed each of these sets separately [5]. Tan et 194 
al.’s gene signature rules are specified as an input to the PathCORE analysis as well.  195 
 196 
NMF 197 
We also constructed NMF models for the P. aeruginosa dataset and the TCGA pan-cancer dataset. 198 
Given an NMF approximation of A ~ WH [10], where A is the input expression dataset of size n x s (n 199 
genes by s samples), NMF aims to find the optimal reconstruction of A by WH such that W clusters on 200 
samples (size n x k) and H clusters on genes (size k x s). We set k to the desired number of features, 201 
k=300, and use W as the input weight matrix for the PathCORE software. We found that the gene weight 202 
distribution of an NMF feature is right-skewed and (as the name suggests) non-negative (Fig. S1). In this 203 
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case, we defined the gene signature to be the set of genes with weights 2.0 standard deviations above 204 
the mean weight of each feature.  205 
Construction of a pathway co-occurrence network 206 

We employ a Fisher’s exact test to determine the pathways significantly associated with each 207 
gene signature. When considering significance of a particular pathway, the two categories of gene 208 
classification are as follows: (1) presence or absence of the gene in the gene signature and (2) presence 209 
or absence of the gene in the pathway definition. We specify a contingency table for each pathway and 210 
calculate the p-value. After false discovery rate (FDR) correction, pathways with a q-value of less than 211 
alpha (default: 0.05) are considered significantly enriched. Two pathways co-occur, or share an edge in 212 
the pathway co-occurrence network, if they are both overrepresented in a gene signature. The number of 213 
times such a pathway pair is present over all features corresponds to its edge weight in the pathway-214 
pathway network (Fig. 1a). 215 
 216 
Permutation test 217 

The network that results from the preceding method is densely connected, and many edges may 218 
be spurious. To remove correlations that cannot be distinguished from random pathway associations, we 219 
define a statistical test that determines whether a pathway-pathway relationship appearing x times in a k--220 
feature model is unexpected under the null hypothesis—the null hypothesis being that the relationship 221 
does not appear more often than it would in a random network. We create N weighted null networks by 222 
permuting overrepresented pathways across the model’s features while preserving the number of 223 
pathways for which each feature is enriched. In the case where we have positive and negative gene 224 
signatures, overrepresentation can be positive or negative. Because certain pathways may display bias 225 
toward one side—for example, a pathway may be overrepresented more often in features’ positive gene 226 
signatures—we perform the permutation separately for each side. The N random networks produce the 227 
background weight distribution for every observed edge; significance can then be assessed by comparing 228 
the true (observed) edge weight against the null (Fig. 1b). Pathway-pathway relationships with a q-value 229 
above alpha (default: 0.05) are considered insignificant by this statistical test and are removed from the 230 
network of co-occurring pathways (Fig. 1c).  231 

 232 
Because we can derive the expected weight of every edge from the N random networks, we can 233 

divide the observed edge weights by their respective expected weights (divide by 1 if the edge is not 234 
present in any of the N permutations). Edges in the final network are weighted by their odds ratios.  235 
 236 
Gene overlap correction 237 

Pathways can co-occur because of shared genes (Fig. 2a, b, d). Though some approaches use 238 
the overlap of genes to identify connected pathways, we sought to capture pairs of pathways that 239 
persisted even when this overlap was removed. The phenomenon of observing enrichment of multiple 240 
pathways due to gene overlap has been previously termed as “crosstalk,” and Donato et al. have 241 
developed a method to correct for it [9]. Due to confusion around the term, we refer to this as overlapping 242 
genes in this work, except where specifically referencing Donato et al. Their approach, called maximum 243 
impact estimation, begins with a membership matrix indicating the original assignment of multiple genes 244 
to multiple pathways. It uses expectation maximization to estimate the pathway in which a gene 245 
contributes its greatest predicted impact (its maximum impact) and assigns the gene only to this pathway 246 
[9]. This provides a set of new pathway definitions that no longer share genes (Fig. 2c, e).  247 

 248 
We provide an implementation of Donato et al.’s maximum impact estimation as a Python 249 

package separate from PathCORE so that it is available for any pathway analyses (PyPI package name: 250 
crosstalk-correction). The procedure is written using NumPy functions and data structures, which allows 251 
for efficient implementation of array and matrix operations in Python [28]. In PathCORE, overlapping 252 
genes are addressed before pathway overrepresentation analysis so that the resulting pathway co-253 
occurrence network identifies interactions that are not driven by gene overlap. We incorporate this 254 
correction into the PathCORE workflow by default; however, users can choose to disable it as well. 255 
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 256 
Figure 2 Correcting for gene overlap results in a sparser pathway co-occurrence network.  257 
(a) The KEGG pathway annotations for the sulfonate transport system are a subset of those for sulfur 258 
metabolism. 12 genes annotated to the sulfonate transport system are also annotated to sulfur 259 
metabolism. (b) Without applying the overlap correction procedure, 25 of the genes in the positive and 260 
negative gene signatures of the eADAGE feature “Node 11” are annotated to sulfur metabolism--of those, 261 
8 genes are annotated to the sulfonate transport system as well. (c) All 8 of the overlapping genes are 262 
mapped to the sulfur metabolism pathway after overlap correction.  263 
(d) A co-occurrence network built without applying the overlap correction procedure will report co-264 
occurrence between the sulfonate transport system and sulfur metabolism, whereas (e) no such relation 265 
is identified after overlap correction.  266 

 267 
PathCORE network visualization and support for experimental follow-up 268 

As an optional step, a Flask application can be set up for each PathCORE network. Metadata 269 
gathered from the analysis are saved to TSV files, and we use a script to populate collections in a 270 
MongoDB database with this information. The co-occurrence network is rendered using the D3.js force-271 
directed graph layout [29]. Users can select a pathway-pathway relationship in the network to view a new 272 
page containing details about the genes annotated to one or both pathways (Fig. 3a).  273 

 274 
We created a web interface for deeper examination of interactions present in the pathway co-275 

occurrence network. When presented with a visualization of the PathCORE network, our collaborators 276 
suggested that additional support for determining potential gene targets and experimental conditions 277 
would help them design experiments to validate novel relationships. The details we included in an edge-278 
specific page address their suggestion by (1) highlighting up to twenty genes--annotated to either of the 279 
two pathways in the edge--contained in features that also contain this edge, after controlling for the total 280 
number of features that contain each gene, and (2) displaying the expression levels of these genes in 281 
each of the fifteen samples where they were most and least expressed. The quantity of information 282 
(twenty genes, thirty samples total) we choose to include in an edge page is intentionally limited so that 283 
users can review it in a reasonable amount of time. 284 

 285 
To implement the functionality in (1), we computed an odds ratio for every gene annotated to one 286 

or both pathways in the edge. The odds ratio measures how often we observe a feature enriched for both 287 
the given gene and the edge of interest relative to how often we would expect to see this occurrence. We 288 
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calculate the proportion of observed cases and divide by the expected proportion--equivalent to the 289 
frequency of the edge appearing in the model’s features. 290 

 291 
Let K be the number of features from which the PathCORE network was built. KG is the number of 292 

features that contain gene G (i.e. G is in feature K’s gene signature), KE the number of features that 293 
contain edge E (i.e. the two pathways connected by E are overrepresented in feature K), and KG & E the 294 
number of features that contain both gene G and edge E. The odds ratio is computed as follows: 295 

Observed = KG & E / KG 296 
Expected = K E / K 297 

Odds ratio = Observed / Expected 298 
An odds ratio above 1 suggests that the gene is more likely to appear in features enriched for this pair of 299 
pathways: we rank the genes by their odds ratio to highlight genes most observed with the co-occurrence 300 
relationship. 301 
 302 

The information specified in (2) requires an “expression score” for every sample. A sample 303 
expression score is calculated using the twenty genes we selected in goal (1): it is the average of the 304 
normalized gene expression values weighted by the normalized gene odds ratio. Selection of the most 305 
and least expressed samples is based on these scores. We use two heatmaps to show the twenty genes’ 306 
expression values in each of the fifteen most and least expressed samples (Fig. 3b). 307 

 308 
For each sample in an edge page, a user can examine how the expression values of the edge’s 309 

twenty genes in that sample compare to those recorded for all other samples in the dataset that are from 310 
the same experiment (Fig. 3c). Genes that display distinct expression patterns under a specific setting 311 
may be good candidates for follow-up studies.  312 

 313 

 314 
Figure 3 A web application used to analyze pathway-pathway interactions in the eADAGE-based, P. 315 
aeruginosa KEGG network. 316 
(a) A user clicks on an edge (a pathway-pathway interaction) in the network visualization and (b) is 317 
directed to a page that displays expression data from the original transcriptomic dataset specific to the 318 
selected edge (goo.gl/Hs5A3e). The expression data is visualized as two heatmaps that indicate the 319 
fifteen most and fifteen least expressed samples corresponding to the edge. To select the “most” and 320 
“least” expressed samples, we assign each sample a summary “expression score.” The expression score 321 
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is based on the expression values of the genes (limited to the top twenty genes with an odds ratio above 322 
1) annotated to one or both of the pathways. Here, we show the heatmap of least expressed samples 323 
specific to the [Phosphate transport - Type II general secretion] relationship. (c) Clicking on a square in 324 
the heatmap directs a user to an experiment page (goo.gl/KYNhwB) based on the sample corresponding 325 
to that square. A user can use the experiment page to identify whether the expression values of genes 326 
specific to an edge and a selected sample differ from those recorded in other samples of the experiment. 327 
In this experiment page, the first three samples (labeled in black) are P. aeruginosa “baseline” replicates 328 
grown for 72 h in drop-flow biofilm reactors. The following three samples (labeled in blue) are P. 329 
aeruginosa grown for an additional 12 h (84 h total). Labels in blue indicate that the three 84 h replicates 330 
are in the heatmap of least expressed samples displayed on the [Phosphate transport – Type II general 331 
secretion] edge page. 332 
 333 
Results 334 
Interpreting features extracted by unsupervised clustering algorithms with PathCORE. 335 

Networks modeling the relationships between curated processes in a biological system offer a 336 
means for developing new hypotheses about which pathways influence each other and when. PathCORE 337 
creates a network of globally co-occurring pathways based on features observed in a compendium of 338 
gene expression data. Biological patterns in the data are extracted by a feature construction algorithm 339 
such as PCA [30], ICA [6], NMF [10], GWCoGAPS [4], or eADAGE [5]. These algorithms capture sources 340 
of variability in the data that induce coordinated changes in gene expression as features. The genes that 341 
contribute the most to these features covary. This provides a data-driven categorization of the biological 342 
system that can then be analyzed at the pathway-level by identifying annotated pathways 343 
overrepresented in each feature. 344 
 345 

 346 
Figure 4 The PathCORE software analysis workflow. 347 
(a) A user applies a feature construction algorithm to a transcriptomic dataset of genes-by-samples. The 348 
features constructed must preserve the genes in the dataset and assign weights to each of these genes 349 
according to some distribution. (b) Inputs required to run the complete PathCORE analysis workflow. The 350 
features constructed are stored in a weight matrix and the user-defined gene signature rules--up to 2 for 351 
both a positive and negative gene signature--should be based on the algorithm’s specified feature weight 352 
distribution. A list of pathway definitions will be used to interpret the features constructed and build a 353 
pathway-pathway co-occurrence network. (c) Methods in the PathCORE analysis workflow (capitalized 354 
and in purple), can be employed independently of each other so long as the necessary input(s) are 355 
provided.  356 
 357 
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The methods we implement in PathCORE can be used independently of each other (Fig. 4). 358 
Here, we present analyses that can be produced by applying the full PathCORE pipeline to models 359 
created from a transcriptomic compendium by an unsupervised feature construction algorithm. Input 360 
pathway definitions are “overlap-corrected” (correcting for gene overlap between definitions) for each 361 
feature before enrichment analysis. An overlap-corrected, weighted pathway co-occurrence network is 362 
built by connecting the pairs of pathways that are overrepresented in features of the model. Finally, we 363 
remove edges that cannot be distinguished from a null model of random associations based on the 364 
results of a permutation test. 365 
 366 
  PathCORE also offers support for users interested in experimentally verifying a pathway-pathway 367 
relationship (Fig. 3). We provide the code for setting up a web application where the network can be 368 
visualized and its edges analyzed using the original input information. A pathway-pathway edge page 369 
contains 2 heatmaps that display the samples in the compendium where the underlying genes are most 370 
and least expressed. When available, information about each sample can be included on the page so that 371 
users can refer to the conditions in which the expression patterns occurred (Fig. 3c). 372 
 373 

 374 
Figure 5 eADAGE features constructed from publicly available P. aeruginosa expression data describe 375 
known KEGG pathway relationships. 376 
(a) The glycolysis/gluconeogenesis, pentose phosphate, and Entner-Doudoroff pathways share common 377 
functions related to glucose catabolism . 378 
(b) Organophosphate and inorganic phosphate transport- and metabolism-related processes frequently 379 
co-occur with bacterial secretion systems; in particular, we highlight the pairwise relationships between 380 
type II secretion and the phosphate-related processes. 381 
(c) Pathways involved in the catabolism of sulfur-containing molecules, taurine (NitT/TauT family 382 
transport) and methionine (D-Methionine transport), and the general sulfur metabolism process are 383 
functionally linked. 384 
(d) We observe pairwise relationships between zinc transport, iron transport, and the MacAB-TolC 385 
transporter. 386 
 387 
PathCORE identifies interactions between KEGG pathways in P. aeruginosa using features extracted 388 
from publicly available P. aeruginosa gene expression experiments  389 

We used PathCORE to create a network of co-occurring pathways out of the expression 390 
signatures extracted from a P. aeruginosa compendium. For every feature, overlap correction was 391 
applied to the P. aeruginosa KEGG pathway annotations and overlap-corrected annotations were used in 392 
the overrepresentation analysis. PathCORE aggregates multiple networks by taking the union of the 393 
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edges across all networks and summing the weights of common pathway-pathway connections. We do 394 
this to emphasize the pathway-pathway co-occurrence relationships that are more stable [31] —that is, 395 
the relationships that appear across multiple models. Finally, we removed edges in the aggregate 396 
network that were not significant after FDR correction when compared to the background distributions 397 
generated from 10,000 permutations of the network. We applied PathCORE to features built by both NMF 398 
(Fig. S2) and eADAGE (discussed below). The pathway-pathway network generated by NMF [27] is 399 
smaller than that generated by eADAGE; that is, there are fewer pathway-pathway connections in the 400 
network. It is possible that this is due to a difference in the stability of the results from the two algorithms 401 
or the comprehensiveness of the features extracted by each approach. eADAGE includes an ensemble 402 
step that improves model consistency. The eADAGE authors also observed that models constructed by 403 
this ensemble procedure also more comprehensively captured pathways than non-ensemble models [5]. 404 
The PathCORE analysis of a 300 feature NMF decomposition of the P. aeruginosa compendium 405 
produced a KEGG network that is similar in size to the PID network (Fig. 6, S2). 406 
 407 

The eADAGE co-occurrence network identifies a number of pathway-pathway interactions that 408 
have been previously characterized (Fig. 5). This suggests that PathCORE can capture functional links 409 
between biological pathways. Three glucose catabolism processes co-occur in the network: glycolysis, 410 
pentose phosphate, and the Entner-Doudoroff pathway (Fig. 5a). We also found a cluster relating 411 
organophosphate and inorganic phosphate transport- and metabolism-related processes (Fig. 5b). 412 
Notably, phosphate uptake and acquisition genes are directly connected to the hxc genes that encode a 413 
type II secretion system. This Hxc secretion system is responsible for the secretion of alkaline 414 
phosphatases, which are phosphate scavenging enzymes [32, 33] and the phosphate binding DING 415 
protein [34]. Furthermore, alkaline phosphatases, DING and the hxc genes are regulated by the 416 
transcription factor PhoB which is most active in response to phosphate limitation. As shown in Fig. 5c, 417 
we also identified linkages between two pathways involved in the catabolism of sulfur-containing 418 
molecules, taurine and methionine, and the general sulfur metabolism process. Other connections 419 
between pathways involved in the transport of iron (ferrienterobactin binding) [35] and zinc (the znu 420 
uptake system [36]) were identified (Fig. 5d). Interestingly, genes identified in the edge between the zinc 421 
transport and MacAB-TolC pathways include the pvd genes involved in pyoverdine biosynthesis and 422 
regulation, a putative periplasmic metal binding protein, as well as other components of an ABC 423 
transporter (genes PA2407, PA2408, and PA2409 at goo.gl/bfqOk8) [37].  424 

 425 
We used the PathCORE web application for the eADAGE KEGG P. aeruginosa network 426 

(pathcore-demo.herokuapp.com/PAO1) to analyze the connection between the phosphate transport 427 
system and a type II general secretion system pathway (Fig. 3a, b; edge page at goo.gl/Hs5A3e). The 428 
sixteen genes reported on the edge page all have odds ratios above 34; these genes are at least 34 429 
times more likely to appear in the gene signatures in which both of these pathways are overrepresented. 430 
Such genes may help to reveal the biological basis of the co-occurrence relationship. In this case, the 431 
results suggest that there may be some overlap between machinery for transporting phosphate into the 432 
cell and secreting substances out of the cell via type II secretion. Alternatively, the two processes may be 433 
mechanistically separate but coregulated such that phosphate scavenging molecules may be secreted by 434 
type II secretion coincidentally to aid in phosphate acquisition. The heatmap of the fifteen least expressed 435 
samples shows that the pstB and pstS genes, annotated to the phosphate transport system, are 436 
consistently expressed higher relative to the other genes in the edge for these samples. The pstS, pstC, 437 
pstA, and pstB genes are proximal of the phosphate-specific transport (Pst) operon that encodes a high-438 
affinity orthophosphate transport system [38]. Future studies will examine whether deletion of the Pst 439 
phosphate system impairs secretion by the type II secretion system.  440 

 441 
To assess whether the relationships identified in the pathway analysis paralleled gene expression 442 

patterns in the context of a published experiment, we looked across experiments to determine if the 443 
genes contained in the edge were co-regulated. As an example of the types of relationships that we 444 
observed, we present a single experiment, E-GEOD-22164 from Folsom et al. (Fig. 3c; experiment page 445 
at goo.gl/KYNhwB), that contains data from two sample types with three replicates each [39]. One set of 446 
samples, referred to as the baseline, is of P. aeruginosa grown for 72 h in drop-flow biofilm reactors. The 447 
other is of P. aeruginosa grown for an additional 12 h (84 h total). We found that three of the samples with 448 
the lowest expression of the genes within the shared edge were samples from the later timepoint. All six 449 
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of these samples (three replicates each) are displayed in the experiment page. The sixteen edge genes 450 
showed differential expression between the 72 h and 84 h timepoints. Particularly in the case of pstA and 451 
pstC, the baseline replicates had normalized expression values near the center of the range from the 452 
compendium whereas the 84 h samples had expression levels at the low end of the range. This suggests 453 
that genes involved in both phosphate transport and type II secretion are less expressed at 84 h 454 
compared to 72 h. Future studies will determine if this is due to a physiological change in the biofilm cells 455 
at the late time point such that phosphate demands were lower or different sources of phosphate become 456 
available.  457 

 458 

 459 
Figure 6 PID pathway-pathway interactions discovered in NMF features constructed from the TCGA pan-460 
cancer gene expression dataset. 461 
(a) Pathways in this module are responsible for cell cycle progression. 462 
(b) Wnt signaling interactions with nuclear Beta-catenin signaling, FGF signaling, and BMP signaling 463 
have all been linked to cancer progression. 464 
(c) Here, we observe functional links between pathways responsible for angiogenesis and those 465 
responsible for cell proliferation. 466 
(d) The VEGF-VEGFR pathway interacts with the S1P3 pathway through Beta3 integrins. 467 
(e) This module contains many interactions related to immune system processes. The interaction cycle 468 
formed by T-Cell Receptor (TCR) signaling in naïve CD4+ T cells and IL-12/IL-4 mediated signaling 469 
events, outlined in yellow, is one well-known example. The cycle in blue is formed by the ATF2, NFAT, 470 
and AP1 pathways; pairwise co-occurrence of these three transcription factor networks may suggest that 471 
dysregulation of any one of these pathways can trigger variable oncogenic processes in the immune 472 
system. 473 
 474 
PathCORE identifies interactions among PID pathways from the TCGA pan-cancer gene expression 475 
dataset.  476 

PathCORE is not specific to a certain dataset or organism. We also constructed a 300-feature 477 
NMF model of TCGA pan-cancer gene expression, which is comprised of 33 different cancer-types from 478 
various organ sites, and applied the PathCORE software to those features. We chose NMF because it 479 
has been used in previous studies to identify biologically relevant patterns in transcriptomic data [10] and 480 
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by many studies to derive molecular subtypes [40-42]. The 300 NMF features were analyzed using 481 
overlap-corrected PID pathways, a collection of 196 human cell signaling pathways with a particular focus 482 
on processes relevant to cancer [12].  483 

 484 
We found that PathCORE detects modules of co-occurring pathways consistent with our current 485 

understanding of cancer-related interactions (Fig. 6). Importantly, because the connections were 486 
constructed from many different cancer-types, these modules may represent pathway-pathway 487 
interactions present in a large proportion of all tumors and may be good candidates for targeted 488 
treatments. 489 

 490 
For example, a module composed of a FoxM1 transcription factor network, an E2F transcription 491 

factor network, Aurora B kinase signaling, ATR signaling, PLK1 signaling, and members of the Fanconi 492 
anemia DNA damage response pathway are densely connected (Fig 6a). When two pathways share an 493 
edge in the co-occurrence network, they are overrepresented together in one or more features. The 494 
connections in this module recapitulate well known cancer hallmarks including cellular proliferation 495 
pathways and markers of genome instability, such as the activation of DNA damage response pathways 496 
[43]. We found that several pairwise pathway co-occurrences correspond with previously reported 497 
pathway-pathway interactions [44-46]. We also observed a hub of pathways interacting with Wnt signaling 498 
(Fig. 6b). In our network, pathways that co-occur with Wnt signaling include the regulation of nuclear 499 
Beta-catenin signaling, FGF signaling, and BMP signaling. The Wnt and BMP pathways are functionally 500 
integrated in biological processes that contribute to cancer progression [47]. Additionally, Wnt/Beta-501 
catenin signaling is a well-studied regulatory system, and the effects of mutations in Wnt pathway 502 
components on this system have been linked to tumorigenesis [48]. Wnt/Beta-catenin and FGF together 503 
influence the directional migration of cancer cell clusters [49].  504 

 505 
Two modules in the network relate to angiogenesis, or the formation of new blood vessels (Fig. 506 

6c, d). Tumors transmit signals that stimulate angiogenesis because a blood supply provides the 507 
necessary oxygen and nutrients for their growth and proliferation. One module relates angiogenesis 508 
factors to cell proliferation. This module connects the following pathways: PDGFR-beta signaling, FAK-509 
mediated signaling events, VEGFR1 and VEGFR2-mediated signaling events, nuclear SMAD2/3 510 
signaling regulation, and RB1 regulation (Fig. 6c). These functional connections are known to be involved 511 
in tumor proliferation [50-52]. The other module indicates a direct relationship by which the VEGF 512 
pathway interacts with the S1P3 pathway through Beta3 integrins (Fig. 6d). S1P3 is a known regulator of 513 
angiogenesis [53], and has been demonstrated to be associated with treatment-resistant breast cancer 514 
and poor survival [54]. Moreover, this interaction module has been observed to promote endothelial cell 515 
migration in human umbilical veins [55]. Taken together, this independent module may suggest a distinct 516 
angiogenesis process activated in more aggressive and metastatic tumors that is disrupted and regulated 517 
by alternative mechanisms [56].  518 

 519 
Finally, PathCORE revealed a large, densely connected module of immune related pathways 520 

(Fig. 6e). We found that this module contains many interactions that align with immune system 521 
processes. One such example is the well characterized interaction cycle formed by T-Cell Receptor 522 
(TCR) signaling in naïve CD4+ T cells and IL-12/IL-4 mediated signaling events [57-59]. At the same 523 
time, PathCORE predicts additional immune-related interactions. We observed a cycle between the three 524 
transcription factor networks: ATF-2, AP-1, and CaN-regulated NFAT-dependent transcription. These 525 
pathways can take on different, often opposing, functions depending on the tissue and subcellular 526 
context. For example, ATF-2 can be an oncogene in one context (e.g. melanoma) and a tumor 527 
suppressor in another (e.g. breast cancer) [60]. AP-1, comprised of Jun/Fos proteins, is associated with 528 
both tumorigenesis and tumor suppression due to its roles in cell survival, proliferation, and cell death 529 
[61]. Moreover, NFAT in complex with AP-1 regulates immune cell differentiation, but dysregulation of 530 
NFAT signaling can lead to malignant growth and tumor metastasis [62]. The functional association 531 
observed between the ATF-2, AP-1, and NFAT cycle together within the immunity module might suggest 532 
that dysregulation within this cycle has profound consequences for immune cell processes and may 533 
trigger variable oncogenic processes.  534 
 535 
Conclusions 536 
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 Unsupervised methods can identify previously undiscovered patterns in large collections of data. 537 
PathCORE overlays curated knowledge after feature construction to help researchers interpret 538 
constructed features in the context of existing knowledgebases. Specifically, PathCORE aims to clarify 539 
how expert-annotated gene sets work together from a gene expression perspective.  540 
 541 

Gene set analyses can be heavily confounded by shared genes. Some pathways may be 542 
observed together because they depend on each other, while others may simply contain some of the 543 
same genes. In PathCORE, pathway annotations undergo a procedure called maximum impact 544 
estimation, described in a publication by Donato et al., that maps each gene in each feature to the one 545 
pathway in which it has the greatest estimated impact [9]. We provide this overlap correction algorithm as 546 
a Python package (PyPI package name: crosstalk-correction) available under the BSD 3-Clause license. 547 
Though the algorithm had been described, no publicly available implementation existed. 548 

 549 
 PathCORE includes software for analysis and visualization and can be broadly applied to 550 
constructed features. We demonstrate PathCORE in two different contexts, analyses of the bacterium P. 551 
aeruginosa and human pan-cancer datasets, using two different feature construction methods (eADAGE 552 
and NMF). We provide a demonstration application containing the results of the eADAGE P. aeruginosa 553 
analysis for researchers to explore. For each edge, users can explore heatmaps displaying the 554 
expression levels of predicted driver genes in the original samples. This provides support for assessing 555 
computationally-derived relationships in experimental follow-ups.  556 
 557 
 Unsupervised analyses of genome-scale datasets that summarize key patterns in the data have 558 
the potential to improve our understanding of how a biological system operates via complex interactions 559 
between molecular processes. However, interpreting the features generated by unsupervised approaches 560 
is still challenging. PathCORE is a component of a software ecosystem that connects the features 561 
extracted from data to curated resources. The specific niche that PathCORE aims to fill is in revealing to 562 
researchers which gene sets most are most closely related to each other in machine learning-based 563 
models of gene expression, which genes play a role in this co-occurrence, and which conditions drive this 564 
interaction will help researchers most effectively employ these algorithms. 565 
 566 
Project name: PathCORE 567 
Project home page: https://pathcore-demo.herokuapp.com 568 
Archived version: https://github.com/greenelab/PathCORE-analysis/releases/tag/v1.0 (links to 569 
download .zip and .tar.gz files are provided here) 570 
Operating system: Platform independent 571 
Programming language: Python 572 
Other requirements: Python 3 or higher 573 
License: BSD 3-clause 574 
 575 
Declarations 576 
 577 
Ethics approval and consent to participate 578 
Not applicable 579 
 580 
Consent for publication 581 
Not applicable 582 
 583 
Availability of data and materials 584 
Files for each of the PathCORE networks described in the results are provided in Supplementary 585 
material. 586 
 587 
Data sets 588 
P. aeruginosa eADAGE models: doi:10.5281/zenodo.583172 589 
TCGA pan-cancer dataset: doi:10.5281/zenodo.56735 590 
 591 
Source code (all links are from https://github.com/)  592 
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PathCORE analysis: (greenelab/PathCORE-analysis/tree/v1.0) This repository contains all the scripts to 593 
reproduce the analyses described in this paper. The Python scripts here should be used as a starting 594 
point for new PathCORE analyses. Instructions for setting up a web application for a user’s specific 595 
PathCORE analysis are provided in this repository’s README. 596 
 597 
Overlap correction: (kathyxchen/crosstalk-correction/tree/v1.0.4) Donato et. al’s procedure for overlap 598 
correction [9] is a pip-installable Python package ‘crosstalk-correction’ that is separate from, but listed as 599 
a dependency in, PathCORE. It is implemented using NumPy [28].  600 
 601 
PathCORE methods: (greenelab/PathCORE/tree/v1.0) The methods included in the PathCORE analysis 602 
workflow (Fig. 4c) are provided as a pip-installable Python package ‘pathcore’. It is implemented using 603 
Pandas [62], SciPy (specifically, scipy.stats) [63], StatsModels [64], and the crosstalk-correction package.  604 
 605 
PathCORE demo application: (kathyxchen/PathCORE-demo/tree/v1.0) The project home page, pathcore-606 
demo.herokuapp.com provides links to 607 

(1) The web application for the eADAGE-based KEGG P. aeruginosa described in the first case 608 
study. 609 

(2) A view of the NMF-based PID pathway co-occurrence network described in the second case 610 
study. 611 

(3) A quick view page where users can temporarily load and visualize their own network file 612 
(generated from the PathCORE analysis). 613 
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