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Abstract 
Summary: Identifying phenotypic correlations between complex traits and diseases can provide useful etiological in-
sights. Restricted access to individual-level phenotype data makes it difficult to estimate large-scale phenotypic correla-
tion across the human phenome. Here, we present a novel method, PhenoSpD, to estimate phenotypic correlations using 
genome-wide association study (GWAS) summary statistics from the same sample and utilizes the correlations to inform 
correction of multiple testing for human GWAS studies. In a case study using GWAS summary results, PhenoSpD sug-
gested 324.4 independent tests among 452 metabolites, which is close to the 296 independent tests estimated using true 
phenotypic correlation. We then estimated 120,713 pair-wise phenotypic correlations among 24 categories of human 
traits and diseases (total 862 traits) and further corrected multiple testing for these traits using PhenoSpD. The atlas of 
phenotypic correlations provides novel insights into the relationships between traits, while the PhenoSpD multiple testing 
correction function provides a simple and conservative way to reduce dimensionality for GWAS of complex molecular 
traits.  
Availability: R codes and Documentation for PhenoSpD V1.0.0 is available online 
(https://github.com/MRCIEU/PhenoSpD). 
 

1 Introduction  
Phenotypic correlations between complex human traits and diseases provide useful etiological insights. For GWAS meta-
analysis, a lack of individual-level phenotype data makes it difficult to estimate the phenotypic correlation across human 
traits and diseases. Here we consider two methods that estimate phenotypic correlations using GWAS summary statistics: 
metaCCA (Cichonska et al., 2016) and bivariate LD score regression (Bulik-Sullivan et al., 2015). The metaCCA frame-
work estimates phenotypic correlation between two traits based on a Pearson correlation between two univariate regres-
sion coefficients (betas) across a set of genetic variants; The bivariate LD score regression approach esti-mates the phe-
notypic correlation amongst the overlapping samples of two GWAS.  
The recently developed MR-Base (Hemani et al.2016) and LD Hub (Zheng et al., 2017) tools include harmonized GWAS 
summary-level results. This provides an opportunity to estimate the phenotypic correlation structure across a wide array 
of studies, which is of particular value for high-dimensional, complex molecular traits, such as metabolites, that are po-
tentially highly correlated. Bonferroni correction would markedly overcorrect for the inflated false-positive rate in such 
correlated datasets, resulting in a reduction in power. An appropriate method to correct for multiple testing among human 
traits and diseases based on the spectral decomposition of matrices (SpD) (Nyholt, 2004; Li and Ji, 2005) is considered in 
this study. 
 

2 Methods 
2.1 Overview of PhenoSpD 
Figure 1 demonstrates the key steps of the proposed method, PhenoSpD: step (1) harmonise GWAS summary results 
from the same sample; step (2) apply the harmonized GWAS results to metaCCA or LD score regression to estimate the 
phenotypic correlation matrix of the traits; step (3) apply the phenotypic correlation matrix to the SpD approach and es-
timate the number of independent variables among the traits.  
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2.2 Validation of Phenotypic correlation estimation 
Firstly, we compared the difference between metaCCA and LD score regression for estimation of phenotypic correlati
We then simulated how sample overlap between two GWASs influence the phenotypic correlation estimation using b
methods. In general, only GWASs run on the same set of individuals (or with majority of the individuals overlapped)
suitable for estimating phenotypic correlation using GWAS summary results (Text S1).  

 
2.3 Estimating the phenotypic correlations 
Within our database containing 1094 human traits, we selected 862 unique traits (Table S2, Text S2) using the cri
listed in Table S3. We then separated the 862 GWASs into 24 categories (Table S5), e.g. all traits in GIANT consort
were put into the same group to fit the assumption of one sample setting. We then applied metaCCA to each grou
estimate the phenotypic correlation matrix of each group of traits. From these 862 traits, we further selected all avail
traits in LD Hub (219 traits) to conduct the bivariate LD score regression analyses within each of the 24 categories (T
S4) to estimate the phenotypic correlation of these traits.   

 
2.4 Multiple testing correction for human traits 
We applied the SpD approach to correct for multiple testing among human traits and diseases. We implemented th
code of the well-known method, SNPSpD (Nyholt, 2004; Li and Ji, 2005), to estimate the number of independent t
using the phenotypic correlation matrix as input (Fig. 1). For each of the 24 categories, we estimate the number of i
pendent tests using the SpD function. 

Fig. 1. Flowchart of PhenoSpD 
 
 

3 Results 
3.1 The phenotypic correlations of human phenome 
Based on the validation described in Text S1, metaCCA can be applied to almost all GWASs (sample size>300 and n
ber of SNPs>1000). However, 1) the genetic effect of SNPs may bias the phenotypic correlation estimation; 2) it 
provides the central estimate of the phenotypic correlation; 3) it is difficult to quantify the effect of sample overlap.
score regression provides the pair-wise phenotypic correlation with standard errors and it deals with sample overlap
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tomatically (when there is no sample overlap between two GWASs, the phenotypic correlation will be zero). However, it 
can only be applied to GWAS with large sample size (e.g. N > 5,000) and good SNP coverage (e.g. number of SNPs > 
200,000) to fit its assumptions. 
We then estimated 120,713 pair-wise phenotypic correlations among 24 categories of human traits and diseases (862 
traits) using metaCCA (Table S6 to Table S28). In addition, we also estimate 47,961 pair-wise corre-lations (219 traits) 
estimated by LD score regression (Table S29).   

 
3.2 Multiple testing correction of human phenome 
In a case study, PhenoSpD using GWAs results suggested 324.4 independent tests among 452 metabolites from Shin et 
al., which is close to 296 independent tests estimated using real phenotypic correlation. Table 1 shows the number of in-
dependent traits for three high-dimensional, complex molecular datasets. Table S5 lists the number of tests for the 862 
unique GWAS traits within MR-Base. 
 
Table 1. Summary of number of independent traits for three complex molecular networks.  
First author Category N_traits N_SNPs N_indep 
Kettunen et al. Metabolites 123 9826292 44.9 
Shin et al. Metabolites 452 2482345 324.4 
Roederer et al. Immuno-phenotypes 151 1585187 94.2 
Note: N_traits refers to number of traits in each molecular network; N_SNPs refers to number of SNPs in each network; N_indep refers to number of inde-
pendent tests in each network.  
 

4 Discussion 
In this study, we present a novel method which allows phenotypic correlation estimation and multiple testing correction 
for human phenome using GWAS summary statistics. We illustrate the application of PhenoSpD by estimating the phe-
notypic correlation structure of 24  datasets comprising a total of 862 traits, including the correlation structure of 123 
metabolites from Kettunen’s study for the very first time (Kettunen et al, 2016). These results showcase the ability of 
PhenoSpD to estimate an appropriate multiple testing correction for large-scale post-GWAS data mining tools such as 
MR-Base and LD Hub.  
 
4.1 Advantages and limitations of PhenoSpD 
There are two key advantages to the PhenoSpD approach compared with existing methods. Firstly, PhenoSpD builds on 
the phenotypic correlation function of metaCCA and LD score regression using only GWAS summary results. Secondly, 
PhenoSpD provides a simple way of correcting multiple testing for the human phenome. Such correction is stringent, but 
more appropriate than Bonferroni correction, which is particularly valuable for GWAS of complex molecular traits. It can 
also be used as an indicative threshold for post-GWAS data mining tools such as MR-Base and LD Hub. In addition, 
based on our simulations, PhenoSpD can only be used for GWAS results from one population sample, which is a general 
limitation of estimating phenotypic correlation using GWAS results.  
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