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Abstract

Double-strand breaks (DSBs) result from the attack of both DNA strands by multiple sources, includ-
ing exposure to ionizing radiation or reactive oxygen species. DSBs can cause abnormal chromosomal
rearrangements which are linked to cancer development, and hence represent an important issue. Recent
techniques allow the genome-wide mapping of DSBs at high resolution, enabling the comprehensive study
of DSB origin. However these techniques are costly and challenging. Hence we devised a computational
approach to predict DSBs using the epigenomic and chromatin context, for which public data are available
from the ENCODE project. We achieved excellent prediction accuracy (AUC = 0.97) at high resolution
(< 1 kb), and showed that only chromatin accessibility and H3K4me1 mark were sufficient for highly
accurate prediction (AUC = 0.95). We also demonstrated the better sensitivity of DSB predictions com-
pared to BLESS experiments. We identified chromatin accessibility, activity and long-range contacts as
best predictors. In addition, our work represents the first step toward unveiling the ”cis-DNA repairing”
code underlying DSBs, paving the way for future studies of cis-elements involved in DNA damage and
repair.

1 Introduction

Double-strand breaks (DSBs) arise when both DNA strands of the double helix are severed. DSBs are
caused by the attack of deoxyribose and DNA bases by reactive oxygen species and other electrophilic
molecules [22]. DSBs are particularly hazardous to the cell because they can lead to deletions, transloca-
tions, and fusions in the DNA, collectively referred as chromosomal rearrangements [23]. DSBs are most
commonly found in cancer cells. Several high-throughput sequencing techniques have been developped
for the genome-wide mapping of DSBs in situ such as GUIDE-seq [34], BLESS [8] and DSBCapture [17].
The most recent technique, DSBCapture, allowed to map more than 80 thousand endogenous DSBs at
a lower than 1 kb resolution in human. To date, DSBs have been mapped at high resolution only for a
few number of cell lines, because of high sequencing costs and experimental difficulties. This prevented
the comprehensive study of the double-strand break landscape in the human genome across diverse cell
lines and tissues.

Chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) and DNase
I hypersensitive site sequencing (DNase-seq) data are publicly available for dozens of cell lines with the
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ENCODE [31] and Roadmap Epigenomics [7] projects. On the one hand, recent studies have shown that
the mapping of regulatory elements such as enhancers or promoters can be accurately predicted using
available epigenome and chromatin data [9,14]. Other studies have shown that the epigenome can in its
turn be predicted by combinations of DNA motifs and DNA shape [21, 29, 36, 38]. On the other hand,
DSBs and the resulting DNA repair mechanisms were shown to be linked to epigenome marks, including
H3K4me1/2/3 and chromatin accessibility [17]. Accordingly, PRDM9-mediated trimethylation of H3K4
(H3K4me3) was originally shown to play a critical role in regulating DSBs associated with meiotic recom-
bination hotspots [1,11,24]. Moreover the repair of DSBs involves both posttranslational modification of
histones, in particular γ-H2AX, and concentration of DNA-repair proteins at the site of damage [13,28].
It remains unclear to what extent DNA motifs or histone modifications predict or regulate the cellular
response to DSBs in other developmental stages. Here we thus sought to test whether publicly available
epigenome and chromatin data, or DNA motifs and shape could be used to possibly predict DSBs.

In this article, we demonstrate, for the first time, that endogenous DSBs can be computationally
predicted using the epigenomic and chromatin context, or using DNA sequence and DNA shape. Our
predictions achieve excellent accuracy (AUC > 0.97) at high resolution (<1kb) using available ChIP-
seq and DNase-seq data from public databases. DNase, CTCF binding and H3K4me1/2/3 are among
the best predictors of DSBs, reflecting the importances of chromatin accessibility, activity and long-
range contacts in determining DSB sites and subsequent repairing. Another important predictor is p63
binding, a member of the p53 gene family known to be involved in DNA repair. We also successfully
predict DSB sites using DNA motif occurences only (AUC = 0.839), supporting a ”cis-DNA repairing”
code of DSBs involving numerous DNA damage and repair protein binding motifs including members
of the transcription factor complex AP-1 and p53 family. In addition, DNA shape analysis further
reveals the importance of the structure-based readout in determining DSB sites, complementary to the
sequence-based readout (motifs).

2 Results and Discussion

2.1 Double-strand break prediction approach

Our computational approach to predict DSBs is schematically illustrated in Figure 1. In the first step, we
analyzed public DSBCapture data from Lensing et al. [17], which provided the most sensitive and accurate
genome-wide mapping of double-strand breaks to date (Figure 1a). DSBCapture is a technique that
captures DSBs in situ and that can directly map them at the single-nucleotide resolution. DSBCapture
peaks were called with less than 1 kb resolution (median size of 391 bases). The DSBCapture peaks
obtained from two biological replicates were intersected to yield more reliable DSB sites. Endogeneous
breaks were captured for NHEK cells, for which numerous ChIP-seq and DNase-seq data were made
publicly available by the ENCODE project [31]. In the second step, we integrated and mapped different
types of data within DSB sites and non-DSB sites. To prevent bias effects, non-DSB sites were randomly
drawn from the human genome with sizes, GC and repeat contents similar to those of DSB sites [10]
(Figure 1b). ChIP-seq and DNase-seq peaks in NHEK cells as obtained from the ENCODE project
were mapped corresponding to DSB and non-DSB sites [31]. We also mapped p63 ChIP-seq peaks
from keratinocyte cells (HKC) [15]. We further searched for potential protein binding sites at DSB and
non-DSB sites using JASPAR 2016 database motif position weight matrices [20], and predicted DNA
shape at DSB and non-DSB sites using Monte Carlo simulations [6]. In the third step, a random forest
classifier was built to discriminate between DSB sites and non-DSB sites based on epigenome marks or
DNA (Figure 1c). Random forest variable importances were used to estimate the predictive importance
of a feature. We also compared random forest predictions with another popular method, lasso logistic
regression [32]. Using lasso regression, we assessed the positive, negative or null contribution of a feature
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Figure 1. Double-strand break (DSB) prediction using epigenome mark or DNA. The prediction
approach consisted in three steps. a) Mapping of DSBCapture sequencing data and DSB peak calling.
b) Mapping of features at DSB and non-DSB sites. Features included epigenomic and chromatin data
from ENCODE project, DNA motifs from JASPAR database and DNA shape predictions. c) Prediction
of DSB sites using features.

to DSBs. We then split the DSB dataset into a training set to learn model parameters by cross-validation,
and into a testing set to compute receiver operating characteristic (ROC) curve and the area under the
curve (AUC) for prediction accuracy evaluation.

2.2 Double-strand breaks are enriched with epigenome marks and DNA mo-
tifs

We first sought to comprehensively assess the link between DSBs and epigenome marks or DNA motifs.
As previously shown [17,30], several epigenomic and chromatin marks colocalized at double-strand breaks
(Figure 2a). Among the most enriched marks were DNase I hypersensitive sites, H3H4 methylations and
CTCF (Figure 2b). For instance, 91% of DSBs colocalized to a DNase site, whereas this percentage
dropped to 11% for non-DSB regions. This corresponded to an odds ratio (OR) of 89.3. Similarly a high
enrichment was found for H3K4me2 (74% versus 11%; OR = 22.4) and for the insulator protein CTCF
(25% versus 2%; OR = 19), which may involve its interactions with the insulator-related cofactor cohesin
that has been shown to protect genes from DSBs [5]. As such, DSBs mostly localized within open and
active regions that were often implicated in long-range contacts [27]. Interestingly, DSBs also colocalized
with tumor protein p63 binding (19.4% versus 1%; OR = 23.8), a member of the p53 gene family involved
in DNA repair [19,37]. In addition, we could distinguish DNase and CTCF sites that were enriched at the
center of DSBs, from histone marks that were found at the edges of DSB sites (Figure 2c). Therefore the
strong enrichments of epigenomic and chromatin marks at DSB sites suggested that DSB regions could
be accurately predicted using available ChIP-seq and DNase-seq data from public databases including
ENCODE and Roadmap Epigenomic.
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Figure 2. Epigenomic, chromatin and DNA motif profiles of double-strand breaks (DSBs). a) A
genome browser view of DSBs with histone marks, chromatin openess (DNase-seq) and DNA binding
proteins. b) Colocalization frequencies of epigenomic marks and DNA binding proteins at DSB sites, as
compared to non-DSB sites. c) Average profiles of epigenomic marks and DNA binding proteins at DSB
sites. d) Enrichment of DNA motifs at DSB sites, as measured by the odds ratio and the percent of
DSB loci with motif.

Previous enrichment analyses of DNA-binding proteins were limited by available ChIP-seq data. Hence
we sought which DNA motifs may be enriched at DSB sites as a way to obtain a more comprehensive
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list of candidate DNA-binding proteins. Over the 434 available motifs from JASPAR database, 134 were
significantly enriched (p < 0.05, Bonferroni correction), indicating that DSBs were associated with a large
number of protein binding sites (Figure 2d). Among the most enriched and frequent motifs, we identified
numerous motifs specifically recognized by protein cofactors of the transcription factor complex AP-1
whose activity has been shown to be induced by genotoxic agents. This included JUND (OR = 1.40,
12% of DSBs), JUNB (OR = 1.27, 19% of DSBs), the heterodimer BATF::JUN (OR = 1.31, 10% of
DSBs), and also FOS (OR = 1.37, 20% of DSBs), FOSL1 (OR = 1.37, 17% of DSBs) and FOSL2
(OR = 1.27, 18% of DSBs). Among the most enriched but less frequent motifs, we found as expected
CTCF (OR = 1.54, 1.7% of DSBs), as well as the members of the tumor protein family p53, i.e. p53
itself (OR = 1.54, 0.2% of DSBs), p63 (OR = 1.49, 0.3% of DSBs) and p73 (OR = 1.54, 0.1% of DSBs),
whose cofactors are specifically involved in the response to DNA damage [19, 37]. Such enrichments of
DNA motifs at DSB sites therefore supported the view that DNA sequence could already predict some
of the DSBs encountered.

2.3 Prediction using epigenomic and chromatin data

Given the strong link between DSBs and epigenomic and chromatin marks, we sought to build a classifier
to discriminate between DSB sites from non-DSB sites based on the presence/absence of such marks.
For this purpose, we used random forests that represent very efficient classifiers to predict a feature, and
that can capture non-linear and complex interaction effects [3]. Using this classifier, we obtained excel-
lent predictions of DSBs based on the epigenomic and chromatin marks available (AUC=0.970; Figure
3a). We could also compute the ”variable importance” (V I) that reflects the importance of a mark as a
predictor (Figure 3b). Among the marks, DNase showed the highest variable importance (V I = 0.180),
reflecting known higher chromatin accessibility after DNA damage [28] or the involvement of chromatin
remodeling complexes in processing of DSBs [12]. Other good predictors were CTCF (V I = 0.042), p63
(V I = 0.031), H3K4me1 (V I = 0.028), H3K4me2 (V I = 0.019), H3K4me3 (V I = 0.012) and H3K27ac
(V I = 0.010), highlighting the roles of active chromatin, but also long-range contacts and DNA damage
response in predicting DSB sites. A drawback of variable importance lies in its inability to distinguish be-
tween the positive or negative contribution of the predictive mark on DSBs. For this reason, we also used
lasso logistic regression to predict DSBs [32]. With this second model, we obtained excellent predictions,
although slightly less accurate (AUC=0.967, Supplemental Figure 1). From lasso regression, we could
assess the positive or negative contributions of the predictive marks using beta coefficients (Figure 3c).
We identified positive predictive contributions of DNase, CTCF, p63, H3K4me1 and H3K4me2 marks,
as previously revealed by enrichment analysis. We also uncovered negative predictive contributions of
H3K9ac, H3K36me3 and H3K79me2. In agreement, H3K9ac was shown to be rapidly and reversibly
reduced in response to DNA damage [33]. Moreover, H3K36me3 may negatively impede on DSBs by
restricting chromatin accessibility through nucleosome positioning [18] or more directly by favoring the
repair of DSBs [26].

We next sought to build a classifier using only one or two epigenomic marks, because it could allow
to predict DSB sites even for cells for which only a few data may be available. We found that DNase
I sites alone were sufficient to achieve good prediction accuracy (AUC=0.919), whereas H3K4me2 was
not sufficient (AUC=0.816). Combinations of DNase with H2A.Z or H3K4me1 yielded very accurate
predictions (AUC=0.952 and AUC=0.951, resp.), close to the model including all marks. All results
demonstrated that DSBs can be accurately predicted at less than 1 kb resolution using just a few data.
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Figure 3. Prediction of double-strand breaks (DSBs) using epigenomic marks and random forests. a)
Receiver operating characteristic (ROC) curve for the prediction of DSBs. Area under the curve (AUC)
is plotted. b) Variable importances of epigenomic marks. c) Lasso logistic regression coefficients. d)
Different predictive models including all marks, DNase only, H3K4me2 only, DNase+H2A.Z, or
DNase+H3K4me1.

2.4 Model predictions outperformed BLESS experiment and were validated
using independent dataset

We then compared previous DSB predictions with DSBs identified by BLESS experiments [8, 17]. We
also included in the comparison DSBCapture DSBs as gold standard. We first looked at predicted DSB
sites surrounding the two genes MYC and MAP2K9 (Figure 4a). For MYC, random forests correctly
identified the 4 DSBs that were detected by DSBCapture, but erroneously predicted one DSB (yellow
circle), whereas BLESS only identified one DSB out of four. For MAP2K3, random forests successfully
predicted all DSBs detected by DSBCapture, whereas BLESS only identified three DSBs out of 11. We
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Figure 4. Comparison of predicted and BLESS double-strand breaks (DSBs) and validation with an
independent dataset. a) Comparison for the MYC and MAP2K9 genes. b) Venn diagram illustrating
the overlaps between DSBCapture (gold standard), random forest predictions and BLESS DSBs. c)
Receiver operating characteristic (ROC) curve for the prediction of DSBs trained on replicate 1 and
tested on same replicate. Area under the curve (AUC) is plotted. d) ROC curve for the prediction of
DSBs trained on replicate 1 and tested on replicate 2.

then compared predictions with BLESS at the genome-wide level (Figure 4b). We observed that random
forests correctly predicted 18084 out of 18510 DSB sites (97.70%) found by BLESS, while it also success-
fully identified additional 63587 out of 66593 DSB sites (95.48%) found by DSBCapture that were not
detected by BLESS. The model only misclassified 1552 sites as DSBs. Such comparisons thus revealed
the better sensitivity of random forest predictions in detecting DSBs compared to BLESS experiments.

In the previous subsection, we evaluated the accuracy of model predictions using a testing dataset
that was from the same data as the training data (DSBs that overlapped between two replicates were split
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into a training and a testing datasets). Here we assessed model predictions by training random forests
on a first biological replicate and by testing prediction accuracy on a second biological replicate. For this
purpose, we used the two available DSBCapture biological replicates [17]. Accordingly, we used ENCODE
epigenomics data for which two biological replicates were available: DNase, CTCF, H3K4me3, H3K27me3
and H3K36me3. The first (resp. second) replicates of ENCODE data were associated with the first (resp.
second) DSBCapture replicate. Using only those 5 DNase-seq and ChIP-seq data, the model learned
with the first replicate achieved accurate predictions on tested data from the first replicate (AUC=0.891)
(Figure 4c). It is noteworthy that the observed lower accuracy compared to previous subsection (Figures
3a and d) can be explained by the small number of epigenomic data, and the lower reliability of DSBs
identified using only one DSBCapture replicate. To validate the model on an independent dataset, we
predicted DSBs from the second replicate using the model trained on the first replicate together with
DNase-seq and ChIP-seq data of the second replicate. We obtained accurate predictions (AUC=0.889)
close to the one obtained for the first replicate (Figure 4d). These accurate predictions demonstrated
that using a classifier trained with epigenome and chromatin data represented a reliable strategy for
predicting DSBs.

2.5 Prediction from DNA motifs and shape

There is growing evidence supporting the importance of the cis-regulatory code in shaping the epigenome
[36]. Moreover, we previously identified a large number of DNA motifs that were enriched or depleted at
DSB sites, suggesting a ”cis-DNA repairing” code. Hence, we explored the possibility to predict DSBs
based on the occurrence of DNA motifs from JASPAR database. We built a random forest classifier us-
ing 434 available motifs and obtained good prediction accuracy (AUC=0.827; Figure 5a). Several motifs
from the transcription factor complex AP-1 represented good predictors such as FOS::JUN (V I = 0.016)
and FOS (V I = 0.009) (Figure 5b), which were previously shown to be enriched at DSB sites. We also
uncovered TFAP2A motif as good predictor (V I = 0.011), corresponding to a protein that has not been
linked to DNA repair yet. Using lasso regression, we improved previous predictions (AUC=0.839; Figure
5a). Based on lasso regression, we found that the CTCF motif presented the highest beta coefficient
(β = 3.22), corresponding to an odds ratio OR = 25 (Figure 5c), supporting recent evidence showing
that long-range contacts are involved in DNA repair [2, 30]. Furthermore we found many motifs recog-
nized by proteins that participate to DNA damage and repair. For instance, all tumor proteins p53,
p63 and p73 motifs showed high coefficients (β > 2.03, OR > 7.6). Interestingly, we also found motifs
recognized by factors highly related to DSB pathways such as those involved in heavy metal response
(MTF-1: β = 2.08, OR = 8), in oxidative stress response (NRF1: β = 0.93, OR = 2.53; REST: β = 1.75,
OR = 5.75), in endoplasmic reticulum stress (ATF4: β = 0.97, OR = 2.64) and in estrogen-induced DNA
damage (ESR1: β = 0.88, OR = 2.41). Many of the abovementionned proteins were actually shown to
interact with each other. For instance, NRF1 associates with Jun proteins of AP-1 complex [35]. ESR1
associates with AP-1/JUN and FOS to mediate estrogen element response (ERE)-independent signal-
ing [16], which may thus participate to coordinate multiple functions along with the processing of DSBs.

DNA shape was recently shown to predict transcription factor binding sites and gene expression
[21,25]. We thus assessed if DNA shape could similarly serve to predict DSBs together with motifs. For
this purpose, we predicted four DNA shape features using simulations: minor groove width (MGW),
propeller twist (ProT), roll (Roll) and helix twist (HelT) of DSB sites at base resolution. From each
feature, we computed 12 predictors including quantiles (0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,
90% and 100%) and the variance to describe the distribution of the feature within a DSB site. We
used the resulting 48 variables combined with motif occurences to predict DSBs with random forests
and obtained better accurary (AUC = 0.838) compared to using motifs alone (AUC = 0.827; Figure
5d). Among the DNA shape variables, ProT median and MGW variance presented the highest variable
importances (V I = 0.01 and V I = 0.01, resp.). Using lasso regression, we also obtained better predictions
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Figure 5. Prediction of double-strand breaks (DSBs) using DNA motifs and shape. a) Receiver
operating characteristic (ROC) curve for the DSB predictions using DNA motifs from JASPAR
database. Random forest (RF) and lasso logistic regression (Lasso) were compared. b) The 20 highest
DNA motif variable importances. c) The 20 highest DNA motif lasso coefficients. d) ROC curve for the
DSB predictions using DNA motifs with DNA shape.

(AUC = 0.858), compared to using motifs only (AUC = 0.839) (Figure 5d). These results reflected the
importance of DNA shape in determining DSB sites, in agreement with studies showing that narrow
minor grooves (created by either sequence context or DNA bending) limit access by reactive oxygen
species [4].
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3 Conclusion

Double-strand breaks represent a major threat to the cell, and they are associated with cancer develop-
ment. Here we show, for the first time, that such DSBs can be computationally predicted using public
epigenomic data, even when the availability of data is limited (e.g. DNase I and H3K4me1). By using
state-of-the-art computational models, we achieve excellent prediction accuracy, paving the way for a
better understanding of DSB formation depending on developmental stage or cell-type specific epigenetic
marks. In addition, our work represents the first step toward unveiling the ”cis-DNA repairing” code
underlying DSBs, which is composed of numerous DNA motifs for binding of key regulators of DNA
repair, and could guide further locus- specific genome editing.

4 Materials and Methods

4.1 Double-strand breaks

We used double-strand breaks mapped by DSBCapture in human epidermal keratinocytes (NHEK) cells
[17]. DSBCapture peaks were called using MACS 2.1.0 on human genome assembly hg19 (https://github.com-
/taoliu/MACS). The peaks obtained from two biological replicates were intersected to yield more reliable
DSB sites used for model predictions.

4.2 ChIP-seq and DNase-seq data

We used ChIP-seq (CTCF, POL2B, EZH2, H3K4me1/me2/me3, H3K9me1/me3/ac, H3K27me3/ac,
H3K36me3, H4K20me1) and DNase-seq data for NHEK cells from the ENCODE project [31]. We also
used p63 ChIP-seq of keratinocyte cells (HKC) from Kouwenhoven et al. [15].

4.3 DNA motifs

We used transcription factor binding site (TFBS) motif position frequency matrices from the JAS-
PAR database (http://jaspar.genereg.net/). We called transcription factor binding sites over the human
genome using the position weight matrices and a minimum matching score of 80%.

4.4 DNA shape

We predicted four DNA shape features using Monte Carlo simulations: minor groove width (MGW) and
propeller twist (ProT) at base pair (bp) resolution and values of roll (Roll) and helix twist (HelT) at base
pair step resolution using R package DNAshapeR (https://bioconductor.org/packages/release/bioc/html
/DNAshapeR.html).

4.5 Random forest and lasso regression

We used R package ranger (https://cran.r-project.org/web/packages/ranger/) to efficiently compute ran-
dom forest classification [3]. We used the default package parameters: num.trees = 500 and mtry is
the square root of the number variables. Variable importance was computed using the mean decrease in
accuracy in the out-of-bag sample. To discrimate between DSB and non-DSB sites, we randomly selected
genomic sequences that matched sizes, GC and repeat contents of DSB sites using R package gkmSVM
(https://cran.r-project.org/web/packages/gkmSVM/). To learn the model, we mapped epigenomic data,
DNA motifs and DNA shape as follows. For epigenomic data including ChIP-seq and DNase-seq data,
we used peak genomic coordinates of a feature (for instance CTCF binding sites) and considered the
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presence (x = 1) or absence (x = 0) of the corresponding feature at the DSB site. If a feature peak
only overlapped 60% of the DSB site, then x = 0.6. For DNA motifs, we computed the number of motif
occurrence within DSB and non-DSB sites. For DNA shape, we computed 4 features including MGW,
ProT, Roll and HelT of DSB sites at base resolution. For each DNA shape feature, we then computed
12 predictors including quantiles (0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%) and
the variance to describe the distribution of the feature within a DSB site. The DSB data were next split
into two sets: the training set used for learning the model and a test set used for assessing prediction
accuracy. We also used R package glmnet (https://cran.r-project.org/web/packages/glmnet/index.html)
to compute lasso logistic regression with cross-validation. To estimate prediction accuracy of random
forests and lasso regression, we computed the receiver operating characteristic (ROC) curve and the area
under the curve (AUC).
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