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 Abstract: 

Several growth factors, cytokines, hormones activate PI3K/Akt pathway. Akt is a key 

node in this pathway and activates different downstream paths. One such path is 

Akt/mTORC1/S6K1 that controls protein synthesis, cell survival, and proliferation. Here 

we show that a negative feedback controls activation of S6K1 through this pathway. Due 

to this negative feedback, a sustained phospho-Akt signal generates a transient pulse of 

phospho-S6K1. We have created a mathematical model for this circuit. Analysis of this 

model shows that the negative feedback acts as a filter and preferentially allows a signal, 

with sharp and faster rise of phospho-Akt, to induce pronounced activation of S6K1. It 

blocks an input with a fast oscillation of phospho-Akt to flow through this path. We show 

that this negative feedback leads to differential activation of S6K1 by Insulin and Insulin-

like Growth Factor 1. Such differential effect may explain the difference in the mitogenic 

effect of these two molecules.  
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Introduction: 

Signaling molecules, like hormones, growth factors, bind to specific cell surface 

receptors and activate one or more signaling pathways. Though receptors have high 

specificity, a cell has only a few canonical pathways to process external signals. This 

gives rise to the ‘hourglass’ structure of signaling network, where signals generated by 

different signaling molecules are processed by a handful of core pathways (1-2). 

Eventually, the hourglass widens again as signals propagated through core pathways lead 

to diverse cellular functions.  

 

Signaling pathways involve cascades of enzymatic reactions that covalently modify 

proteins and change their activity or stability. The concentrations, modification states, 

and activities of pathway molecules change with time. This temporal dynamics of 

pathway molecules carry the message given by an input signal and decide cellular 

response (3-5). Both identity and strength of the external signal affect this temporal 

dynamics (4). Temporal dynamics of pathway molecules also depend on the architecture 

of a pathway (4).  

 

The network architecture also decides the path through which a particular input signal 

can propagate effectively. Two input signals may activate same upstream molecules in a 

pathway, but eventually may pass through different downstream branches, giving rise to 

different cellular responses. Such discrimination depends upon network motifs involved 

in the pathway (6).  
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PI3K/Akt pathway is a cardinal pathway for cell signaling. A large number of signaling 

molecules activate this pathway (7). It controls diverse cellular processes like cell 

survival, proliferation, glucose metabolism, and cell motility (8-10). Akt is a key node in 

this pathway. Activation of PI3K/Akt pathway triggers phosphorylation of Akt. Akt has 

multiple substrates, and from Akt, the pathway splits into multiple branches (8,11). 

However, Akt does not activate all the downstream branches equally. There exists 

considerable heterogeneity in Akt-mediated activation of its substrates (12).  

 

One such branch, from Akt, involves mTORC1. Signaling through mTORC1 regulates 

translational machinery and is crucial in the regulation of cell size, cell cycle, and 

survival (13). Akt indirectly activates mTORC1, and in turn, mTORC1 activates p70-

S6K1 (S6K1) through phosphorylation (13-14). Active S6K1 regulates several molecules 

involved in protein synthesis, namely RPS6, PDCD4, and EIF4B (15). It is also involved 

in processes linked to cell survival, proliferation, cytoskeletal rearrangement, and 

metabolism (16-17). 

 

Recently, Rahman and Haugh (18) proposed that Akt controls activation of mTORC1 by 

a feed-forward motif and S6K1 is linearly controlled by mTORC1. Following this 

network architecture, the temporal behavior of phospho-S6K1 follows the temporal 

behavior of phospho-Akt. However, earlier Kubota et al. (19) proposed that an IFF 

controls S6K in Akt/mTORC1/S6K1 pathway. They proposed this network motif to 

explain the transient behavior of phospho-S6K1 observed in their experiments.  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2017. ; https://doi.org/10.1101/147710doi: bioRxiv preprint 

https://doi.org/10.1101/147710
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

In the present work, we investigate the signal transfer from Akt to S6K1. We show that 

phosphorylation of S6K1 is regulated by a negative feedback, not an IFF. The negative 

feedback works as an adaptive motif and transforms a sustained signal by phospho-Akt 

(pAkt) into a transient phospho-S6K1 (pS6K1) response. Further, we have developed a 

mathematical model to understand the transformation of temporal dynamics of pAkt into 

the temporal dynamics of pS6K1. Temporal dynamics of pAkt varies with the dose and 

type of external cue. The negative feedback ensures that only certain input signals would 

be able to activate the Akt/mTORC1/S6K1 pathway effectively.  

 

 

Results 

Temporal dynamics of phosphorylation of Akt and S6K1: Insulin-like growth factor 1 

(IGF-1) binds to its receptor on a cell and activates PI3K/Akt pathway (20). We have 

treated MCF-7 cells with 5 nM and 10 nM of IGF-1 and detected phosphorylation of Akt, 

at different time points. In both experiments, phospho-Akt (pAkt) increased with time 

eventually reaching a steady state (Figure 1). The rise and the steady state of pAkt varied 

with the dose of IGF-1. The temporal dynamics of pAkt fitted well with the Hill 

function ( ) .
n

n n

t
pAkt t a

K t
=

+

. The amplitude (a), Hill constant (K) and Hill coefficient (n) 

depend upon the dose of IGF-1 used. This indicates that the dose-dependent message, 

provided by IGF-1, is coded in the temporal dynamics of pAkt.   
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This coded message should be decoded at the lower level of the pathway. IGF-1 activates 

PI3K/Akt pathway. Akt activates mTORC1 which in turn phosphorylates S6K1 (14). We 

measured the temporal dynamics of phospho-S6K1 (pS6K1) in IGF-1-treated cells.  

 

When treated with IGF-1, pS6K1 showed a transient response (Figure 2a and b). It had an 

initial rise, with an eventual decline. By 90 minutes, pS6K1 returned to a lower level, 

even though pAkt remained at the steady state. This behavior was observed for both the 

doses of IGF-1. However, the amplitude of the transient rise of pS6K1 varied with the 

dose of IGF-1.  

 

We did experiments to confirm that IGF-1 is inducing phosphorylation of S6K1, only, 

through PI3K/Akt/mTORC1 pathway. Cells were treated with IGF-1 in the presence of 

PI3K inhibitor (LY294002) and mTORC1 inhibitor (Rapamycin). PI3K inhibitor blocked 

IGF-1-induced phosphorylation of Akt, and S6K1 (Supplementary figure S1a). On the 

other hand, Rapamycin blocked phosphorylation of S6K1 without affecting 

phosphorylation of Akt (Supplementary figure S1b).  

 

We treated MCF-7 cells with IGF-1 in the presence of U0126, an MEK1/2 inhibitor. 

However, U0126 had no effect on the IGF-1-induced temporal dynamics of pAkt, and 

pS6K1 (Supplementary figure S1c). This confirmed that IGF-1 induced phosphorylation 

of S6K1 does not involve MAPK pathway in these cells.  
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Network motif that controls phosphorylation of S6K1: The transient time course of 

pS6K1 is typical of an adaptive network motif (21-22). In an adaptive motif, sustained 

input gives rise to a transient pulse of output. Both negative feedback and incoherent 

feedforward cause such transient behavior (22). Figure 3a shows three possible network 

motifs that can give rise to the observed temporal dynamics of pS6K1. First two motifs (I 

and II) are negative feedbacks. The third motif is an incoherent feedforward (IFF). Ma et 

al. (22) have shown that motif II and III show robust adaptive behavior for a broad range 

of parameter values.  

 

We performed experiments to discriminate between these three motifs. PF-4708671 is a 

specific inhibitor of the kinase activity of S6K1. Inhibition of S6K1 activity would 

remove the negative feedback in motif I and II. This will linearize these two motifs, and 

the adaptive behavior of pS6K1 would be lost. However, inhibition of S6K1 activity will 

not affect motif III.  

 

We treated MCF-7 cells with IGF-1 in the presence of PF-4708671. We observed that in 

the presence of this inhibitor, the transient behavior of pS6K1 is lost (Figure 3b). Like 

pAkt, pS6K1 also increased with time and reached a higher steady state. This loss of 

adaptive behavior rules out motif III, the IFF.  

 

Apart from S6K1, mTORC1 phosphorylates several other molecules (23). In motif I, the 

negative feedback from S6K1 inhibits mTORC1 activity. That would affect the dynamics 

of phosphorylation of any substrate of mTORC1. Inhibition of S6K1 would also change 
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the dynamics of phosphorylation of those substrates. We explored this feature to 

discriminate between motif I and II.  

 

mTORC1 phosphorylates 4E-BP-1 (24). We treated MCF-7 cells in presence/absence of 

different inhibitors and observed the temporal dynamics of phospho-4E-BP-1 by Western 

Blot. We observed that IGF-1 induces rapid phosphorylation of 4E-BP-1 and 

phosphorylation reaches the steady state at an early time point (Figure 3c upper panel). 

Treatment with Rapamycin inhibits such phosphorylation (Figure 3c middle panel). This 

confirms that mTORC1 phosphorylates 4E-BP-1. However, inhibition of S6K1 had no 

effect on the temporal dynamics of phsopho-4E-BP-1 (Figure 3c lower panel). These 

observations indicate that the negative feedback from S6K1 does not affect mTORC1 

activity and rule out motif I.  

 

A mathematical model for the network motif of S6K1: Our experiments confirmed 

that a negative feedback, similar to motif II of Figure 3a, controls phosphorylation of 

S6K1. We created a mathematical model for this network motif, using ordinary 

differential equations. The parameters of the model were estimated from the results of 

experiments, where cells were treated with IGF-1 (5 and 10 nM) in presence and absence 

of S6K1 inhibitor. The details of the model are provided in the supplementary text.  

 

The architecture of the model is shown in Figure 4a. Akt and mTORC1 are linearly 

connected (see motif II, Figure 3a). Therefore, we have removed mTORC1 from our 

model and connected Akt directly to S6K1. This makes the model simpler. We have 
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considered two buffer molecules X and Y in the negative feedback (Figure 4a). Buffers in 

negative feedback introduce delay. Delay in a negative feedback is necessary to produce 

a transient adaptive output (21,25). The transient time course of pS6K1 was not a sharp 

pulse, but a broader one. Two buffer molecules, rather than one, in the negative feedback, 

allowed us to fit our model better to experimental data. Fitting of our model outputs to 

experimental results is shown in Figure 4 (b-d).   

 

To validate the mathematical model, we have performed additional experiments. In one, 

MCF-7 cells were treated with 10 nM Insulin and time course of phosphorylation of Akt 

and S6K1 was measured. Insulin also activates PI3K/Akt pathway. In another experiment, 

cells were treated with both Insulin and IGF-1, but at lower doses (2.5 nM each). The 

data of these experiments are shown in Figure 5a and b (upper panels). The temporal 

dynamics of pAkt in both the experiments fitted well with Hill functions (Figure 5 a and 

b, graphs in the middle). These Hill functions were used as input for our model and 

dynamics of pS6K1 were predicted by simulation. Simulated data matched well with the 

observed behavior of pS6K1 (Figure 5 a and b, graphs in lower panel).  

 

The negative feedback circuit as signal decoder: Our experiments highlight a general 

characteristic of molecular signaling. Both insulin and IGF-1 activates PI3K/Akt pathway. 

However, the temporal dynamics of pAkt differs with ligand and dose of the ligand used. 

In other words, the message given by a specific dose of a particular ligand is encoded in 

the temporal dynamics of pAkt. The dynamics of pAkt is transformed into specific 

temporal dynamics of pS6K1, through the negative feedback circuit. Our experiment and 
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mathematical model show that the dynamics of pS6K1 depends solely on the time course 

of pAkt, irrespective of the ligand used to activate the pathway.  

 

One can consider the negative feedback motif for S6K1 as a decoder that decodes the 

message encoded in the time course of pAkt. To work as a decoder, this circuit involving 

S6K1 should be able to differentiate different temporal dynamics of pAkt. Both transient 

and sustained temporal dynamics of pAkt are reported in the literature (19,26-28). We 

have used two different temporal dynamics of pAkt as input and simulated the behavior 

of pS6K1. These are a) pAkt follows a sigmoidal time course, as observed in our 

experiments and b) A transient pulse of pAkt.  

 

For all these inputs, pS6K1 has a transient response, with an initial rise and subsequent 

decay to a lower steady state. Although the steady state values changed with input signals, 

those are very close to each other. Therefore, we characterized the temporal dynamics of 

pS6K1 in terms of the amplitude (height of the peak) and the area under the curve (AUC) 

of pS6K1 vs. time plot. The area under the curve (AUC) represents time-integral of 

cumulative activation of S6K1.  

 

For sigmoidal inputs, we have used Hill functions with constant amplitude but different 

Hill coefficient and Hill constants. The Hill constant decides the delay in the rise of pAkt 

On the other hand, the Hill coefficient determines how sharp or fast it increases. Both the 

amplitude and AUC of pS6K1 decrease with increase in Hill constant (Figure 6a and b). 

That means the negative feedback circuit of S6K1 can differentiate an input signal that 
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rises early from a delayed one. Both AUC and amplitude of pAkt are high for higher 

values of Hill coefficient (6a and b). Therefore, this motif can also differentiate between a 

slow and a fast input.  

 

Negative feedback is an adaptive motif. The behavior of pS6K1 depends upon how fast 

the input increases and the adaptation time scale. With delayed, slow rising input, the 

system adapts quicker than the rise in input and thereby does not generate pronounced 

output. Therefore, this motif facilitates a selective transfer of fast rising input signal to 

downstream molecules.  

 

This property is also observed for transient input signals. We performed simulations with 

three different pulses of pAkt as input. All of these have equal amplitude but have 

different slopes for the rise (inset of Figure 6c). As shown in Figure 6c, the amplitude of 

pS6K1 depends upon the rate of rise of pAkt and a sharp rise in pAkt causes higher 

amplitude for pS6K1. In another simulation, we have used pulses of pAkt having 

different amplitudes (inset of Figure 6d). It was observed that the amplitude of pS6K1 

increases with increase in the amplitude of pAkt (Figure 6d).  

 

The negative feedback circuit filters out input with fast oscillation: In some cases, 

activation of PI3K/Akt pathway generates oscillation of pAkt (29-30). Sometimes the 

input signal itself is oscillatory. For example, insulin level in human plasma has temporal 

oscillation (31). Two different pulses of insulin are usually observed, one with shorter a 
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period (~ 12 minutes) and another with a longer period (1- 3 hr) (32-33). Such oscillatory 

input would generate oscillation of pAkt (19).  

 

We have performed simulations to understand how the negative feedback motif of S6K1 

handles such oscillatory input. Two oscillatory signals were used as inputs for these 

simulations, one with the shorter period (15 minutes) and the other with a period of 120 

minutes (Figure 6e). Amplitudes of both the inputs were same. For such oscillatory inputs, 

pS6K1 shows limit-cycle oscillation. Figure 6f shows the oscillation of pS6K1 in 

respective stable trajectories. It shows that pS6K1 responds preferentially to a pAkt 

oscillation with longer period and has oscillation with much higher amplitude. Therefore, 

this negative feedback filters out an input with faster oscillation in pAkt.  

 

Temporal dynamics of buffers X and Y explains this phenomenon. For an adaptive motif, 

recovery time is an important parameter. It is the time required for the system to reset 

itself to initial state once the input signal is removed (25). An adaptive motif can not 

respond to successive pulses of input signals, if the negative regulators do not go back to 

the initial state, after the decay of the first input pulse. Therefore, the period of oscillation 

of the input signal has to match with the recovery time of the negative feedback motif. In 

our system, a period of 15 minutes, for pAkt oscillation, is too short with respect to the 

time required for X and Y to return to basal levels. Therefore, this input can not produce 

pronounced oscillation in pS6K1.  
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Differential effect of IGF-1 and Insulin on cell proliferation: We have observed that 

equal amount of IGF-1 and Insulin differentially activates Akt (Figure 1a and 5a). 10 nM 

of IGF-1 induced a rapid increase in pAkt; whereas 10 nM of Insulin triggered a delayed 

rise in pAkt. However, for both IGF-1 and Insulin, steady state values of pAkt were 

similar. The negative feedback of S6K1 transforms this difference in pAkt dynamics into 

a marked difference in phosphorylation of S6K1 (Figure 2a and Figure 5a). IGF-1 

induced a transient rise in pS6K1 well above its basal level. However, for insulin, it was 

very close to the basal level.  

 

S6K1 is one of the key molecules through which PI3K/Akt pathway controls cell 

proliferation. We treated MCF-7 cells with different doses of insulin and IGF-1 and 

measured cell viability by MTT assay (Figure 7a). We observed that IGF-1 is mitogenic 

to these cells and increases viable cells even at lower doses (5 and 10 nM). On the other 

hand, insulin has moderate mitogenic effect only at a higher dose (25 nM).  

 

Further, we explored if there exist any correlation between temporal dynamics of pS6K1 

and cell viability, independent of the signaling molecule used. We measured time-

dependent change in pAkt for cells treated with three doses of IGF-1 and insulin (5, 10, 

and 25 nM) by Western Blot. The data were fitted to Hill equations and used as inputs for 

the mathematical model to simulate the temporal dynamics of pS6K1. We estimated 

AUC and amplitude of pS6K1 for each case from the simulated data. We observed that 

both AUC and amplitude of pS6K1 have reasonable correlation with cell viability (Figure 

7b and c). S6K1 is not the sole regulator of cell proliferation. Even then, the difference in 
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its activation by IGF-1 and insulin apparently correlates with the difference in their effect 

on cell proliferation.   

 

Discussion: 

In this work, we have shown that phosphorylation of S6K1 at T389 is controlled by a 

negative feedback. Phosphorylation at this site is a marker for the active form of S6K1 

(34). Due to this negative feedback, a sustained pAkt signal generates only a transient 

pulse of pS6K1. We have created a mathematical model for this circuit. The model was 

analyzed to understand the properties of this negative feedback. This negative feedback 

acts as a filter in the PI3K/Akt/mTORC1/S6K1 pathway and preferentially allows a 

signal, with sharp and faster rise of pAkt, to induce pronounced activation of S6K1. It 

also does not permit a pAkt oscillation with a shorter period to produce a considerable 

effect on pS6K1.  

 

A large number of signaling molecules activates PI3K/Akt pathway. We have used IGF-1 

and Insulin in our experiments. It was observed that the temporal dynamics of pAkt 

depends upon the signaling molecule and its dose. For both IGF-1 and Insulin, pAkt had 

sustained response in MCF-7 cells. Such sustained activation of Akt has been observed 

earlier in MCF-7 cells and in some other cell lines (12,28).  

 

However, pS6K1 showed a transient response. Transient increase of pS6K1 has been 

observed earlier in several other experimental systems (19,35-36). In our experiments, 
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pS6K1 had a transient rise, even though pAkt persistently remained at a higher level. 

Such adaptive dynamics of pS6K1 has also been reported earlier (12).     

 

This transient pulse of pS6K1 indicates the existence of an adaptive motif that controls 

phosphorylation of S6K1. Negative feedback and incoherent feed-forward circuits are 

adaptive motifs that can generate transient outputs (22). Kubota et al. (19) had earlier 

proposed that phosphorylation of S6K1 is controlled by an incoherent feed-forward. 

However, by experiments using inhibitors we have shown that a negative feedback, not 

an IFF, controls phosphorylation of S6K1.  

 

We have created a mathematical model for this network motif and have estimated its 

parameters from our experimental data. This model successfully predicted the behavior of 

pS6K1 when different inputs were used to activate PI3K/Akt pathway.  

 

IRS-1, a molecule upstream to Akt in PI3K/Akt pathway, is modulated by a negative 

feedback from S6K1 (37-38). The temporal dynamics of pAkt is the input signal for our 

model and inhibition of S6K1 did not have a considerable effect on pAkt dynamics in our 

experiments (Supplementary Figure S2). Therefore, we have not considered any feedback 

from S6K1 to upstream of pAkt, in our model.  

 

A delay between activation by the input and the inhibition by the feedback is required to 

produce a transient output in a negative feedback circuit (25). We have considered two 

buffer molecules, X and Y, in our model to match the transient behavior of pS6K1 
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observed in experiments. The identities of X and Y are not yet known. They may be 

molecules that selectively modulate association of S6K1 with mTOR. Very recently, Liu 

et al. (39) have shown that LY-277 9964, an inhibitor of S6K1, increases association of 

S6K1 with mTOR. Translocation of molecules in different cellular compartments can 

also work as buffers and introduce a time delay in a pathway (40-41). S6K1 is located 

predominantly in the cytoplasm. However, growth factor-induced phosphorylation at 

T389 causes its translocation to nucleus (42-43). Such translocation of the 

phosphorylated and active form of S6K1 may cause a delay in the negative feedback.  

 

Due to the negative feedback, a high and persistent input signal, gives rise to transient 

increase in pS6K1 and after some time the level of pS6K1 goes back to lower steady state 

level. Unless the input is removed and the system is reset, any additional input would not 

be able to increase pS6K1. We have observed this phenomenon by repeated treatment 

with high dose of IGF-1 (Supplementary Figure S3). This assures that a high input signal 

can pass only transiently through the mTORC1/S6K1. However, any aberration in 

expression or activity of components involved in this negative feedback would disturb 

this transient behavior. When these molecules are absent or expressed at a lower level, 

even a weak but persistent input signal will generate a sustained high level of pS6K1 

(Supplementary Figure S4). This will change the downstream processes controlled by 

S6K1.  

 

One can assume that such an aberration may be involved in certain diseases. 

mTORC1/S6K1 is involved in nutrient sensing, obesity, and insulin resistance (44). 
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Several studies have shown that mice fed with high-fat diet had sustained elevated 

phosphorylation of S6K1 in the liver and islets cells than those fed with normal food (45-

46). Similar persistent high pS6K1 was observed in db/db and ob/ob mice that are models 

for type 2 diabetes and obesity respectively (47). Though there may be several possible 

causes behind such persistent activation of S6K1, downregulation of the negative 

feedback is also a probable reason.  

 

We have observed that the IGF-1 and insulin induce distinct dose-dependent temporal 

dynamics of pAkt. This is typical of temporal encoding of information in a signaling 

pathway. The affinity of a ligand for its receptor, phosphorylation dynamics of the 

receptor and interaction of adaptor molecules with the receptor determine such encoding 

(48-49). Network motifs at downstream parts of a pathway act as decoders and decide the 

flow of a signal through a particular path (19). The negative feedback of S6K1 is working 

like a decoder. It allows only fast rising pAkt to induce strong phosphorylation of S6K1. 

Thereby it allows a signal with fast rising pAkt to pass through Akt/mTORC1/S6K1 path. 

Accordingly, the difference in pAkt dynamics for IGF-1 and insulin translates into 

differential activation of S6K1. In our experiments, 10 nM of insulin induced transient 

phosphorylation of S6K1. However, such induction was very feeble. In comparison to 

insulin, same concentration of IGF-1 induced transient but marked increase in 

phosphorylation of S6K1. Therefore, one can consider that the negative feedback of 

S6K1 is preferentially allowing the IGF-1 signal to pass-through Akt/mTORC1/S6K1 

path.   
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Such preferential transfer of a signal through a particular path should also modulate the 

effect of an external signal on a cell. S6K1 is involved in the control of cell survival and 

proliferation. We have observed that the difference in signaling through 

Akt/mTORC1/S6K1 path has an apparent correlation with the effect of IGF-1 and insulin 

on cell proliferation. Treatment with 10 nM of IGF-1 led to more than two-fold increase 

in viable cells. However, insulin at that dose failed to induce cell proliferation. 

Correlation analysis showed that increase in cell viability has reasonable correlation with 

AUC and amplitude of pS6K1, across different doses and such correlation is independent 

of the signaling molecule used.  

 

Multiple pathways and a large number of molecules control proliferation of a cell. 

Therefore, the net effect of insulin and IGF-1 signaling on cell proliferation should not be 

explained in terms of the activity of S6K1 only. Even then, the observed correlation 

between phosphorylation of S6K1 and cell proliferation reiterates the critical role of 

signaling through Akt/mTORC1/S6K1 pathway in cell proliferation. Large-scale study, 

involving multiple downstream branches of PI3K/Akt pathway, may help to gain a 

complete understanding of the differential effect of IGF-1 and insulin on cell proliferation.   
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Experimental procedures: 

 

Cell lines and culture conditions:  

Human Breast Cancer cell line MCF-7 was obtained from National Center for Cell 

Sciences, India and was cultured in Dulbecco’s modified eagle’s medium (DMEM, 

Himedia) supplemented with 10% fetal bovine serum (Gibco) at 37ºC in humidified 

incubator with 5% CO2. 

 

Treatment of cells and Western blots:  

MCF-7 cells were serum starved for 16 h and treated with different doses of recombinant 

human IGF-1 (Gibco) and Insulin (Himedia) for different durations as mentioned in the 

results section. Whenever required, cells were treated with various pathway inhibitors:  

10 µM of LY294002 (Sigma), 10 µM U0126 (Sigma), 10 µM PF-4708671 (Sigma), and 

0.1 µM Rapamycin (Sigma). 

 

After treatments, cells were lysed in RIPA buffer. Total protein content of each lysate 

was estimated by Lowry’s Method (50). An equal amount of samples were resolved by 

SDS-PAGE and transferred to PVDF membrane by electrotransfer. The membrane was 

blocked and incubated, overnight, with appropriate primary antibody at 4 
o
C. 

Subsequently, blots were probed with HRP-labeled secondary antibody. List of 

antibodies and dilutions used are given in Supplementary Text. Blots were developed 

using chemiluminescence (SuperSignal West Dura kit, ThermoFisher Scientific) and 

imaged using gel documentation system. Densitometry of the images was performed 

using Image J (51). In each blot, lysate of cells treated with 10% serum was used as a 
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sample. The densitometry readings of other samples in a blot were normalized by the 

reading of the serum treated sample in that blot. This allowed us to compare data from 

different independent blots. This normalized quantitative data has been used for further 

studies.  

 

Cell viability assay: MCF-7 cells in 96-well tissue culture plates were treated with 

different doses of IGF-1 and Insulin for 48 hr in serum-free media. Subsequently, the 

viability of these cells was measured by 3-(4,5-dimethylthiazol-2yl)-2,5-

diphenyltetrazolium bromide (MTT) assay (52). Percentage cell viability was calculated 

relative to untreated cells.  

 

Mathematical modeling and analysis: A mathematical model, using a system of 

ordinary differential equations, was created for the negative feedback motif of S6K1. The 

equations are based on Michaelis–Menten equation. The time courses of phospho-Akt 

and phospho-S6K1 are input and output of this model, respectively. Parameters of the 

model were estimated, from experimental data, using MATLAB-based Data2Dynamics 

(53). Details of methods used, the differential equations, and estimated parameters are 

given in the supplementary text. The model was simulated and analyzed using MATLAB 

2015b and JSim (54). The model in MATLAB, JSim, and SBML formats are provided as 

supplementary files.  
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Figure legends: 

Figure 1: Temporal dynamics of phosphorylation of Akt. MCF-7 cells were treated with 

(a) 10 nM and (b) 5 nM of IGF-1 and phospho-Akt (Ser473) was detected by Western 

Blot. Representative blots are shown here. Quantitative data from densitometry are 

shown in the graphs below respective blots. Each data point represents mean of three 

independent experiments and error bars indicate standard deviation. Data points are fitted 

to Hill functions. For 10 nM IGF-1, 
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. (+)ve: cells maintained in media with 10% serum. 

 

Figure 2: Temporal dynamics of phosphorylation of S6K1. MCF-7 cells were treated 

with (a) 10 nM and (b) 5 nM of IGF-1 and phospho-S6K1 (Ser473) was detected by 

Western Blot. Representative blots are shown here. Quantitative data from densitometry 

are shown in the graphs below respective blots. Each data point represents mean of three 

independent experiments and error bars indicate standard deviation. (+)ve: cells 

maintained in media with 10% serum. 

 

Figure 3: Network motif that controls S6K1. a) Three possible network motifs that will 

give rise to adaptive behavior observed for phospho-S6K1. b) Time-dependent Western 

blot for phospho-S6K1 in MCF-7 cells treated with IGF-1 (10 nM) in the presence of 

S6K1 inhibitor PF-4708671. A representative blot is shown here with quantitative data 

from three independent experiments presented in the graph below the blot. Error bars 

indicate standard deviation. c) Time-dependent Western blots to detect phospho-4E-BP-1 
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(Thr37/46) in MCF-7 cells treated with IGF-1 (10 nM) alone and in the presence of 

Rapamycin and PF-4708671. (+)ve: cells maintained in media with 10% serum. 

 

Figure 4: Modeling the network motif for S6K1. a) The architecture of the molecular 

circuit used to model the negative feedback network motif for S6K1. b) to d) Fitting of 

model outputs with the experimental data that has been used for parameter estimation. 

Treatment conditions are written over the plots. Filled circles with error bar are 

experimental results. Solid lines represent the output of the model. Grey region around 

solid line represents estimated error.  

 

Figure 5: Validation of the mathematical model. Cells were treated with either (a) 10 nM 

Insulin or (b) Insulin and IGF-1 (2.5 nM each). Levels of pAkt and pS6K1 at different 

time points were measured by Western blot (upper panels) and quantified by 

densitometry (Solid circles in middle graphs). Time course data of pAkt in both the 

experiment were fitted to Hill functions (Red lines). Lower graphs show the quantified 

time course of pS6K1 in both the experiments (solid circles). Temporal behaviors of 

pS6K1, as predicted by the model, are shown by blue lines (lower graphs). Shaded 

regions represent estimated error. (+)ve: cells maintained in media with 10% serum. 

 

Figure 6. Input-output characteristics of the negative feedback. Different temporal 

dynamics of pAkt were used as inputs and temporal behavior of pS6K1 was estimated by 

simulation. a) and b) show the behavior of pS6K1 for sigmoidal inputs. Hill functions 

with different Hill coefficients and Hill constants were used. The amplitude of pAkt is 
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kept constant at 1.  c) and d) show the behavior of pS6K1 for transient inputs as shown in 

corresponding insets. e) Shows two oscillating input signals with different periods (T). f) 

Temporal dynamics of pS6K1 for oscillatory input signals. The stable trajectories of 

pS6K1 are shown.  

 

Figure 7. Correlation between mitogenic effect and S6K1 signaling. a) Viability of cells 

treated with different doses of IGF-1 and insulin for 48 hr. b) and c) show correlation 

between cell viability and temporal dynamics of pS6K1 in terms of AUC and amplitude 

of pS6K1. Time-dependent change in pAkt was measured by Western blotting for cells 

treated with 5, 10, and 25 nM IGF-1, and insulin. Temporal profiles of pAkt were fitted 

to Hill equations and used as inputs for the mathematical model. Temporal behavior of 

pS6K1 was estimated by simulating the model. AUC and amplitude were calculated from 

simulated data. r = Pearson Product-moment Correlation Coefficient. 
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Figure 1 
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Figure 2 
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Figure 3:  
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Figure 4: 
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Figure 5: 
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Figure 6: 
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Figure 7: 
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