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ABSTRACT	
	
Epidemiological	evidence	has	long	associated	environmental	mutagens	with	
increased	cancer	risk.	However,	links	between	specific	mutation-causing	
processes	and	the	acquisition	of	individual	driver	mutations	have	remained	
obscure.	Here	we	have	used	public	cancer	sequencing	data	to	infer	the	
independent	effects	of	mutation	and	selection	on	driver	mutation	complement.	
First,	we	detect	associations	between	a	range	of	mutational	processes,	including	
those	linked	to	smoking,	ageing,	APOBEC	and	DNA	mismatch	repair	(MMR)	and	
the	presence	of	key	driver	mutations	across	cancer	types.	Second,	we	quantify	
differential	selection	between	well-known	alternative	driver	mutations,	including	
differences	in	selection	between	distinct	mutant	residues	in	the	same	gene.	These	
results	show	that	while	mutational	processes	play	a	large	role	in	determining	
which	driver	mutations	are	present	in	a	cancer,	the	role	of	selection	frequently	
dominates.	
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INTRODUCTION	
	
Environmental	mutagens	have	long	been	associated	with	cancer	risk1-3,	but	links	
between	mutagens	and	the	generation	of	specific	pathological	mutations	have	remained	
obscure.	A	landmark	study	by	Alexandrov	et	al.4,5	identified	distinct	mutational	
”signatures”,	each	representing	distinct	mutagenic	processes,	many	of	which	are	
attributable	to	environmental	mutagens.		Each	signature	consists	of	the	frequency	of	
mutations	in	96	“channels”	of	somatic	single	nucleotide	substitution	variants	(SNVs)	in	
the	contexts	of	the	two	flanking	bases.	The	study	described	21	different	mutational	
signatures,	each	characterised	by	different	proportions	of	the	96	types.	Subsequently	
more	than	30	signatures,	many	with	tumour	type-specificity,	have	been	reported6-11.		
	
The	likelihood	of	acquisition	of	specific	cancer-causing	mutations12,	hereafter	referred	
to	as	‘driver	mutations’	is	dependent	on	the	underlying	mutational	processes,	since	the	
probability	of	a	particular	mutation	channel	differs	between	processes.	For	example,	a	
previous	report	has	highlighted	links	between	APOBEC-induced	mutagenesis	and	
PIK3CA	mutations	across	cancer	types13.		Here	we	provide	a	comprehensive	in	silico	
assessment	of	the	causal	relationship	between	mutational	processes	and	driver	
mutation	acquisition	across	cancer	types.		

	
Selective	differences	between	related	driver	mutations	(e.g.	differential	consequences	
for	cell	evolutionary	fitness)	are	also	expected	to	influence	the	driver	mutation	
complement	of	cancer	samples.	Traditionally	it	has	been	convenient	to	classify	
mutations	found	in	cancer	as	drivers	or	passengers14,	but	it	is	likely	that	the	effects	of	
driver	mutations	actually	lie	on	a	continuum,	including	both	‘mini-drivers’	and	major	
drivers15,16.	However,	the	relative	selective	advantages	of	individual	driver	mutations	
have	not	yet	been	quantified.			Here	we	analyse	evidence	for	differential	selection	
between	frequently	mutated	amino	acids	within	a	driver	gene	by	controlling	for	
differences	in	the	sequence-specific	mutation	rate,	in	cases	where	the	mutational	
signatures	alone	cannot	fully	explain	the	spectra	of	mutations	in	driver	genes.		We	also	
analyse	differential	selection	between	sets	of	related	genes	that	show	patterns	of	
mutational	exclusivity.			
	
Together,	our	analysis	quantifies	the	contributions	of	both	mutation	and	selection	in	
shaping	the	spectrum	of	driver	mutations	across	cancer	types.	

RESULTS	
	
Testing	for	mutational	signature	and	driver	mutation	associations	
	
We	investigated	the	causal	relationships	between	mutational	signatures	and	mutations	
that	caused	recurrent	amino	acid	changes	within	cancer	types.	We	reasoned	that	when	a	
mutational	signature	acts,	it	makes	particular	driver	mutations,	caused	by	certain	
mutation	channels,	more	likely.	We	therefore	tested	for	a	difference	in	the	levels	of	
relative	mutational	signature	activity	in	samples	harbouring	specific	driver	mutation	
DNA	changes.	The	use	of	signature	and	individual	channel	activity	information	was	
designed	to	increase	the	sensitivity	and	specificity	of	the	approach.	Where	the	activity	of	
a	mutational	signature	was	significantly	higher	in	cancers	with	a	mutation	of	interest	
compared	to	those	without,	we	considered	it	prima	facie	evidence	of	a	causative	
relationship	between	the	mutational	signature	activity	and	the	presence	of	the	driver	
mutation.		
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Data	were	obtained	and	curated	from	the	TCGA	and	International	Cancer	Genome	
Consortium	(ICGC)	data	portals	(see	Methods).	Driver	genes	were	classified	according	to	
a	recent	study16.	The	data	set	for	analysis	represented	11,335	samples	across	22	major	
cancer	types	(listed	in	Table	S1).	There	were	1,448	whole	genome	samples	and	9,887	
whole	exome	samples.	Downstream	analysis	was	based	on	14,401,296	SNVs,	of	which	
41,201	were	non-synonymous	mutations	in	driver	genes.	We	did	not	consider	other	
types	of	genome	alteration	(such	as	copy	number	alteration).		
	
We	estimated	the	relative	activity	level	(exposure)	of	each	mutational	signature	in	each	
of	the	samples,	using	non-negative	least	squares	regression	(see	Methods).	Simulated	
data	showed	that	samples	with	20	mutations	or	more	provided	sufficiently	accurate	
recovery	of	mutational	processes	(see	Methods;	Figure	S1).	Consequently,	we	excluded	
1,147	samples	with	fewer	than	20	mutations	from	this	analysis	(see	Methods),	leaving	
10,188	samples	for	further	analysis.	In	each	cancer	type,	we	classed	as	‘recurrent’	non-
silent	DNA	mutations	in	driver	genes	that	occurred	at	least	four	times	in	the	cancer	type.	
For	each	such	change,	we	selected	the	channel	among	the	96	possibilities	that	matched	
the	observed	mutation	(hereinafter	the	‘causal	channel’	of	the	change).	For	this	channel,	
we	identified	the	signatures	where	the	frequency	of	the	causal	channel	was	above	
average,	relative	to	all	signatures	active	in	the	cancer	type	(Figure	1a,b,d,e).	For	each	of	
these	signatures,	we	tested	for	an	association	between	signature	activity	and	presence	
of	the	mutation	in	the	cancer	type.		Power	to	detect	associations	was	estimated	at	14%	
at	alpha	=	0.05	(min	=	0%,	max	=	99%),	and	41/1027	tests	had	a	power	above	50%	(see	
Methods).	We	found	that	the	power	was	influenced	by	the	number	of	times	a	mutation	
occurred,	as	well	as	the	enrichment	of	the	mutation	causal	channel	in	the	signature	
compared	to	average	in	the	cancer	type		(Multiple	Regression,	p	<	2x10-16,	3.3x10-9,	
respectively).	

Mutational	signatures	shape	driver	mutation	landscape	
	
There	were	56	significant	associations	between	signature	activity	and	driver	mutations	
(Mann-Whitney	U	test,	FDR	=	0.05;	one-sided	test),	out	of	1,027	triplets	of	specific	
mutations	in	individual	driver	genes,	active	signatures	and	cancer	types	tested.	Three	of	
the	associations	involved	signatures	linked	to	extrinsic	mutational	processes	(i.e.	
mutagens),	44	involved	signatures	linked	to	intrinsic	mutational	processes	and	9	
involved	signatures	with	no	known	aetiology	(Table	S2	for	the	full	list	of	associations).		
	
Of	the	associations	involving	signatures	linked	to	extrinsic	mutational	processes,	
signature	4,	linked	to	smoking,	was	associated	with	KRAS	G12C	(CCA>CAA)	in	lung	
adenocarcinoma	and	with	CTNNB1	D32Y	(TCC>TAC)	in	liver	cancer	(Figure	1f).	
Signature	24,	linked	to	aflotoxin,	was	associated	with	TP53	R249S	(GCC>GAC)	mutations	
in	liver	cancer.	
	
There	were	multiple	associations	involving	signatures	linked	to	intrinsic	mutational	
processes.	APOBEC	activity	(Signatures	2	and	13)	had	17	associations.	Remarkably,	
PIK3CA	E542K	(TCA>TTA)	and	E545K	(TCA>TTA)	were	associated	with	these	signatures	
across	7	cancer	types,	accounting	for	76%	(13/17)	of	the	associations	(Figure	1h).	
Additionally,	PIK3CA	E453K	(TCT>TTT),	and	PIK3CA	E726K	(TCA>TTA)	were	associated	
with	APOBEC	signatures	in	breast	cancer.		
	
DNA	mismatch	repair	(MMR)-linked	signatures	(signatures	6,	15,	20	and	26)	showed	15	
positive	associations	across	six	cancer	types	(stomach,	colorectum,	breast,	uterine	
carcinoma,	glioma	low	grade	and	pancreas).	Of	these	associations,	PIK3CA	H1047R	
(ATG>ACG)	occurred	three	times	(Figure	1g).	FBXW7	R465C	(GCG>GTG),	was	associated	
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with	MMR	signatures	in	both	colorectum	and	stomach	cancer.	KRAS	G12D	(ACC>ATC)	
and	KRAS	G13D	(GCC>GTC)	were	associated	with	MMR	signatures	in	uterine	carcinoma	
and	stomach	cancer	respectively.	These	results	suggest	an	important	role	for	MMR	
defects	shaping	the	driver	mutation	spectrum	of	common	cancers,	and	illustrate	the	
likely	sequence	of	events	(early	MMR-linked	signatures	relative	to	driver	mutations)	in	
some	cancers	with	these	defects.	
	
Eleven	associations	with	deficiency	in	DNA-proofreading	(signature	10)	were	seen	in	
uterine	carcinoma	and	colorectum.	ARID1A	R1989X	(TCG>TTG)	and	PTEN	R130Q	
(TCG>TTG)	were	each	associated	with	this	signature	in	both	colorectum	and	uterine	
carcinoma.	3/11	positive	associations	involved	stop-gain	mutations	in	the	APC	gene,	two	
in	colorectum	and	one	in	uterine	carcinoma	(Figure	1d).	Therefore	it	appears	that	
(POLE)	defects	can	cause	characteristic	driver	lesions	in	these	cancer	types.		
	
Seven	of	the	associations	involved	signatures	linked	to	ageing.	Of	particular	note,	
signature	1	was	associated	with	APC	R213X	(ACG>ATG)	in	colorectum	(Figure	1i)	and	
signature	5	was	associated	with	BRAF	V600E	(GTG>GAG)	in	melanoma	and	PIK3CA	
H1047R	(ATG>ACG)	in	breast	cancer	(Figure	1c).	These	results	highlight	the	important	
role	of	ageing-related	processes	in	cancer	development.	
	
Detecting	differential	selection	
	
The	cancer	genome	is	shaped	by	selection	as	well	as	mutation.	We	therefore	tested	
whether	selective	differences	between	related	driver	mutations	were	discernible.		To	do	
this,	we	normalised	for	the	confounding	effect	of	mutational	processes,	which	make	
specific	mutations	more	likely	than	others.	To	implement	this	analysis,	we	grouped	the	
samples	in	each	cancer	type	into	clusters	of	homogeneous	signature	exposures	(Figures	
2a,c,e,	S2-10).	After	this	normalisation,	it	is	likely	that	within-cluster	differences	in	
driver	mutation	frequencies	are	due	to	selection.	To	test	for	differential	selection	
between	two	related	mutations	in	a	signature-exposure	cluster,	we	calculated	the	
frequency	of	each	mutation	and	their	relative	likelihoods	of	occurrence,	inferred	from	
the	mutational	signature	exposures,	and	assuming	constant	mutational	process	activity	
over	time.	We	then	used	the	binomial	test	to	examine	the	null	hypothesis	that	the	
mutation	counts	were	explained	solely	by	their	relative	likelihood	of	occurrence	(see	
Methods).	We	explored	potential	differential	selection	among	the	most	common	driver	
mutations	(>1%	of	non-synonymous	mutations)	in	nine	genes:	KRAS,	BRAF,	NRAS,	IDH1,	
IDH2,	TP53,	PIK3CA,	SMAD4	and	CTNNB1	(Table	S3).	We	conducted	pairwise	tests	
among	the	mutations	from	each	gene	in	each	sample	cluster	where	the	mutations	
occurred	at	least	10	times.	Results	for	the	same	pair	of	mutations	were	combined	from	
different	samples	within	a	cancer	type	using	Fisher’s	Method	(see	Methods).	
	
Differential	selection	between	pathogenic	amino	acid	changes	within	a	driver	
gene	
	
In	total	10%	(355/3489)	of	pairwise	comparisons	between	mutations	in	the	same	gene	
in	individual	cancer	types	returned	a	significant	result	(Binomial	Test,	FDR	=	0.05,	
Figures	S2-10).	In	total,	8/9	genes	examined	had	at	least	one	pair	of	mutations	that	
occurred	at	frequencies	inconsistent	with	the	underlying	mutational	likelihood	(Table	
S4).	The	exception	was	SMAD4,	which	had	the	smallest	number	of	informative	mutations	
for	this	analysis.		
	
Multiple	genes	and	amino	acid	changes	showed	evidence	of	differential	selection	
between	cancer	types.	Among	the	most	highly	significant	results,	KRAS	G12D,	G12R	and	
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G12V	appeared	more	strongly	selected	than	other	KRAS	mutations,	including	KRAS	
G13D,	in	pancreatic	cancer	(Figure	2b),	as	did	BRAF	V600E	compared	to	other	BRAF	
common	mutations,	including	BRAF	K601E,	in	thyroid	and	pancreas.	Also	highly	
significant	was	apparent	preferential	selection	for	PIK3CA	H1047R	compared	to	multiple	
PIK3CA	mutations,	including	PIK3CA	E545K	and	E542K,	in	breast	cancer	(Figure	2d).	
These	results	suggest	that	there	are	strong	selective	differences	among	important	driver	
mutations	in	the	same	gene	in	these	cancer	types.		
	
A	number	of	the	results	are	of	potential	therapeutic	interest.	For	example,	we	found	
evidence	that	IDH1	R132H	is	selected	more	strongly	than	IDH1	R132C	in	low	grade	
glioma	(Figure	2f).	This	is	of	particular	interest	given	the	potential	specificity	of	
therapeutic	small	molecular	inhibitors	that	target	IDH1	and	IDH2	mutations17.	
	
KRAS	G12C,	found	to	be	causally	related	to	smoking-associated	signature	4	in	lung	
adenocarcinoma	(see	above),	also	appears	more	strongly	selected	than	other	KRAS	
mutations	(G13D,	A146T	and	G12S)	in	this	cancer	type.	Thus	it	appears	that	the	high	
frequency	of	this	KRAS	mutation	compared	to	others	in	lung	adenocarcinoma	is	due	to	
both	smoking-associated	mutational	processes	and	the	intrinsic	selective	advantage	of	
the	mutation.			
	
Interestingly,	the	relative	selective	advantages	of	particular	mutations	were	broadly	
consistent	across	cancer	types.	Specifically,	out	of	54	pairwise	tests	significant	in	more	
than	one	cancer	type,	there	was	only	one	case	where	a	mutation	that	appeared	selected	
more	strongly	than	another	in	the	same	gene	in	one	cancer	type,	but	less	strongly	than	it	
in	another.	This	single	case	was	PIK3CA	E545K	that	appeared	to	be	selected	more	
strongly	than	PIK3CA	H1047R	in	colorectal	cancer,	but	below	it	in	breast,	stomach,	and	
head	and	neck	cancers.		Overall,	our	results	suggest	that	the	mechanisms	that	underpin	
the	selective	advantage	caused	by	a	specific	driver	mutation	are	uniform	across	tissue	
types.		
	
Differential	selection	between	mutationally	exclusive	driver	genes	
	
We	next	investigated	differential	selection	between	mutations	within	and	between	small	
sets	of	genes	that	typically	show	mutually	exclusive	mutation	patterns.	Using	the	same	
analysis	methodology	as	for	individual	genes,	we	considered	the	common	driver	
mutations	in	three	sets	of	functionally-related	genes:	KRAS,	BRAF	and	NRAS;	APC	and	
CTNNB1;	and	IDH1	and	IDH2.		
	
There	was	evidence	of	greater	selective	differences	between	genes	than	between	
different	residues	within	a	gene.	3%	(172/5995	pairwise	comparisons)	of	tests	were	
significant	for	mutations	within	a	gene,	whereas	14%	(474/3200)	were	significant	for	
mutations	in	different	genes	(Figures	S11-13;	Table	S5).		Furthermore,	for	two	of	the	
mutation	sets	-	KRAS,	BRAF	and	NRAS	(Figure	S14);	and	APC	and	CTNNB1	(Figure	S15)	–	
there	was	significant	heterogeneity	across	cancer	types	in	terms	of	the	number	of	
mutations	in	each	gene	with	evidence	of	preferential	selection	(selection	above	at	least	
one	other	mutation	in	the	set)	(Fisher	test,	q	=	9.6x10-3,	2.7x10-3,	respectively),	
supporting	a	model	where	gene-specific	effects	on	selection	vary	across	cancer	types.				
	
Overall,	all	three	gene	sets	showed	evidence	of	differential	selection	in	different	cancer	
types.	Amongst	KRAS,	BRAF	and	NRAS	mutations,	only	particular	KRAS	mutations	
showed	evidence	of	preferential	selection	over	mutations	in	other	genes	in	pancreatic	
cancer	and	uterine	carcinoma	(Figure	3a,b),	whereas	only	particular	BRAF	and	NRAS	
mutations	showed	evidence	of	preferential	selection	over	mutations	in	other	genes	in	
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melanoma	and	thyroid	cancer	(Figure	3	c,d).	Illustrating	this,	BRAF	V600E	and	NRAS	
Q61R	appeared	to	be	selected	more	strongly	than	KRAS	G12D	in	melanoma	and	thyroid	
cancer,	but	more	weakly	than	this	mutation	in	pancreatic	cancer.	Other	cancer	types	
showed	a	range	of	patterns	of	differential	selection	for	these	three	genes	(Figures	3e,f,	
S11).		
	
When	APC	and	CTNNB1	mutations	were	compared,	there	was	evidence	for	selection	of	
CTNNB1	mutations	over	common	APC	mutations	in	each	of	liver	cancer,	uterine	
carcinoma,	and	colorectal	cancer	(Figure	4a,b,c).	Interestingly	however,	evidence	for	
selection	of	APC	mutations	above	CTNNB1	mutations	was	found	in	colorectal	cancer	
only	(Figure	4c).		
	
Among	IDH1	and	IDH2	mutations,	we	found	preferential	selection	for	IDH1	R132G	
(glioma	low	grade)	IDH1	R132H	(glioma	low	grade	and	glioblastoma)	and	IDH1	R132C	
(AML	and	melanoma)	above	common	IDH2	mutations,	as	well	as	preferential	selection	
for	IDH2	R172K	above	IDH1	R132C	in	glioma	low	grade.	
	
Taken	together	these	results	inform	our	understanding	of	the	selective	landscape	and	its	
similarities	and	differences	between	cancer	types.	These	results	suggest	that	both	intra-
gene	and	inter-gene	effects	contribute	to	differential	selection,	with	inter-gene	but	not	
intra-gene	effects	varying	across	cancer	types.		
	
DISCUSSION	
	
Here,	we	have	demonstrated	associations	between	mutational	processes	and	key	driver	
mutations	across	cancer	types,	highlighting	likely	causative	effects	of	these	processes	
when	they	occur.	Moreover,	we	have	presented	evidence	in	favour	of	selective	
differences	between	related	key	driver	mutations	across	cancer	types,	which	sheds	light	
on	the	selective	landscape	constraining	cancer	evolution.		
	
Previous	work	by	McGranahan	et	al.	examined	the	relationship	between	APOBEC	
associated	mutational	processes	(signatures	2	and	13)	and	driver	mutations	and	found	
that	clonal	non-synonymous	mutations	in	driver	genes	occur	in	an	APOBEC	context	in	
bladder	cancer13.		They	also	described	subclonal	mutations	in	driver	genes	in	an	
APOBEC	context	in	bladder,	breast,	head	and	neck,	and	lung	cancers	(uterine	carcinoma	
and	cervical	cancer	were	not	considered).		Supporting	their	findings,	we	detected	
associations	with	APOBEC	in	bladder	cancer	and	breast	cancer,	and	to	a	lesser	extent	in	
head	and	neck,	lung	squamous,	uterine	carcinoma,	cervical	cancer	and	lung	
adenocarcinoma.	Notably,	we	report	novel	associations	between	APOBEC	activity	and	
ERBB2	S310F	mutations	in	bladder	cancer.	Our	findings	support	the	impression	of	a	
pervasive	effect	of	APOBEC	activity	on	driver	mutation	spectra	in	human	cancers.	Some	
associations	we	describe	have	been	reported	previously,	notably	the	association	
between	pack	years	of	smoking	and	the	KRAS	G12C	mutation	in	lung	adenocarcinoma	
where	the	connection	between	the	causal	channel	of	this	mutation	(C>A	in	a	CCA	
context)	and	the	general	tendency	for	tobacco	carcinogens	to	cause	transversions	is	well	
known18,19.	
	
Many	of	the	associations	between	mutational	signatures	and	driver	mutations	
presented	here	are	novel	to	the	best	of	our	knowledge.	Our	analysis	suggests	that	an	
ageing-associated	process	(signature	1)	may	cause	initiating	events	in	colorectal	cancer	
because	of	the	implied	role	of	the	ageing	signature	in	causing	APC	R213X		‘gatekeeping’	
mutation	in	colorectal	cancer16	20	–	suggesting	a	sometimes	critical	role	of	‘bad	luck’	in	
this	cancer	type21.	Similarly,	a	distinct	ageing-associated	process	(Signature	5)	appears	
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capable	of	causing	the	common	BRAF	V600E	mutation	in	melanoma.	
	
Remarkably,	21/56	associations	between	mutational	signatures	and	driver	mutations	
involved	PIK3CA	mutations,	and	most	of	these	associations	involved	signatures	linked	to	
APOBEC,	which	tends	to	occur	later	in	carcinogenesis13.	Thus,	late	arising	APOBEC	
linked	mutational	processes	can	still	have	important	influences	on	the	driver	mutation	
spectrum.	Recent	results	showing	that	PIK3CA	mutations	are	often	subclonal13	support	
this	interpretation.		
	
Our	results	suggest	that	the	selective	landscape	also	strongly	determines	the	driver	
mutation	spectra.	We	found	evidence	for	widespread	differences	in	selective	effects	
between	mutations	in	the	same	gene	and	related	genes,	and	moreover,	that	these	
differences	appear	to	vary	across	cancer	types.	These	results	confirm	that	not	all	driver	
mutations	have	the	same	selective	effects,	and	instead	exist	on	a	spectrum	of	selective	
potency.		The	exact	nature	of	the	selective	differences	we	have	identified	will	be	an	
important	area	for	future	work.	The	differences	we	identified	could	reflect	variation	in	
the	potential	of	the	mutations	in	question	to	initiate	disease,	or	alternately	variation	in	
the	growth	advantages	conferred	by	these	cells	in	established	tumours.	Interestingly,	if	
there	are	differences	in	on-going	growth	advantages,	then	our	data	suggests	that	the	
forces	of	selection	acting	in	tumours	are	often	insufficient	to	displace	sub-optimal	
mutations	as	less	highly	selected	mutations	remain	detectable.	For	a	limited	number	of	
driver	genes,	there	is	evidence	to	suggest	that	specific	mutations	correlate	with	disease	
outcomes22,23.	Further	work	is	needed	to	clarify	to	whether	and	to	what	extent	the	
selective	differences	indicated	here	have	prognostic	and	therapeutic	implications.	
	
In	lung	cancer,	the	KRAS	G12C	mutation	provides	a	striking	example	of	the	potential	for	
‘alignment’	of	mutation	and	selection:	the	likelihood	of	the	KRAS	G12C	mutation	is	
increased	by	smoking,	but	in	addition	it	is	also	selectively	advantageous	above	other	
common	KRAS	mutations	in	the	disease.	The	same	is	also	true	for	BRAF	V600E	
mutations	in	melanoma,	wherein	an	ageing-associated	process	increases	the	likelihood	
of	the	driver	mutation,	which	is	then	subsequently	strongly	selected.	
	
There	are	some	caveats	to	this	analysis.	First,	we	have	used	data	from	a	number	of	
sources,	which	may	vary	in	terms	of	quality,	depth	of	coverage	and	the	pipeline	used	to	
call	mutations.	Secondly,	we	have	relied	on	the	assignment	of	signatures	to	individual	
samples	and	we	note	that	some	samples	have	relatively	few	mutations,	making	this	
assignment	less	accurate.	Relatedly,	in	some	cancer	types,	there	are	other	active	
signatures	that	were	not	considered	in	this	study.	Where	other	signatures	are	present,	
the	regression	method	used	here	can	only	approximate	the	signature	contributions.	
Thirdly,	causal	links	between	driver	mutations	and	mutational	processes	are	one	
explanation	for	the	associations	presented	here,	but	other	explanations	cannot	be	ruled	
out.	
	
In	summary,	our	framework	quantifies	the	combined	influence	of	both	mutation	and	
selection	on	shaping	a	cancer’s	driver	mutation	complement	–	and	importantly	
emphasises	that	neither	evolutionary	force	alone	provides	a	sufficient	explanation	of	the	
observed	mutation	distribution.	In	colon	cancer	for	example,	BRAF	mutations	(that	are	
relatively	uncommon)	are	mutationally	unlikely,	but	are	strongly	selected.	By	contrast,	
KRAS	drivers	(that	are	more	common),	are	mutationally	much	more	likely,	but	are	less	
highly	selected.	Our	data	also	offer	an	explanation	for	the	high	frequency	of	driver	APC	
mutations	and	relative	paucity	of	driver	CTNNB1	mutations	in	the	colon:	APC	mutations	
appear	strongly	selected	and	mutationally	likely,	whereas	driver	CTNNB1	mutations	are	
both	mutationally	unlikely	and	also	less	strongly	selected	than	many	APC	driver	
changes.		In	brain	cancers,	the	high	frequency	of	IDH1	mutations	can	be	explained	by	
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strong	selection	for	mutationally-likely	IDH1	mutations,	compared	to	similarly	
mutationally	likely	IDH2	mutations.	Overall,	our	results	begin	to	delineate	the	distinct	
contributions	of	mutation	and	selection	is	shaping	the	cancer	genome.	
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METHODS	

Data	collection	
 
Mutation	data	(single	nucleotide	variants-	SNVs)	were	downloaded	from	the	ICGC	and	
TCGA	data	portals	in	May	2016.	We	excluded	data	sets	aligned	to	a	reference	genome	
other	than	hg19,	and	those	with	non-conforming	formatting.		
 
Sample-specific	mutation	collection	
	
Only	mutations	on	canonical	nuclear	chromosomes	were	considered.	For	ICGC	data,	
mutations	labeled	as	‘single	base	substitution’	in	the	simple	somatic	mutation	files	were	
considered	for	further	analysis.	For	TCGA	data,	only	mutations	labeled	as	‘SNP’	in	the	
mutation	annotation	files	were	considered.		
	
From	these	lists,	non-synonymous	mutations	in	driver	genes	were	extracted.		Driver	
genes	definitions	were	as	is	stated	below.	After	filtering	for	drivers,	these	mutations	
were	re-annotated	using	Annovar	24.	We	included	mutations	labeled	as	‘non-
synonymous	SNV’,	‘stopgain’,	or	‘stoploss’	in	a	driver	gene	in	the	annotation	by	Annovar.		
 
Definition	of	driver	genes	
	
Driver	genes	were	defined	using	a	recent	study	by	Vogelstein	et	al.16	The	list	of	genes	is	
given	in	Table	S6.				
 
Signature	exposures	for	each	sample	in	each	cancer	type	
 
The	96-channel	context	of	each	SNV	was	imputed	using	the	R	package	
‘SomaticSigantures’	25,	and	the	total	number	of	SNV’s	in	each	of	the	96	channels	was	
calculated	for	each	sample.	Mutational	signatures	were	obtained	from	the	Wellcome	
Trust	Sanger	Institute	(http://cancer.sanger.ac.uk/cosmic/signatures)	in	April	2016.	
For	whole	exome	data	signatures	were	re-scaled	to	the	trinucleotide	frequencies	of	the	
exome.	Non-negative	least	squares	regression,	implemented	in	the	R	package	‘nnls’26,	
was	used	to	assign	an	activity	score	to	each	sample	for	each	signature	active	in	the	
applicable	cancer	type.	Signatures	activities	were	normalised	to	one	for	each	sample	to	
calculate	the	signature	exposures.		
	
Required	mutations	for	signature	assignment	
 
By	treating	each	of	the	30	signatures	as	a	multinomial	probability	distribution,	we	
simulated	data	sets	from	each	signature	with	n	total	informative	mutations	(1	<	n	<	96).	
For	each	signature,	for	each	value	of	n,	we	applied	non-linear	least	squares	regression	to	
the	simulated	data	to	assign	weights	to	the	true	generating	signature	and	a	set	of	14	
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randomly	chosen	other	signatures.	We	classified	the	regression	as	successful	when	over	
50%	of	the	regression	weights	were	assigned	to	the	true	signature.	We	chose	to	use	15	
possible	generating	signatures	as	this	was	above	the	maximum	number	of	signatures	
identified	in	any	individual	cancer	type.	For	each	signature,	for	each	number	n	of	
informative	mutations,	we	calculated	the	proportion	of	simulations	data	sets	where	the	
regression	was	successful.	We	found	that	20	mutations	gave	an	average	classification	
accuracy	of	80%	across	signatures.	
	
Power	calculations	
 
We	sought	to	test	the	power	detect	an	association	between	mutation	M,	and	the	
signature	A	in	cancer	type	C,	where	M	occurred	m	times	in	C.	We	considered	a	simple	
model	of	cancer	initiation,	where	M	is	one	of	a	set	of	mutations	R	of	size	|R|=n,	one	of	
which	is	required	for	cancer	initiation.	For	these	purposes	we	assumed	n	=	10.		
	
For	each	random	iteration	of	the	power	model	we	randomly	selected	causal	channels	
out	of	96	possibilities	of	the	9	other	mutations	in	R.	We	identified	the	signature	
exposures	of	each	sample	in	C.	By	treating	the	signatures	as	multinomial	probability	
distributions,	we	then	calculated	the	per-sample	probabilities	that	mutation	M	occured	
rather	than	any	of	the	9	mutations	in	each	sample.	Based	on	these	probabilities	we	
randomly	selected	m	samples	to	bear	the	mutation	M.	We	then	applied	the	Mann-
Whitney	U	test	described	above.		
	
The	power	was	calculated	as	the	proportion	of	iterations	where	the	p-value	in	the	test	
was	less	than	the	quoted	value	of	alpha.		
	
Out	of	1,038	triplets	tested	where	a	signature	represented	a	fold	increase	in	the	causal	
channel	of	a	recurrent	driver	mutation	in	a	cancer	type,	relatively	few	significant	
associations	(56)	were	found.	The	low	number	of	associations	can	be	partly	explained	
by	the	low	average	power.	Even	if	associations	were	genuinely	present	in	every	case,	the	
expected	number	of	significant	tests	was	147	based	on	the	estimated	power.	Indeed	the	
significant	tests	were	enriched	for	the	tests	with	higher	power	(P	=	3.0E-9,	Mann-
Whitney	U	test,	mean	power	among	significant	tests	and	non-significant	tests,	32%	and	
13%,	respectively).	Part	of	the	reason	for	this	is	the	technical	challenges	inherent	in	
deconvolving	mutational	signature	intensities.	Timing	mismatches	between	the	activity	
of	a	mutational	selection	and	the	window	of	selection	for	a	driver	mutation	probably	
also	contribute	to	the	low	numbers	of	associations.		
	
Clustering	of	samples	into	groups	of	homogeneous	signature	exposure	
	
Samples	within	a	cancer	type	were	clustered	based	on	their	signature	exposures	using	
the	R	package	‘fpc’27.	The	optimum	number	of	clusters,	between	one	and	the	number	of	
signatures	reported	in	the	cancer	type,	was	selected	using	the	average	silhouette	width	
criterion.		
	
Testing	for	evidence	of	differential	selection	between	mutations	in	a	cluster	of	
samples	
	
For	a	sample	cluster	S,	we	sought	to	test	the	null	hypothesis	that	the	frequencies,	m1	and	
m2,	of	two	mutations,	M1	and	M2,	were	consistent	with	their	likelihoods	of	occurrence.	
We	considered	a	meta-sample	with	an	exposure	for	each	signature	equal	to	the	average	
exposure	for	that	signature	across	the	samples	in	S.	Based	on	the	signature	exposures	of	
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the	meta-sample,	treating	each	signature	as	a	multinomial	probability	distribution,	we	
calculated,	l1	and	l2,	the	probability	of	the	causal	channels	of	M1	and	M2	respectively	
occuring	among	the	96	mutation	types.		
	
We	used	a	binomial	test	to	test	whether	the	relative	frequencies	of	M1	and	M2	were	
consistent	with	their	relative	likelihoods	of	occurrence.	Specifically	we	found	the	
probability,	pgreater	that	X	>	m1,	and	the	probability	pless	that	X	<	m1	where:	
	
X	~	Binom(m,	l)	
	
m	=	(m1	+	m2)	
	
l	=	l1	/	(l1	+	l2)	
	
Testing	for	evidence	of	differential	selection	between	mutations	in	a	cancer	
type	
	
For	mutations	M1	and	M2	in	sample	clusters	Si	(I	in	1,…n)	in	cancer	type	C,	we	found	the	
probabilities	pi,greater	and	pi,less,	for	each	cluster,	as	described	above.	The	separate	values	
of	pi,greater	were	combined	for	the	different	sample	clusters	using	Fisher’s	Method	to	give	
pgreater,	as	were	the	separate	values	of	pi,less	to	give	pless.	Pgreater	and	pless	were	combined	to	
give	a	single	pvalue,	p,	for	the	comparison	using	the	formula	
	
p	=	2	*	min(pgreater,	pless)		
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Figures	
	
Figure	 1.	 Mutational	 signatures	 active	 in	 cancer	 types	 and	 selected	
associations	 between	 mutational	 signature	 exposures	 and	 driver	 mutation	
frequencies	within	cancer	types		
	
A)	Proportions	of	the	96	mutation	channels	for	signature	5.	B)	Average	proportions	of	
the	 96	mutation	 channels	 across	 all	 signatures	 reported	 to	 be	 active	 in	melanoma.	C)	
The	 signature	 5	 exposures	 are	 shown	 for	 melanoma	 samples	 with	 the	 BRAF	 V600E	
(GTG>GAG)	mutation	and	those	without.	Mutated	samples	had	significantly	higher	levels	
of	 signature	5.	D-F)	 Same	as	 (A-C)	 for	 signature	4	 and	KRAS	G12C	 (ATG>ACG)	 in	 lung	
adenocarcinoma.	G-H)	 Selected	correlations	between	driver	mutations	and	mutational	
signature	exposures	within	cancer	types.	BRCA	–	breast	cancer,	CRC	–	colorectum,	LUAD	
–	lung	adenocarcinoma.		
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Figure	2.	Differential	selection	between	distinct	mutations	in	the	same	driver	
gene	
	
A)	Clustering	of	samples	based	on	mutational	signature	activities,	for	samples	that	had	
frequent	 KRAS	 mutations	 in	 pancreatic	 cancer.	 B)	 Relative	 observed	 frequency	 of	
individual	 KRAS	 mutations	 compared	 to	 KRAS	 G12D	 (y-axis)	 versus	 the	 relative	
mutational	 likelihood	 compared	 to	 KRAS	 G12D	 (x-axis),	 normalised	 by	 mutational	
cluster	 in	 pancreatic	 cancer	 (from	 panel	 A).	 Grey	 dashed	 line	 indicates	 expectation	
based	 on	 equivalent	 selection	 with	 KRAS	 G12D	 C)	Mutational	 signature	 clustering	 of	
samples	 with	 frequent	 PIK3CA	 mutations	 in	 breast	 cancer.	 D)	 Relative	 observed	
frequency	 of	 PIK3CA	 mutations	 compared	 to	 PIK3CA	 E545K	 versus	 the	 relative	
mutational	 likelihood	 in	 breast	 cancer.	E)	Mutational	 signature	 clustering	 of	 samples	
with	 frequent	 IDH1	mutations	 in	 glioma	 low	grade.	F)	Relative	observed	 frequency	of	
IDH1	 mutations	 compared	 to	 IDH1	 R132H	 versus	 relative	 mutational	 likelihood	 in	
glioma	low	grade.	
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Figure	3.	Differential	selection	between	mutually	exclusive	mutations	in	KRAS,	
BRAF	and	NRAS	
Scatter	 plots	 show	 relative	 observed	 frequencies	 of	 common	 driver	 KRAS,	 BRAF,	 and	
NRAS	mutations	 (y-axis)	plotted	against	 relative	mutational	 likelihood	of	 the	mutation	
(x-axis),	 where	 both	 quantities	 are	 compared	 to	 the	 same	 reference	 mutation.	 A)	
Relative	 observed	 frequencies	 of	KRAS,	BRAF	 and	NRAS	mutations	 compared	 to	KRAS	
G12D	 versus	 relative	 mutational	 likelihoods	 compared	 to	 KRAS	 G12D	 in	 mutational	
clusters	 in	 pancreatic	 cancer.	 Grey	 dashed	 line	 indicates	 expectation	 based	 on	
equivalent	 selection	 with	 KRAS	 G12D	 B)	 As	 above,	 with	 comparison	 to	 KRAS	 G13D	
mutations	in	uterine	carcinoma.	C)	As	above,	with	comparison	to	NRAS	Q61R	mutations	
in	melanoma.	D)	As	above,	with	comparison	to	NRAS	Q61K	mutations	in	thyroid	cancer.	
E)	As	above,	with	comparison	to	KRAS	G13D	mutations	in	colorectal	cancer.	F)	As	above,	
with	 comparison	 to	KRAS	G12V	mutations	 in	 lung	 adenocarcinoma.	 	 	Many	mutations	
occur	more	frequently	than	their	mutational	likelihood,	indicating	differential	(positive)	
selection	for	these	mutations.	
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Figure	4.	Differential	selection	between	mutations	in	CTNNB1	and	APC	
Scatter	 plots	 show	 relative	 observed	 mutation	 frequencies	 of	 CTNNB1	 and	 APC	
mutations	 (y-axis)	plotted	against	 relative	mutational	 likelihood	 (x-axis),	with	 relative	
frequency	 and	 likelihood	 by	 comparison	 to	 the	 same	 reference	mutation.	A)	 Relative	
frequencies	of	CTNNB1	and	APC,	mutations	compared	to	CTNNB1	T41A	versus	relative	
mutational	likelihood	compared	to	CTNNB1	T41A	in	sample	clusters	in	liver	cancer.	Grey	
dashed	 line	 indicates	expectation	based	on	equivalent	selection	with	CTNNB1	T41A	B)	
As	 above,	 with	 comparison	 to	 CTNNB1	 S37C	 mutations	 in	 uterine	 carcinoma.	 C)	 As	
above,	with	comparison	to	APC	R499X	mutations	in	colorectum.		
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