bioRxiv preprint doi: https://doi.org/10.1101/148783; this version posted June 11, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

BugBuilder - An Automated Microbial Genome Assembly and
Analysis Pipeline

Abbott, J.C.

Bioinformatics Data Science Group, Department of Surgery and Cancer, Imperial College
London, London UK, SW7 2AZ

Abstract

Summary: BugBuilder is a framework for hands-free assembly and annotation of microbial genomes.
It produces outputs suitable either for database submission or downstream finishing processes. It is
configurable to work with most command-line assembly and scaffolding tools which are selectable at
run-time, and supports all common sequence types used in microbial genome assembly.
Availability and Implementation BugBuilder is implemented in Perl and is available under the Artistic Li-
cense from http://www.imperial.ac.uk/bioinformatics-data-science-group/resources/software/bugbuilder,
A virtual machine image is available pre-configured with the relevant freely-redistributable dependencies.
Contact: j.abbott@imperial.ac.uk

1 Introduction

The rapid increase in sequencing throughput in recent years has moved the bottleneck in the process of
sequencing microbial genomes from sequence generation to the analysis. The cost of sequence analysis now
typically outweigh those of sequencing, while the use of multiplexing combined with the scale of modern
sequencing instruments typically results in large batches of sequences being produced simultaneously. Lab-
based researchers often do not have the background knowledge necessary to carry out the required analysis
themselves.

BugBuilder provides a portable framework for carrying out assembly and analysis of microbial genome
sequences, taking sequence reads as inputs and producing submission-ready annotated genome assemblies,
with ease-of-use prioritised to allow non-expert users to obtain acceptable results. The software selects ap-
propriate tools and parameters based upon the type of sequence data provided. It is also suitable for more ad-
vanced applications, being designed to be readily deployed in a cluster environment while permitting manual
run-time selection of tools and parameters, and can be readily customised to include any Linux command-
line based assembly and scaffolding tools. the outputs of most major sequencing platforms are supported,
including long-read and hybrid assemblies, and can either provide submission-ready outputs, or augment
these with indications of potential sites of misassembly to assist with downstream finishing work.

2 Implementation

BugBuilder is implemented in Perl, utilising a YAML format configuration file. A BugBuilder job carries out
it's work in a temporary directory, within which a separate directory is created for each component of the
pipeline. A series of symbolic links are maintained within the working directory which link to, for example,
the most recent version of generated contig sequences, facilitating flexible workflows through consistent file
naming

In order to prevent the system being tied to particular software tools or sequencing platforms, multiple
assemblers and scaffolders are defined with the central configuration. Any package which can be run on the
command-line can be integrated into BugBuilder, either directly where the tools input and output require-
ments are appropriate for BugBuilder, or through the use of a script wrapper where more complex require-
ments exist. Default arguments to the tools are also defined in the configuration, which can be overridden at
run time through command-line arguments.

http://www.imperial.ac.uk/bioinformatics-data-science-group/resources/software/bugbuilder
j.abbott@imperial.ac.uk
https://doi.org/10.1101/148783
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/148783; this version posted June 11, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

3 WORKFLOW

Inputs
i i]
! 1 Reference Genomel
!
LFa/Stq/l\l i FaSth_\ | (Fast’al__\i
L g = o h
i
 ——
Preprocessing! Sequence Assembly! Annotation
v i
T bl : Gap Cl | v :
I 1 Assembly - ap Closure i
FastQC ‘ i }"* J» J’:—_ - p—— oy
i B — — |
e o ! Prokka Annotation ‘ | AmosValidate
I !
I | h {
l ! vov | i : ,
i
o " Rescaffold split A4
Sickle Quality Trimming r,,,‘ i Scaffolding cOntig/SCaffgm |
| i , | Merge Annotations ‘
—————
i i i I — | -
- ! vy v
|
i |
Downsample Coverage "’"“ Orient Contigs/Scaffolds * Split around Origin Generate Visualisations ‘
—— B .]
|
R I

Outputs]

Y
p . Annotated Contigs q
bnng/s,fasta\l scaffolds.fasta AGP 2.0 File /Scaffolds(EMBL) circleator.png/svg MUMmerplot/PIP

Figure 1: The BugBuilder Workflow. Alternate paths through the workflow are indicated by arrow colour, with dotted
arrows and borders indicating conditional stages and routes.

3 Workflow

The BugBuilder workflow is shown in Figure[I] The required inputs are fastq files obtained from a sequencing
experiment, where a single fastq file is required from a fragment library, or a pair of non-interleaved fastq
files in the case of a mate-pair library. Sequence from long-read platforms (i.e. PacBio, MinION) can either
be used for standalone assembly or combined with short-read sequences for a hybrid assembly. A fasta-
formatted reference genome sequence can optionally be provided which may be used for scaffolding and
ordering scaffolds if desired. Assemblers and scaffolders are categorised according to applicable sequencing
platforms, so the user can either define the sequencing platform used and allow BugBuilder to select the most
appropriate tools based on the sequence type, or manually select the desired programs from the applicable
tools defined for the sequence category.

3.1 Sequence Assessment and Preprocessing

Prior to assembly, a number of preprocessing stages are carried out. The processes executed vary
according to sequence type, and individual stages can be skipped if desired by the user. Sequence
reads are inspected to determine the sequence characteristics, sequence quality is assessed using FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), followed by sequence trimming using Sickle
(https://github.com/najoshi/sickle) to remove low quality bases for assemblers which do not carry out trim-
ming directly. High coverages in de Bruijn genome assemblers can lead to a decrease in assembly quality,
consequently reads are downsampled to either 100x or a user-defined threshold for such assemblers.

3.2 Contig Assembly

The default BugBuilder configuration includes the ABySS (Simpson et al}|2009), SPAdes (Bankevich et al}
2012) and Celera WGS (CABOG and PBcR) (Miller ez al.,|2008, Berlin ef al.;|2015) assemblers, providing sup-
port for sequence obtained from Illumina short-read platforms (i.e. GAII, HiSeq, MiSeq), through to Roche
454, PacBio and MinION instruments. The assembly stage produces, at minimum, a fasta file of contig se-
quences, and optionally a fasta file of scaffolded sequences where scaffolding is supported directly by the
assembler.

3.3 Scaffolding

BugBuilder considers two classes of scaffolder; those which utilise read-pair associations between contigs,
and those which carry out alignment to a reference sequence. Reference-free methods are less susceptible

https://doi.org/10.1101/148783
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/148783; this version posted June 11, 2017. The copyright holder for this preprint (which was

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

3.4 Annotation, Visualisation and Outputs

3 WORKFLOW

Filename Type When produced Description
read[12]_fastqc.html HTML Always Output of FastQC quality assessment
. Annotated contig sequence in submission-ready format.
contigs.embl/gh EMBL/GenBank Unless scaffolded Amosvalidate results (if present) will be represented as misc_features.
contigs.fasta Fasta Always Contig sequences in fasta format
unplaced_contigs.fasta Fasta It scaffolded Contig sequences which .could not be incorporated during
reference-based scaffolding
scaffolds.embl/gb EMBL/GenBank If scaffolded Annotatgd scaffold sequences in sgbmlssmn-ready forma.t.
Amosvalidate results (if present) will be represented as misc_features.
scaffolds.fasta Fasta If scaffolded Scaffold sequences in fasta format
scaffolds.agp AGP 2.0 If scaffolded Details of scaffold construction
mparison_vs_[jon].pn PNG im With referen MUMmerplot output of nucmer alignment between scaffolds and reference,
comparison_vs_laccession].png age clerence indicating structural differences between reference and sample
. MUMmerplot percentage identity plot,
comparison_vs_[accession]_pip.png PNG image With reference indicating sequence similarity between reference and sample
. . . Alignment between sample and reference with NCBI Blast,
comparison_vs_[accession].blastout ~ NCBI Blast output ~ With reference formatted for visualisation with ACT
circleator.png PNG image Always Circleator genome map
circleator.svg SVG image Always Circleator genome map

Table 1: Output files produced by BugBuilder. Outputs vary according to executed tools as indicated in "When produced’
column as follows: ’Always’ - output is always produced; 'If scaffolded’ - produced if the assembly is scaffolded, either by
the assembler or a scaffolder being run; "Unless scaffolded’ - produced if the assembly is not scaffolded; "With reference’ -
output only produced if a reference sequence is provided.

to biasing the outputs to the organisation of the reference sequence, however typically produce considerably
less contiguous results, consequently the preferred algorithm is highly dependent upon similarity to the ref-
erence genome and user preference. Predefined configurations for scaffolding with SSPACE (Boetzer ef al.
2011), SIS (Dias ez al2012) and the Mauve Contig Mover (Rissman et al.,|2009) are provided with the software.

Scaffolds can frequently be further improved by ordering and orientating them against the reference
genome sequence, especially if a reference-free scaffolding algorithm was used. The origin of replication
will typically occur within a contig sequence, although by convention this is used as the start of the genome
sequence. The location of the origin is determined by alignment against the reference (if provided), and
the assembly orientated around this locus. Remaining gaps between contigs can then be processed with
GapkFiller (Boetzer and Piravano ,2012), which carries out incremental alignment of sequence reads around
contig ends to extend contigs and close gaps.

3.4 Annotation, Visualisation and Outputs

Annotation of assembled sequences is carried out using Prokka (Seemann }|2014), which combines various
feature predictions algorithms and similarity search methods to produce an annotation including coding
genes, rRNAs and tRNAs. BugBuilder also allows execution of a downstream validation process (amosvalidate
-|Phillippy et al.;|2008) to help identify potential misassemblies by evaluating read pair distribution to identify
compressed or extended read-pairs and inversions etc., and read depth to identify collapsed or expanded
repeats.

The main output of the pipeline is an EMBL-format record containing the annotated scaffold or contig se-
quences which is appropriate for submission to the ENA. Visualisation and interpretation of results are aided
by the production of a graphical genome map using Circleator(Crabtree ef al,}|2014), along with similarity
plots and percentage-identity plots generated with MUMmerplot (Kurtz et LA.}|2004). A full list of outputs
generated is provided in table[T}

3.5 Example Assemblies

Sequence data for E. coli K-12 strains generated from a range of platforms was obtained from the ENA
database and used to validate the pipeline outputs (see table[2). Each was assembled using the default as-
sembler, both with and withough reference-based scaffolding using SIS, with just the platform, reference
sequence (U00096.3) and choice of scaffolder (where required) being provided as command-line arguments.
Assemblies were run using 8 threads on AMD Opteron 6282 SE 2.6Ghz CPUs, with 8Gb RAM available per-
core.

BugBuilder has to date been successfully used on projects involving a range of species including Strep-
tococcus pyogenes (e.g. Turner ef al.}|2015), Escherichia coli, Gluconacetobacter hansenii (e.g. [Florea et al.,
2016) and Klebsiella pneumoniae.

https://doi.org/10.1101/148783
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/148783; this version posted June 11, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

4 ASSEMBLY RESULTS

Platform Organism ENA Accession Read Type Insert Size Coverage
Ilumina GA E. coli K-12 substr. MG1655 PRJNA30551 37 bp paired 486 bp 112x
Ilumina HiSeq 2000 E. coli K-12 substr. MG1655 PRJEB4687 102 bp paired 240bp 810x
Ilumina MiSeq E. coli K-12 PRJEB8559 128 bp paired 4914 bp 49x
Roche 454 FLX E. coli K-12 substr. MG1655 PRJNA40075 Unpaired, mean 228 bp - 29x
PacBio RSII E. coli K-12 substr. MG1655 PRJNA237120 Unpaired long reads, mean 1954 +/- 2621 bp - ~139x

Table 2: E.coli K-12 libraries used for assemblies.

. Assembly Contigs Contig Scaffold

Platform Assembler Scaffolder GapFilled Size (bp) (>200bp) N50 (bp) Scaffolds N50 (bp) CDS
Ilumina GA SPAdes - No 4537545 396 25549 166 65561 4253
SPAdes SIS No 4548329 416 23897 8 3672437 4245

Tllumina HiSeq 2000 =~ ~ SPAdes ~ ~ -~~~ Yes 4456532 114 108958 111 132988 4140
SPAdes SIS Yes 4495258 91 133146 4 3627322 4180

MluminaMiSEQ ~ =~ ~SPAdes =~ -~ Yes 4561241 45 T T 470241 © T T 44 565835 4274
SPAdes SIS Yes 4562536 36 470507 8 4558614 4272

Roche454FLX = =~ CeleraWGS -~~~ No 4555044 77 7 117927 T T T 76 117927 4245
CeleraWGS SIS No 4562444 77 117929 2 2436314 4249

PacBioRSII ~ ~ PBcR -~~~ " No 4674981 2 3442086 1 4674981 4824
PBcR SIS No 4653988 2 3442086 1 4653988 4749

Hybrid PacBio/MiSeq ~SPAdes =~ -~~~ No 4560188 ~ ~ 46 426752 45 565835 4276
SPAdes SIS Yes 4555687 34 669128 8 4551326 4275

Table 3: E. coli K-12 assembly results.

4 Assembly Results

The outputs of the test assemblies are shown in table[3]and figures[2}[5] As would be expected the main factor
determining the contiguity of assembly is the sequencing technology employed and the subsequent choice
of assembly and scaffolding algorithm. The configurable nature of the pipeline readily permits the addition
of new algorithms with improved capabilities or technology support.

https://doi.org/10.1101/148783
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/148783; this version posted June 11, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

4 ASSEMBLY RESULTS

Assembly tools,

K-12 MG1655 roferer

Assembly size (bp)

S o < C
o o o
W o

o
e
o
o
Sequencing Platform

Figure 2: Total assembly sizes for E. coli K12 MG1655 ex-
ample assemblies.

" I [-
l ol

Contig/Scaffold Number)

o AP S S
\m‘“ y ﬁ\\c\a o e \“Nsa e o o 0 S&W\e@ em"“&e“g»‘@w
A & \,ez‘*\ o ,Jm*\ « RO
o @ S o
W W W o o K

Sequencing Platform

Figure 4: Numbers of contig and scaffold sequences re-
sulting from E. coli K12 MG1655 example assemblies. As-
sembler and scaffolder selections used for each assembly
are indicated in table [3]Statistics for scaffold sequences
are either based upon scaffolds output by the assemb]er,
or for the outputs of a downstream scaffolding process in
assemblies labelled ’Scaffolded’.

Assembly tools.

%

CDS Predictions

=

5
w&"&
o

Sequencing Platform

Figure 3: Number of CDS predictions from E. coli K12
MG1655 example assemblies. CDS predicitions were car-
ried out on the scaffolding sequences resulting from each
assembly using Prokka

Type
conig

it

%

?
%

%

Contig/Scaffold N50 (bp)
3

& Y N
oo o a‘*‘sﬂ o A‘J‘K\} \@"ﬂo o o et o
W s X A Sk o &P S o 2
W [e SV o (€ o
ca W e W o0 « o o\ 4
o o O o PN N
@ o
W o o o e o
e

Sequencing Platform

Figure 5: Contig and scaffold N50 values resulting from
E. coli K12 MG1655 example assemblies. Assembler and
scaffolder selections used for each assembly are indicated
in table[3] Statistics for scaffold sequences are either based
upon scaffolds output by the assembler, or for the out-
puts of a downstream scaffolding process in assemblies
labelled ’Scaffolded’

https://doi.org/10.1101/148783
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/148783; this version posted June 11, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

REFERENCES REFERENCES

References

Bankevich A. et al. (2012) SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing.] Comput Biol.
19(5):455-477 doi:10.1089/cmb.2012.0021

Berlin K. et al. (2015) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotech 33:623-630
doi:10.1038/nbt.3238

Boetzer, M. et al. (2011) Scaffolding pre-assembled contigs using SSPACE Bioinformatics 27:578-579 doi:10.1093/bioinformatics/btq683
Boetzer M and Piravano W. (2012) Toward almost closed genomes with GapFiller. Genome Biology 13:R56 doi:10.1186/gb-2012-13-6-r56

Crabtree, J. et al. (2014) Circleator: flexible circular visualization of genome-associated data with BioPerl and SVG Bioinformatics 30:3125-
3127 doi:10.1093/bioinformatics/btu505

Dias, Z et al. (2012) SIS: a program to generate draft genome sequence scaffolds for prokaryotes BMC Bioinformatics 13:96 doi:10.1186/1471-
2105-13-96

Florea, M et al. (2016) Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain Proc
Natl Acad Sci USA 113:24 E3431-E3440 doi:10.1073/pnas.1522985113

Kurtz, S. et al. (2004) Versatile and open software for comparing large genomes Genome Biol. 5:R12. doi:10.1186/gb-2004-5-2-r12

Miller J.R. et al. (2008) Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24:2818-2824.
doi:10.1093/bioinformatics/btn548

Phillippy, A.M et al. (2008) Genome assembly forensics: finding the elusive mis-assembly. Genome Biology 9(3):R55 doi:10.1186/gb-2008-9-
3-155

Rissman, Al et al. (2009) Reordering contigs of draft genomes using the Mauve Aligner. Bioinformatics 25:2071-2073
doi:10.1093/bioinformatics/btp356

Rutherford, K et al. (2000) Artemis: sequence visualization and annotation Bioinformatics 16:944-945 doi:10.1093/bioinformatics/16.10.944
Seemann, T. (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068-9 doi: 10.1093/bioinformatics/btul53
Simpson J.T. et al. (2009) ABySS: a parallel assembler for short read sequence data. Genome Res. 19(6):1117-23. doi:10.1101/gr.089532.108.

Turner C.E. et al. (2015) Emergence of a New Highly Successful Acapsular Group A Streptococcus Clade of Genotype emma89 in the United
Kingdom, MBIO 6(4) doi:10.11.28/mBi0.00622-15.

https://doi.org/10.1101/148783
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Implementation
	Workflow
	Sequence Assessment and Preprocessing
	Contig Assembly
	Scaffolding
	Annotation, Visualisation and Outputs
	Example Assemblies

	Assembly Results

