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1 Abstract

Bayesian multiple regression methods are widely used in whole-genome analyses to solve
the problem that the number p of marker covariates is usually larger than the number n of
observations. Inferences from most Bayesian methods are based on Markov chain Monte Carlo
methods, where statistics are computed from a Markov chain constructed to have a stationary
distribution equal to the posterior distribution of the unknown parameters. In practice, chains
of about fifty thousand steps are typically used in whole-genome Bayesian regression analyses,
which is computationally intensive. In this paper, we have shown how the sampling of marker
effects can be made independent within each step of the chain. This is done by augmenting
the marker covariate matrix by adding p new rows to it such that columns of the augmented
marker covariate matrix are orthogonal. The phenotypes corresponding to the augmented
rows of marker covariate matrix are considered missing. Ideally, the computations at each
step of the MCMC chain, can be speeded up by the number k of computer processors up
to the number p of markers. Addressing the heavy computational burden associated with
Bayesian methods by parallel computing will lead to greater use of these methods.

2 Introduction

Genome-wide single nucleotide polymorphism (SNP) marker data have been adopted for whole
genome analyses, including genomic prediction [9] and genome-wide association studies [13].
In whole-genome analyses, the number p of marker covariates is usually larger than the num-
ber n of observations. Bayesian multiple regression methods are widely used to address this
problem, where the effects of all markers are estimated simultaneously combining the informa-
tion from the phenotypic data and priors for the marker effects. Most widely-used Bayesian
regression methods only differ in the prior used for the marker effects. For example, the prior
for each marker effect in BayesA [9] follows a scaled t distribution, whereas several other
Bayesian regression methods accommodate models where the prior for each marker effect
follows a mixture distribution, such as BayesB [9], BayesC [7] and BayesR [2, 10].

In these Bayesian regression analyses, closed-form expressions for the posterior distribution
of parameters of interest, e.g., marker effects, are usually not available. Thus inferences from
most Bayesian methods are based on Markov chain Monte Carlo (MCMC) methods, where
statistics are computed from a Markov chain constructed to have a stationary distribution
equal to the posterior distribution of the unknown parameters. Suppose x is a stochastic
vector of unknown parameters of interest. A Markov chain x1, x2, x3, . . . is a sequence of x,
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where the distribution of xt at step t conditional on all the previous steps only depends on
the distribution of xt−1 at step t− 1. It has been shown that statistics computed from such a
Markov chain converge to those from the stationary distribution as the chain length increases
[11]. In practice, chains of about fifty thousand steps are typically used in whole-genome
Bayesian regression analyses [4]. Note that the vector x has length p or a multiple of it if
auxiliary variables such as marker effect variances are introduced to the analysis as in BayesA
or BayesB.

A widely used method to construct such a Markov chain is Gibbs sampling. In Gibbs
sampling, at step t, each component of the vector xt is sampled from the conditional distri-
bution of that component given all the other components sampled up to that point [12]. In a
fast and efficient Gibbs sampler proposed for BayesB [1], for example, within each step, each
variable in the vector x is sampled conditional on all the other variables. This includes, for
each marker i, its effect, the effect variance and a Bernoulli variable indicating whether the
effect is zero or non-zero, as well as the intercept and the residual variance. This is an example
of a single-site Gibbs sampler where each variable is sampled at one time conditional on the
current values of all other variables. In summary, whole-genome Bayesian multiple regression
analyses require constructing Markov chains of length about fifty thousand. Within each step
of the chain, Gibbs sampling requires sampling at least p unknowns. This makes Bayesian
multiple regression analyses computationally intensive.

Parallel computing has been proposed to address this problem [14]. Parallel computing
refers to the use of multiple processors to perform computations in parallel. It is often sug-
gested that a large number of shorter chains can be constructed in parallel and combine the
statistics computed from these chains. However, the Ergodic theorem of Markov chain theory
states that statistics computed from an increasingly long chain, rather than an increasing
number of short chains, converge to those from the stationary distribution [11]. Thus, com-
bining several chains will reduce the Monte Carlo variance of the computed quantities, but
this may not yield statistics from the stationary distribution. The problem with this approach
is that a Markov chain is a sequential process, and thus it can not broken into several indepen-
dent processes. However, a valid approach is to use Independent Metropolis-Hastings (IMH)
sampling [12], where a large number of candidate samples xt are obtained independently using
parallel computing. Then these candidate samples are accepted or rejected sequentially using
the Metropolis-Hastings algorithm to construct a single long chain [8].

Another approach is to parallelize the Gibbs sampling for each marker within each step
of the chain. In single-site Gibbs sampler, however, sampling of each variable is from the full
conditional distribution, which is conditional distribution of the variable given the current
values of all other variables. Thus, parallel Gibbs sampling would not be feasible unless the
full conditional distributions do not depend on the values of the variables being conditioned
on, i.e., unless the full-conditionals are independent. In this paper, we will show how the full
conditional distributions of the marker effects can be made independent within each step of
the chain. This is done by augmenting the marker covariate matrix by adding p new rows
to it such that columns of the augmented marker covariate matrix are orthogonal [6]. The
phenotypes corresponding to the augmented rows of marker covariate matrix are considered
missing [6].

The computations for obtaining samples of the marker effects involves vector additions and
dot products of length n. Parallel computing can also be used to speed up these computations,
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where vectors are split up and additions or products are done in parallel on multiple processors
[5]. This approach can be used within each parallel Gibbs sampling.

The objective of this paper is to show how the parallel Gibbs sampling approach using an
augmented marker covariate matrix can be used in Bayesian multiple regression methods with
the BayesC prior. Use of this approach with other priors, such as those in BayesA, BayesB
or Bayesian Lasso, should be straightforward.

3 Methods

3.1 Model

In Bayesian regression, phenotypes of are often modeled as

y = 1µ+Xα+ e,

where y is the vector of n phenotypes, µ is the overall mean, X is the n× p marker covariate
matrix (coded as 0, 1, 2), α is a vector of p random marker effects and e is a vector of n
random residuals. A flat prior is used for µ. The prior for the residual e is e|σ2e ∼ N(0, Iσ2e)
with

(
σ2e | νe, S2

e

)
∼ νeS

2
eχ
−2
νe . The columns of X are usually centered. In BayesC, the prior

for the marker effect is a mixture of a point mass at zero and a univariate normal distribution
with null mean and a common locus variance σ2α with

(
σ2α | να, S2

α

)
∼ ναS2

αχ
−2
να [7].

3.2 Parallel computing strategy using orthogonal data augmentation

3.2.1 Gibbs sampling for marker effects in BayesC

In Gibbs sampling for BayesC, the full conditional distribution of αj , the marker effect for
locus j, when αj is non-zero, can be written as

(αj | ELSE) ∼ N

α̂j , σ2e

XT
j Xj +

σ2
e
σ2
α

 ,

where ELSE stands for all the other unknowns and y, Xj is the jth column of X, and α̂j is
the solution to (

XT
j Xj +

σ2e
σ2α

)
α̂j = XT

j

y − 1µ−
∑
j
′ 6=j

Xj′αj′


= XT

j y −XT
j 1µ−

∑
j′ 6=j

XT
j Xj

′αj′ . (1)

In the Gibbs sampling, the sample for each marker, αj , can not be obtained simulta-
neously in parallel, because samples for other marker effects, αj′ 6=j , appear in the term∑

j
′ 6=j X

T
j Xj′αj′ on the right-hand-side of (1), i.e., the full conditional distributions of the

marker effects are not independent. One solution is to orthogonalize columns of the marker
covariate matrix X such that the term

∑
j′ 6=j X

T
j Xj′αj′ in (1) becomes zero. The data aug-

mentation approach that is described below was proposed by Ghosh et al. [6] to obtain a
design matrix with orthogonal columns.
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3.2.2 Orthogonal Data Augmentation (ODA)

Let Wo =
[
1 X

]
be the design matrix for the BayesC analysis. Following Ghosh et al. [6],

we show here how to augment Wo as Wc =

[
Wo

Wa

]
such that

WT
c Wc =

[
WT

o WT
a

] [Wo

Wa

]
= D,

where Wa is a square matrix of dimension p and D is a diagonal matrix. Thus,

WT
aWa = D−WT

oWo, (2)

and Wa can be obtained using Cholesky decomposition (or Eigen decomposition) from (2).
The choice of D is Id, where d is set to be the largest eigenvalue of WT

oWo [6]. In practice,
a small value, e.g., 0.001, was added to d to avoid computationally unstable solutions [6].

3.2.3 BayesC model with ODA (BayesC-ODA)

Employing ODA, the Bayesian regression model can be written as[
y
ỹ

]
=

[
1

J̃

]
µ+

[
X

X̃

]
α+

[
e
ẽ

]
, (3)

where ỹ denotes a vector of unobserved phenotypes that are introduced into the model,[
e
ẽ

]
∼ N

(
0, Iσ2e

)
and J̃, X̃ are obtained using (2) with Wa =

[
J̃ X̃

]
,Wo =

[
1 X

]
.

In BayesC-ODA, the full conditional distribution of α under model (3), which was derived
in the Appendix, can be written as

(αj | ELSE) ∼ N

XT
j y + X̃T

j ỹ

d+ σ2
e
σ2
α

,
σ2e

d+ σ2
e
σ2
α

 , (4)

where the mean and variance parameters are free of the values of the other marker effects
αj′ 6=j . Thus the full conditional distribution of the marker effects are independent, and thus,
samples for each marker can be obtained simultaneously in parallel. At each step of the
MCMC chain, the “missing” phenotypes ỹ are sampled from

(ỹ | ELSE) ∼ N
(
J̃µ+ X̃α, Iσ2e

)
. (5)

The derivation of the full conditional distributions of other parameters of interest are shown
in the Appendix.

3.2.4 Simulated data

Simulated genotypic and phenotypic data were used to compare BayesC and BayesC-ODA.
The simulated genome consisted of 10 chromosomes each 5 cM long and containing 50 evenly
spaced loci. Allele states were sampled from a Bernoulli distribution with frequency 0.5. A
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random sample of 25 loci were selected as QTL, and their effects were sampled from a univari-
ate normal distribution with mean zero and variance one. Starting from a base population
of 100 males and 100 females, random mating was simulated for 100 generations to generate
linkage disequilibrium. In generation 101, the population size was increased to 3000 males
and 3000 females, and random mating was continued for four more generations. The QTL
effects were scaled such that the genetic variance for a randomly sampled individual from gen-
eration 105 was 1.0. Phenotypes were simulated by adding independent residuals that were
sampled from a normal distribution with null mean and variance one to the genetic values.
To investigate the performance of BayesC-ODA with n < p or n > p, 100 or 5000 individuals
were used for training. A population of 1000 individuals was used for testing. In the testing
population, estimated breeding values were calculated using BayesC and BayesC-ODA. Corre-
lation between estimated breeding values or estimated marker effects from BayesC-ODA and
BayesC was investigated for a chain of length 5,000,000 to study: 1) whether BayesC-ODA
provided identical estimated marker effects and breeding values as BayesC; 2) the convergence
of BayesC-ODA.

The true genetic variance and residual variance were used to calculate the scale parameters
of the inverse-chisquare priors of the residual variance and marker effect variance [3].

4 Results

The correlation between estimated breeding values for the testing population from BayesC and
BayesC-ODA by chain length was investigated. In the scenario where n < p, this correlation
was larger than 0.99 when the chain was longer than 9,000 and became larger than 0.999 as
the chain grew longer than 75,000. In the scenario where n > p, this correlation was larger
than 0.99 when the chain was longer than 1,000 and became 0.999 as the chain grew longer
than 18,000.

The correlation between posterior mean of marker effects from BayesC and BayesC-ODA
as the chain length increases was investigated. In the scenario where n < p, this correlation
was larger than 0.99 when the chain was longer than 37,000 and became larger than 0.999 as
the chain grew longer than 439,000. In the scenario where n > p, this correlation was larger
than 0.99 when the chain was longer than 649,000 and became about 0.999 as the chain length
reached 5,000,000.

5 Discussion

Whole-genome Bayesian multiple regression methods are usually computationally intensive,
where a MCMC chain of about fifty thousand steps is typically used for inference. In this
paper, a strategy to parallelize Gibbs sampling for each marker within each step of the MCMC
chain was proposed. This parallelization is accomplished by using an orthogonal data aug-
mentation strategy, where the marker covariate matrix is augmented by adding p new rows
such that its columns are orthogonal [6]. Then, the full conditional distributions of marker
effects become independent within each step of the chain, and thus, samples of marker effects
within each step can be drawn in parallel. In this paper, the full conditional distributions that
are needed for BayesC with orthogonal data augmentation (BayesC-ODA) were derived and
the convergence of BayesC-ODA was studied. In analyses of the simulated data, BayesC-ODA
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provided virtually identical predictions of breeding values as BayesC when the chain length
was about 20,000 to 80,000, which is similar to the commonly used chain length of 50,000.
Some ideas for parallel implementation of BayesC-ODA are briefly discussed below with more
details in the appendix. The investigation of these ideas and parallel implementation of
Bayesian multiple regression with ODA will be undertaken in a separate study.

In Bayesian multiple regression methods such as BayesC, the most time consuming task
is sampling the marker effects from their full conditional distributions. In BayesC-ODA,
however, the marker effects within each step can be sampled in parallel, using (4). Ideally,
the computations at each step of the MCMC chain, can be speeded up by the number k of
processors up to the number p of markers. However, two extra computations are required in
BayesC-ODA. The first is sampling of the vector ỹ of unobserved phenotypes, which is required
in each MCMC step. Each element of ỹ is sampled from an independent univariate normal
distribution with the variance equal to the current value of σ2e . The means of these normal
distributions can be computed in parallel as described in the appendix. Once the means are
computed, each element in ỹ can be sampled in parallel. The second is the computation
of the augmented matrix Wa as in (2), which is required only once at the beginning of the
MCMC chain. In (2), there are two computationally intensive tasks: 1) computation of XTX,
where X is a n × p matrix; and 2) Cholesky decomposition of a positive definite matrix of
size p. Parallel computing approaches for the first of these two tasks is given in the appendix.
The computing time for the Cholesky decomposition in the second task is relatively short,
taking only a few minutes for p = 50, 000 on a workstation, using one graphics processing
unit (GPU).

It is worth noting that two approaches are available to compute the right-hand-side of (1).
In the first approach, equation (29) in [5] is used, where number of operations is of order n. In
the second approach, equation (33) in [5] is used, where the number of operations is of order p.
In BayesC-ODA, the first approach is used. As can be seen from (1), the right-hand-side for
αj is XT

j y+ X̃T
j ỹ , where XT

j y is constant, and only X̃T
j ỹ needs to be computed at each step

of the MCMC chain, where the number of operations for this is always of order p regardless
of the size of n. However, when the first approach is used for multiple-trait BayesC analyses,
the size of the dataset that can be analyzed is limited by the requirement to store the entire
marker covariate matrix of size n×p in memory so that y−1µ−

∑
Xjαj can be updated with

the current value of αj . So, as n grows, this approach will become infeasible. On the other
hand, in BayesC-ODA, only X̃ of constant size p× p needs to be stored in memory regardless
of the size of n, which is required in (4) and (5). Thus, even when n grows, multiple-trait
analyses will only require storing a p× p matrix regardless of the number of traits and n.

We have shown here that the predictions of breeding values from BayesC-ODA converge
to those from BayesC but may require a chain of 80,000 steps as opposed to one of 50,000 for
BayesC. However, Gibbs sampling of marker effects within each step can be done in parallel
for BayesC-ODA, and this is expected to result in a considerable speedup for BayesC-ODA.
Further, as discussed above, multiple-trait analyses with BayesC-ODA only require storing the
p augmented rows of the covariate matrix regardless of the number of traits and observations.
Thus, when n is large, BayesC-ODA may provide an efficient approach for multiple-trait
Bayesian regression analyses.
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6 Appendix

In many modern programming languages, such as R, Python and Julia, libraries are available
to take advantage of multiple processors and GPUs for parallel computing of many matrix
or vector operations. The descriptions given below are only to illustrate the main principle
underlying parallel computing of splitting up calculations across processors. Actual imple-
mentations may be different and will depend on the programming language, the library and
the hardware used.

6.1 Parallel Computing of Ab

To sample the unobserved phenotypic values using (5), a matrix by vector product X̃α is
needed. Here we describe how parallel computing can be used to compute the product of a
matrix A by a vector b.

1. Split A of size n× p by columns into smaller matrices A(1),A(2),A(3), . . .of size n× pi,
and split α into smaller vectors b(1),b(2),b(3), . . . of length pi with

∑
pi = p.

2. Compute Ab as A(1)b(1) + Aj(2)b(2) + Aj(3)b(3) + . . ., where A(i)b(i) for i = 1, 2, . . .
are computed on different processors and then summed to obtain Ab.

The same strategy can also be used to calculate XTy by splitting X by rows.

6.2 Parallel Computing of ATA

In (2), computation of XTX is needed. Here we describe how parallel computing can be used
to compute ATA, where A is a n× p matrix.

1. Split X of size n× p by rows into smaller matrices A(1),A(2),A(3), . . .of size ni× p with∑
ni = n.

2. Compute ATA =
∑k

j=1A
T
(j)A(j), where AT

(j)A(j) for j = 1, 2, . . . are computed on
different processors and then summed to obtain ATA.

In addition to reducing the computing time, this approach can also address the limitation
that A may be too large to be stored on a single computing node by distributing the A(i)

across several nodes.
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6.3 Single-site Gibbs sampler for BayesC-ODA

6.3.1 full conditional distribution of the marker effect

Detailed derivation of the full conditional distributions of the marker effect for locus j in
BayesC is in Fernando and Garrick [3]. As shown in [3], the full conditional distribution of
αj in BayesC, when αj is non-zero, is

(αj | ELSE) ∼ N

α̂j , σ2e

XT
j Xj +

σ2
e
σ2
α

 , (6)

where ELSE stands for all the other unknowns and y, Xj is the jth column of X, and α̂j is
the solution to (

XT
j Xj +

σ2e
σ2α

)
α̂j = XT

j

y − 1µ−
∑
j′ 6=j

Xj′αj′

 . (7)

The full conditional distribution of αj in BayesC-ODA, which is shown below, can be obtained

from (6) and (7) by replacing y with
[
y
ỹ

]
, 1 with

[
1

J̃

]
and X with

[
X

X̃

]
. Note that columns

of the augmented covariate matrix
[
1 X

J̃ X̃

]
are orthogonal. Thus, (7) for BayesC-ODA can

be simplified as

([
XT
j X̃

T
j

] [Xj

X̃j

]
+
σ2e
σ2α

)
α̂j =

[
XT
j X̃

T
j

][y
ỹ

]
−
[
1

J̃

]
µ−

∑
j′ 6=j

[
Xj′

X̃j′

]
αj′


([

XT
j X̃

T
j

] [Xj

X̃j

]
+
σ2e
σ2α

)
α̂j =

[
XT
j X̃

T
j

] [y
ỹ

]
−
[
XT
j X̃

T
j

] [1
J̃

]
µ−

∑
j′ 6=j

[
XT
j X̃

T
j

] [Xj′

X̃j′

]
αj′(

d+
σ2e
σ2α

)
α̂j =

[
XT
j X̃

T
j

] [y
ỹ

]
α̂j =

XT
j y + X̃T

j ỹ

d+ σ2
e
σ2
α

. (8)

Thus, the full conditional distribution of αj can be written as

(αj | ELSE) ∼ N

XT
j y + X̃T

j ỹ

d+ σ2
e
σ2
α

,
σ2e

d+ σ2
e
σ2
α

 .

Detailed derivation of the full conditional distribution of the indicator variable δj indi-
cating if αj had a normal distribution (δj = 1) or if it is null (δj = 0) in BayesC is also in
Fernando and Garrick [3]. The full conditional distribution of δj in BayesC is

Pr (δj = 1 | ELSE) =
f1
(
rj | σ2α, σ2e

)
Pr (δj = 1)

f0 (rj | σ2e)Pr (δj = 0) + f1 (rj | σ2α, σ2e)Pr (δj = 1)
, (9)
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where f1
(
rj | σ2α, σ2e

)
is a univariate normal with

E
(
ri | σ2α, σ2e

)
= 0,V ar

(
ri | σ2α, σ2e

)
=
(
XT
j Xj

)2
σ2α +XT

j Xjσ
2
e ,

and f0
(
rj | σ2α, σ2e

)
is a univariate normal with

E
(
ri | σ2e

)
= 0,V ar

(
ri | σ2e

)
= XT

j Xjσ
2
e ,

and

rj = XT
j

y − 1µ−
∑
j′ 6=j

Xj′αj′

 .

The full conditional distribution of δj in BayesC-ODA, which is shown below, can be

obtained from (9) by replacing y with
[
y
ỹ

]
, 1 with

[
1

J̃

]
and X with

[
X

X̃

]
. Thus, (9) for

BayesC-ODA can be simplified as

Pr (δj = 1 | ELSE) =
f1
(
rj | σ2α, σ2e

)
Pr (δj = 1)

f0 (rj | σ2e)Pr (δj = 0) + f1 (rj | σ2α, σ2e)Pr (δj = 1)
,

where f1
(
rj | σ2α, σ2e

)
is a univariate normal with

E
(
ri | σ2α, σ2e

)
= 0,V ar

(
ri | σ2α, σ2e

)
= d2σ2α + dσ2e ,

and f0
(
rj | σ2e

)
is a univariate normal with

E
(
ri | σ2e

)
= 0,V ar

(
ri | σ2e

)
= dσ2e ,

and

rj = XT
j y + X̃T

j ỹ.

6.3.2 full conditional distributions of the unobserved phenotypes

The full conditional distribution of ỹ can be written as

f
(
ỹ | α, µ, σ2e , σ2α,y

)
= f

(
ỹ | α, µ, σ2e

)
∝ N

(
J̃µ+ X̃α, Iσ2e

)
.

6.3.3 full conditional distributions of other unknowns

The derivation of the full conditional distributions of other parameters such as µ, σ2α, σ2e are
straightforward. Thus they are presented as below without derivations.

(µ | ELSE) ∼ N

(
1Ty + J̃T ỹ

d
,
σ2e
d

)
;(

σ2α | ELSE
)
∼
(
αTα+ ναS

2
α

)
χ−2k+να ;(

σ2e | ELSE
)
∼
(
yTcorrycorr + ναS

2
α

)
χ−2n+νe ,

where ycorr =
[
y
ỹ

]
−
[
1

J̃

]
µ−

∑[
Xj

X̃j

]
αj and k is the number of markers in the model.
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