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Abstract

Exome sequencing approach is extensively used in research and diagnostic laboratories to discover

pathological variants and study genetic architecture of human diseases. Even if present platforms

produce high quality sequencing data, false positives variants remain an issue and can confound

subsequent analysis and result interpretation. 

Here,  we propose  a  new tool  named  GARFIELD-NGS (Genomic  vARiants  FIltering  by  dEep

Learning moDels in NGS), which uses deep learning algorithm to dissect false and true variants in

exome  sequencing  experiments  performed  with  Illumina  or  Ion  platforms.  GARFIELD-NGS

consists  of  4  distinct  models  tested  on  NA12878  gold-standard  exome  variants  dataset  (NIST

v.3.3.2): Illumina INDELs, Illumina SNPs, ION INDELs, and ION SNPs.  AUC values for each

variant category are 0.9267, 0.7998, 0.9464, and 0.9757, respectively. GARFIELD-NGS is robust

on low coverage data down to 30X and on Illumina two-colour data, as well.

Our tool outperformed previously proposed hard-filter, and calculates for each variant a score from

0 to 1, allowing application of different thresholds based on the desired level of sensitivity and

specificity.  GARFIELD-NGS process  standard  VCF file  input  using  Perl  and  Java  scripts  and

produce  a  regular  VCF output.  Thus,  it  can  be  easily  integrated  in  existing  analysis  pipeline.

GARFIELD-NGS is freely available at https://github.com/gedoardo83/GARFIELD-NGS.
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Introduction

Whole exome sequencing (WES) is a powerful method ideally designed to rapidly investigate all 

the coding sequences in human genome at base resolution, allowing to detect a wide spectrum of 

genetic variations1–3. In the latest years great advances were taken in Next Generation Sequencing 

(NGS) field and WES experiments have become faster, cheaper and easier to perform. These 

improvements encouraged the diffusion of WES through research laboratories, and allowed its 

translation from basic research to clinical use4,5. Indeed, WES has rapidly become a popular 

approach to discover new disease genes in rare Mendelian disorders6–8, as well as to evaluate risk 

alleles in complex disorders9,10.

Even if WES is now easy and affordable to perform, data analysis remains a critical and difficult 

step due to the quantity and complexity of information obtained from each experiment11,12. Previous 

studies have shown that genetic variants identified by exome sequencing often carries a significant 

proportion of false positive calls, especially INDELs1,13,14. This issue often imply additional costs for

variants validation by Sanger sequencing, at least in diagnostic settings5,15. False positive calls poses

serious challenges in downstream data analysis, introducing erroneus missense and loss of function 

variants, like frameshift INDELs, that are targets of most analysis work-flows16,17.

Effective bioinformatic approaches to filter out false positive calls have been developed for 

Illumina NGS data and Variant Quality Score Recalibration (VQSR) method from GATK best 

practises18 is now the most adopted filtering method. Besides its robust performances, VQSR 

applies only to large datasets including at least tens of samples, since it needs a large set of variants 

to train a machine learning algorithm19. This limits its application on single sample data, that could 

often occur in rare disease research projects or in diagnostic settings. Moreover, few filtering 

methods are available for ION WES data, since the low spread of WES on this platform has led to 

low interest in development of specific bioinformatic tools. As results, variant filtering strategies for

single samples or trio analysis are today usually limited to hard filtering of variants based on a 

combination of quality parameters. For Illumina sequencing data, GATK best practises are the most 

widely adopted hard-filters18, while for ION data there are only few reported strategies13. 

Machine learning (ML) approaches have been proven effective in solving classification problems in

complex systems20 and are rapidly diffusing also in the genomic field21. Indeed, ML algorithms 

revealed especially useful when the state of an object can not be deduced by single features or their 

linear combination, since they can integrate different layer of information and reveal hidden 

patterns in input data. In this way, ML models are often able to compute a robust probability value 

useful in object state classification. This approach has successfully applied to the analysis of 
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genomic variants and several ML based models have been developed to predict impact of genomic 

variants on protein functionality22,23 or regulatory region24,25. ML algorithms are also implemented in

GATK VQSR strategy for false variant filtering on large datasets19. 

Here we propose a new tool, Genomic vARiants FIltering by dEep Learning moDels in NGS 

(GARFIELD-NGS), that rely on neural networks algorithm to effectively classify true and false 

variants. GARFIELD-NGS can be applied in single sample WES analysis and it is effective on 

SNPs and INDELs variants derived from both Illumina or ION platform. It is robust on medium and

low coverage dataset and can be applied to experiments based on the recent 2-colour Illumina 

chemistry, as well.
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Results

Prediction models

We developed 4 distinct models addressing INDELs and SNPs for both Illumina and ION 

platforms. After optimization of hyper-parameters and model refinement, we generated 4 prediction 

models with distinct architectures optimized for each class of variants. All 4 models present 5 

hidden layers, using Tanh or Rectifier activation functions for SNPs and INDELs models, 

respectively. Different specific values of rho, epsilon, l1, and l2 were obtained for each model as 

shown in Supplementary Table S1. Features importances for each model are reported in 

Supplementary Fig. S1. No single feature emerged as strong predictor in all Illumina SNPs / 

INDELs and ION SNPs / INDELs, but coverage related and strand-bias metrics are usually in the 

top 5 variables. AUC values of final models on training and validation sets were > 0.9 for all 

variants groups but Illumina SNPs, showing a slightly worst performance with AUC almost 0.8 (see

Supplementary Fig. S2).

Prediction models performances on test sets

GARFIELD-NGS contains 4 models specifically optimized for Illumina INDELs, Illumina SNPs, 

ION INDELs, and ION SNPs datasets. Based on each model, our tool calculates for each variant in 

VCF file a confidence probability (P true) ranging from 0 to 1. Actual performances of our models 

were evaluated using independent test sets of ~ 80,000 SNPs and ~ 2,000 INDELs. 

AUC values > 0.90 were obtained for Illumina INDELs, ION INDELs and ION SNPs: 0.9269, 

0.9464, and 0.9757, respectively. Otherwise, Illumina SNPs model showed slightly reduced 

performances with test set AUC 0.7998  (see Figure 1). 

P true value clearly distinguish true from false variants in test set for Illumina INDELs, ION 

INDELs, and ION SNPs (see Figure 2). Calculated median values are: Illumina INDELs true calls 

0.964, false calls 0.229; ION INDELs true calls 0.947, false calls 0.096; ION SNPs true calls 0.968,

false calls 0.081. Differences are smaller between median values for Illumina SNPs: true calls 

0.955, false calls 0.926. Notably, a distinct distribution of true and false variants can not be 

observed evaluating single features (see Supplementary Fig. S3-S6).

Maximum accuracy is > 0.90 for all variants categories: Illumina INDELs 0.9355, Illumina SNPs 

0.9435, ION INDELs 0.9117, ION SNPs 0.9919. Applying filtering threshold corresponding to 

maximum accuracy, we obtained the following TPR and FDR values: Illumina INDELs 0.9779 and 

0.0604, Illumina SNPs 0.9949 and 0.0536, ION INDELs 0.9542 and 0.0707, and ION SNPs 0.9974 

and 0.0056, respectively. Comparing with proportion of false calls present in test sets (see 
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Supplementary Table S2), GARFIELD-NGS score allowed significant reduction of false positives: 

Illumina INDELs 75%, Illumina SNPs 35%, ION INDELs 76%, ION SNPs 68%. Thresholds for 

variant filtering according to maximum accuracy or 0.99 TPR are reported in Table 1 and additional

thresholds in Supplementary Table S3.

Moreover, GARFIELD-NGS was tested on medium and low coverage experiments, using variants 

sets obtained from sequence data downsamped to 60X and 30X mean coverage. AUC values 

calculated on downsampled sets (60X / 30X) are similar to those obtained with full data: Illumina 

INDELs 0.9042 / 0.8933, SNPs 0.6609 / 0.6307; ION INDELs 0.8663 / 0.8174, SNPs 0.9522 / 

0.9221 (see Figure 1). 

Finally, we tested our Illumina models on variants generated by the recent two-colour Illumina 

chemistry, using data from HiSeqX experiments. GARFIELD-NGS predictions achieved AUC 

values of 0.9676 in INDELs and 0.8584 in SNPs from HiSeqX variant sets (see Figure 1a, b).

Comparison between GARFIELD-NGS and previous hard-filters

Variants in our 4 test sets were re-analysed using previously proposed hard-filters for Illumina (Van 

der Auwera et al. 2013) and ION (Damiati et al., 2016) data, as described in methods. In all 4 

variants groups, GARFIELD-NGS outperform previous filters, showing higher accuracy and 

comparable or higher TPR (see Table 1).  

Relevant improvements are seen for INDELs. In the best scenario, GATK hard-filters applied on 

Illumina INDELs dataset reached 0.8665 accuracy, 0.9934 TPR and 0.1456 FDR, while 

GARFIELD-NGS had a maximum accuracy of 0.9355, with 0.9779 TPR and 0.06 FDR. Even at 

0.99 TPR threshold, GARFIELD-NGS showed better performances with 0.9326 accuracy and 

0.0736 FDR.

Considering ION INDELs, the maximum accuracy for previous filters correspond to low setting and

resulted in 0.8033 accuracy, 0.9659 TPR and 0.1920 FDR. GARFIELD-NGS had a maximum 

accuracy of 0.9117, with 0.9542 TPR and 0.0707 FDR. At 0.99 TPR threshold, GARFIELD-NGS 

confirmed better performances with 0.8607 accuracy and 0.1517 FDR.

GARFIELD-NGS demonstrated best performances on ION SNPs, where it achieved 0.9919 

maximum accuracy, with 0.9974 TPR and 0.0056 FDR.

Implementation and availability

Prediction models are compiled in Java and implemented in GARFIELD-NGS perl script to 

perform automated variant scoring on VCF files. Source code is freely available at: 

https://github.com/gedoardo83/GARFIELD-NGS
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Discussion

Filtering out false variants from WES results is a long standing challenge in data analysis. Indeed, 

the high proportion of false calls, especially INDELs, generated by both Illumina and ION 

platforms1,13,14 poses serious challenges for downstream data analysis and result interpretation. To 

develop a new method for variant filtering, we first collected 22 different WES experiments for the 

NA12878 sample (see Supplementary Table S4), generating a dataset of 178,450 Illumina variants 

(173,116 SNPs / 5,334 INDELs) and 181,479 ION variants (177,362 SNPs / 4,117 INDELs). True 

and false calls were determined by comparing to the gold-standard calls provided by Genome in a 

Bottle Consortium (GIAB). In 2013 Genome in a Bottle Consortium (GIAB), part of the National 

Institute of Standards and Technology (NIST), has distributed the first set of gold standard calls 

based on integration of 13 different datasets of this sample obtained using different NGS 

technologies26. This constantly updated set of variants is now broadly accepted as a standard for 

variant identification benchmarking. 

As expected, we observed high proportion of false calls, especially INDELs, in our unfiltered 

datasets of WES variants from both Illumina and ION platforms (see Supplementary Table S2). 

Nowadays, the most applied strategy for false positive variants filtering on Illumina is the GATK 

VQSR method18,19, which has been proven effective, but applies only to large datasets including at 

least tens of samples. Concerning ION data, widely adopted strategies are lacking. In this scenario, 

variant filtering strategies for single samples or trio analysis are today usually limited to hard 

filtering of variants based on a combination of quality parameters. For Illumina sequencing data, 

GATK best practises are the most adopted hard-filters18, while for ION data there are only few 

reported strategies13. However, taken singularly, variants features calculated by variants callers do 

not clearly distinguish false and true calls (see Supplementary Fig. S3-S6), suggesting that their 

integration in a prediction model could be a more effective strategy. 

Following this approach, we developed GARFIELD-NGS tool, that relies on deep learning models 

to discriminate between true and false variants in WES experiments integrating variant features 

reported by GATK or TVC variant callers (see Supplementary Table S5). Given a standard VCF 

file, it calculates for each variant a score ranging from 0 to 1, reflecting probability of being a true 

call (P true). The tool is composed of 4 models, specifically developed on INDELs or SNPs variants

coming from Illumina or ION experiments (see Supplementary Table S1). 

GARFIELD-NGS revealed robust performances on all 4 variants categories, showing high AUC 

values: 0.9041 for Illumina INDELs, 0.7998 for Illumina SNPs, 0.9464 for ION INDELs, and 

0.9757 for ION SNPs. GARFIELD-NGS predictions maintain robust performances when applied to
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results from medium (60 X) or low (30 X) mean coverage data or to data from the recently 

introduced Illumina 2-colour chemistry (see Figure 1).

While previous hard-filters only perform a boolean classification of variants in true or false 

categories, GARFIELD-NGS calculates a prediction values ranging from 0 to 1, with distinct 

distributions between false and true variants (see Figure 2). This allows tuning of variant filtering 

threshold depending on the desired accuracy and specificity or even integration of P true value as 

prioritization score rather than variant filter. The maximum accuracy thresholds retain > 95 % of 

true calls while reducing false calls by 35-76 %, depending on variant category. Even when 

applying a threshold corresponding to 0.99 TPR, GARFIELD-NGS maintains > 0.86 accuracy and 

reduces false calls by 37-80 % (see Table 1).

Overall, lower performances emerged for Illumina SNPs model. This may be explained by the 

peculiar nature of Illumina false SNPs, which are often systematic errors induced by specific 

sequence context27,28. This kind of information are not captured by variant annotations generated by 

GATK and evaluated by GARFIELD-NGS models, making our approach less effective on Illumina 

SNPs.  

GARFIELD-NGS predictions outperformed previously proposed hard-filter for Illumina (Van der 

Auwera et al. 2013) and ION (Damiati et al., 2016) data in all 4 variants categories (see Table 1). 

GARFIELD-NGS score showed a strong improvement on INDELs variants for both Illumina 

(maximum accuracy 0.9355, TPR 0.9779, FDR 0.06) and ION data (maximum accuracy 0.9117, 

TPR 0.9542 TPR, FDR 0.0707). Thus, our tool effectively reduces false INDEL calls and could be 

useful to improve WES results interpretation considering that many work-flows search for variants 

that potentially alter gene function, especially loss of function variants like frameshift INDELs16,17. 

Even if Illumina SNPs AUC value is lower than those of other models, GARFIELD-NGS still 

perform better than GATK hard-filters showing a max accuracy of 0.9435, with 0.9949 TPR and 

0.0535 (see Table 1).

Overall, these results define GARFIELD-NGS as a robust tool for all type of Illumina and ION 

exome data, with particular focus on single or small multi-sample experiments. GARFIELD-NGS 

script performs automated variant scoring on VCF files and returns a standard VCF output with 

prediction score added as INFO tags. Thus, it can be easily integrated in already established 

analysis pipelines.
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Materials and Methods

Data sources

Data used in model training, validation and test were based on 19 high-coverage exome sequencing 

experiments on the NA12878 reference sample, produced by either Illumina or Ion Torrent 

platforms (see Supplementary Table S4 and Supplementary Fig. S7). 

Illumina dataset contains 9 exome sequencing experiments from Sequence Read Archive (SRA), 

produced on Illumina HiSeq 2000 / 2500 platforms. Mean coverage ranges from 77X to 164X, with 

> 85% of bases covered at least 20X.

ION dataset includes 10 exome sequencing experiments produced on ION Proton platform: 6 

obtained as aligned reads from Ion Community, and 2 as in-house exome experiments. For in house 

sequencing, NA12878 gDNA was obtained from Coriell Cell Repository and exome libraries were 

prepared from 100ng gDNA using ION AmpliSeq Exome RDY kit. Hi-Q PI OT2 200 kit was used 

for ISP template preparation using 8 μl of 100pM exome library and products were sequenced using

Hi-Q PI Sequencing 200 kit and PI v3 chips on Ion Proton platform. The mean coverage ranges 

from 120X to 270X, with > 92% of bases covered at least 20X.

To generate medium and low coverage datasets for models validation, BAM file of Illumina and 

ION experiments were downsampled to 30X and 60X mean coverage by random sampling using 

samtools.

Additionally, we included an HiSeqX dataset consisting of 3 genome sequencing experiments 

produced on Illumina HiSeqX platform. Mean coverage ranges from 27X to 52X, with > 76% of 

bases covered at least 20X.

Variant calling

Illumina data were analysed following GATK best practices18,19. Briefly, sequencing reads were 

aligned to hg19 reference genome using BWA-mem v.0.7.1, followed by duplicate marking with 

Picard v.1.119 and BAM file realignment using GATK 3.6. Variants were then identified using 

GATK Haplotype Caller 3.6 with stand_emit_conf and stand_call_conf set to 10 and 30, 

respectively.  Ion Torrent data were processed using Torrent Suite v.5.0.2 and Torrent Variant Caller 

(TVC) v.5.0.2. Briefly, sequencing reads were aligned to hg19 reference genome using TMAP, 

followed by BAM file realignment and variant identification with TVC v.5.0.2, using standard 

parameters provided by manufacturer for AmpliSeq Exome protocol. The same pipelines were used 

to identify variants in 30X / 60X downsampled experiments. GATK and TVC were selected as the 

most widely adopted variant callers for Illumina and Ion Torrent data. To provide comparable 
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representation of alleles across VCF files, variants were decomposed, normalized and left aligned 

using vt tool29. Focusing on exome regions, we considered for further analysis only variants located 

in RefSeq coding exons plus 5bp flanking regions and overlapping high confident regions defined 

in NIST v.3.3.2 data 

(ftp://ftptrace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.2/).  

True and false variants in these regions were determined based on comparison with NA12878 gold-

standard calls from NIST v.3.3.226.

Detailed description of variants identified for each experiment is given in Supplementary Table S4.

Definition of variant datasets for model development

For both Illumina and ION platforms we merged variants from all experiments resulting in 178,450 

Illumina variants (173,116 SNPs / 5,334 INDELs) and 181,479 ION variants (177,362 SNPs / 4,117

INDELs). SNP and INDEL variants were considered separately in subsequent analysis, generating 

four groups: Illumina INDELs, Illumina SNPs, ION INDELs, and ION SNPs. Variants in each 

group were then splitted randomly in 4 independent datasets to be used in models development: pre-

training, training and validation sets were used to develop and refine prediction models; test sets 

contained ~ 50% of overall variants and were used to assess prediction performances. Since both 

Illumina and ION platforms have high accuracy on SNP calls, SNPs sets contained a strongly 

unbalanced proportion of true calls. To avoid overfitting on true calls, pre-training and training sets 

were balanced by randomly removing true calls so that they contain at least 20 % of false variants.

Additionally, we assembled a 60X and a 30X test sets merging variants derived from downsampled 

experiments (see data sources) and randomly selecting ~ 50% of overall variants. HiSeqX test set 

was obtained merging variants from 3 HiSeqX experiments (see data sources).

Detailed description of the final datasets used in this study is reported in Supplementary Table S2.

Development of prediction models

We used variant features reported in VCF file output by GATK and TVC variant callers to train 

deep learning algorithms predicting true out of false variants. Features with constant values were 

not considered. 

For ION SNP variants we included 18 features: FAO, FDP, FSAF, FSAR, FXX, GQ, HRUN, LEN, 

MLLD, QUAL, QD, RBI, SSEN, SSEP, SSSB, STB, STBP, and VARB.

For ION INDEL variants we included 18 features: FAO, FDP, FSAF, FSAR, FXX, GQ, HRUN, 

LEN, MLLD, PB, PBP, QUAL, QD, RBI, STB, STBP, SSSB and VARB.

For Illumina SNP and INDEL variants we included 10 features: BaseQRankSum, DP, FS, GQ, MQ, 
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MQRankSum, QD, QUAL, ReadPosRankSum, SOR.

Detailed description of selected features is reported in Supplementary Table S5, while distributions 

of each feature values in all variants analysed in this study are reported in Supplementary Fig. S3-

S6.

INDELs and SNPs were treated separately for each platform, generating 4 distinct prediction 

models: Illumina INDELs, Illumina SNPs, ION INDELs, and ION SNPs. Deep learning models 

development was performed using H2O 3.10.4.5 (http://www.h2o.ai).

First, hyper-parameters were optimised for each model using corresponding training sets and 10 

fold cross-validation. We used random search to explore space of 6 hyper-parameters: l1, l2, rho, 

epsilon, hidden layers and activation function. Search was conducted with early stopping based on 

log-loss  (5 stopping rounds with 10E-3 stopping tolerance), generating at least 10,000 different 

models. Models were ranked according to cross-validation AUC and the best five hyper-parameters 

combinations were used for further model refinement. For each combination we first performed 

unsupervised pre-training with autoencoder on pre-training sets using 1,000 epochs and early 

stopping based on log-loss (10 stopping rounds with 10E-5 stopping tolerance). Prediction models 

were than initiated with the corresponding pre-training model and refined on training and validation

sets using 1,000 epochs and early stopping as above (see Supplementary Fig. S8). For each group of

variants, a final prediction model was selected based on AUC value on validation set. The 

architecture of each model is reported in Supplementary Table S1.

Finally, GARFIELD-NGS prediction performance for each variants category was evaluated on test 

sets using the corresponding model.

Comparison with previous hard-filters

Variants in our 4 test sets were re-analysed using previously developed hard-filters for Illumina, as 

described in GATK best practises18 and ION13 data. For Illumina data we created 2 sets of filtered 

variants using quality based metrics and then adding genotype quality (GQ) filter after GQ 

refinement, as described in GATK protocols. Instead, for ION data we created 3 sets of filtered 

variants applying hard, medium and low stringency filters proposed in the original paper.

Data availability

The Illumina datasets analysed during the current study are available in the SRA archive repository, 

https://www.ncbi.nlm.nih.gov/sra. ION datasets are available from Thermo Fisher Cloud, 

https://ion-torrent.s3.amazonaws.com/datasets/HiQ. Accession codes are given in Supplementary 

Table S4.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/149146doi: bioRxiv preprint 

https://doi.org/10.1101/149146
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

1. Zhang, G. et al. Comparison and evaluation of two exome capture kits and sequencing 
platforms for variant calling. BMC Genomics 16, 581 (2015).

2. Petersen, B.-S., Fredrich, B., Hoeppner, M. P., Ellinghaus, D. & Franke, A. Opportunities and
challenges of whole-genome and -exome sequencing. BMC Genet. 18, 14 (2017).

3. Kadalayil, L. et al. Exome sequence read depth methods for identifying copy number 
changes. Brief. Bioinform. 16, 380–392 (2015).

4. Lee, H. et al. Clinical exome sequencing for genetic identification of rare Mendelian 
disorders. JAMA 312, 1880–7 (2014).

5. Bowdin, S. et al. Recommendations for the integration of genomics into clinical practice. 
Genet. Med. 18, 1075–1084 (2016).

6. Brown, T. L. & Meloche, T. M. Exome sequencing a review of new strategies for rare 
genomic disease research. Genomics 108, 109–114 (2016).

7. Bamshad, M. J. et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat.
Rev. Genet. 12, 745–755 (2011).

8. Wang, Z., Liu, X., Yang, B.-Z. & Gelernter, J. The Role and Challenges of Exome 
Sequencing in Studies of Human Diseases. Front. Genet. 4, 160 (2013).

9. Kiezun, A. et al. Exome sequencing and the genetic basis of complex traits. Nat. Genet. 44, 
623–30 (2012).

10. Kosmicki, J. A., Churchhouse, C. L., Rivas, M. A. & Neale, B. M. Discovery of rare variants 
for complex phenotypes. Hum. Genet. 135, 625–634 (2016).

11. Lelieveld, S. H., Veltman, J. A. & Gilissen, C. Novel bioinformatic developments for exome 
sequencing. Hum. Genet. 135, 603–614 (2016).

12. Bao, R. et al. Review of current methods, applications, and data management for the 
bioinformatics analysis of whole exome sequencing. Cancer Inform. 13, 67–82 (2014).

13. Damiati, E., Borsani, G. & Giacopuzzi, E. Amplicon-based semiconductor sequencing of 
human exomes: performance evaluation and optimization strategies. Hum. Genet. 135, 499–
511 (2016).

14. Boland, J. F. et al. The new sequencer on the block: comparison of Life Technology’s Proton 
sequencer to an Illumina HiSeq for whole-exome sequencing. Hum. Genet. (2013). 
doi:10.1007/s00439-013-1321-4

15. Rehm, H. L. et al. ACMG clinical laboratory standards for next-generation sequencing. 
Genet. Med. 15, 733–47 (2013).

16. Wang, S. & Xing, J. A Primer for Disease Gene Prioritization Using Next-Generation 
Sequencing Data. Genomics Inform. 11, 191–199 (2013).

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/149146doi: bioRxiv preprint 

https://doi.org/10.1101/149146
http://creativecommons.org/licenses/by-nc-nd/4.0/


17. Isakov, O., Perrone, M. & Shomron, N. in Methods in molecular biology (ed. Shomron, N.) 
1038, 137–158 (Springer Science, 2013).

18. Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome 
Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinforma. 43, 11.10.1-33 (2013).

19. DePristo, M. a et al. A framework for variation discovery and genotyping using next-
generation DNA sequencing data. Nat. Genet. 43, 491–8 (2011).

20. de Ridder, D., de Ridder, J. & Reinders, M. J. T. Pattern recognition in bioinformatics. Brief. 
Bioinform. 14, 633–647 (2013).

21. Libbrecht, M. W. & Noble, W. S. Machine learning applications in genetics and genomics. 
Nat. Rev. Genet. 16, 321–332 (2015).

22. Dong, C. et al. Comparison and integration of deleteriousness prediction methods for 
nonsynonymous SNVs in whole exome sequencing studies. Hum. Mol. Genet. 24, 2125–37 
(2014).

23. Jagadeesh, K. A. et al. M-CAP eliminates a majority of variants of uncertain significance in 
clinical exomes at high sensitivity. Nat. Genet. 48, 1581–1586 (2016).

24. Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning-
based sequence model. Nat. Methods 12, 931–4 (2015).

25. Lee, D. et al. A method to predict the impact of regulatory variants from DNA sequence. Nat.
Genet. 47, 955–61 (2015).

26. Zook, J. M. et al. Integrating human sequence data sets provides a resource of benchmark 
SNP and indel genotype calls. Nat. Biotechnol. 32, 246–51 (2014).

27. Allhoff, M. et al. Discovering motifs that induce sequencing errors. BMC Bioinformatics 14 
Suppl 5, S1 (2013).

28. Schirmer, M. et al. Insight into biases and sequencing errors for amplicon sequencing with 
the Illumina MiSeq platform. Nucleic Acids Res. 43, e37 (2015).

29. Tan, A., Abecasis, G. R. & Kang, H. M. Unified representation of genetic variants. 
Bioinformatics 31, 2202–4 (2015).

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/149146doi: bioRxiv preprint 

https://doi.org/10.1101/149146
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements

EG has been supported by “Fondazione Cariplo” and “Regione Lombardia” under the project: “La 

salute della persona: lo sviluppo e la valorizzazione della conoscenza per la prevenzione, la 

diagnosi precoce e le terapie personalizzate”, Grant Emblematici Maggiori 2015-1080.

Author Contributions

VR performed ROC curve analysis. EG conceived the study and performed NGS data analysis and 

variant calling. VR and EG developed prediction models. VR and EG wrote and reviewed the 

manuscript text and prepared figures.

Competing financial interests

The author(s) declare no competing financial interests.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/149146doi: bioRxiv preprint 

https://doi.org/10.1101/149146
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure Legends

Figure 1. ROC curves of GARFIELD-NGS final models on test datasets

Performance of prediction models were assessed using ROC curves on test sets, 60X and 30X 

downsampled sets, and HiSeqX sets. Performances were evaluated separately on Illumina data 

(INDELs in a, SNPs in b) and Ion data (INDELs in c, SNPs in d). Values of area under the curve 

(AUC) are indicated in the graphical plots.

Figure 2. Distributions of GARFIELD-NGS score for true and false variants

GARFIELD-NGS models assign a score from 0 to 1 to each variant. Distributions of GARFIELD-

NGS score for true and false variants are clearly separated for Illumina INDELs (a), ION INDELs 

(c), and ION SNPs (d) test sets. Smaller difference is observed for Illumina SNPs (b). Black dots 

indicate median values.
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Tables

Table 1. GARFIELD-NGS performance and comparison with previous hard-filters

Performance of GARFIELD-NGS prediction applying threshold corresponding to maximum 

accuracy or 0.99 TPR and comparison with previous GATK18  and ION13 hard-filters. Variants with 

P true value < threshold are classified as false. TPR: true positive rate, FDR: false positive rate.

GARFIELD-NGS criterion accuracy TPR FDR specificity threshold

Illumina INDELs
0.99 TPR 0.9326 0.9901 0.0738 0.7517 0.4703

max
accuracy

0.9355 0.9779 0.0604 0.8021 0.6301

Illumina SNPs
0.99 TPR 0.9411 0.9900 0.0518 0.3901 0.8777

max
accuracy

0.9435 0.9949 0.0536 0.3644 0.8369

ION INDELs
0.99 TPR 0.8607 0.9906 0.1517 0.4786 0.0876

max
accuracy

0.9117 0.9542 0.0707 0.7863 0.4948

ION SNPs
0.99 TPR 0.9868 0.9900 0.0035 0.8047 0.5261

max
accuracy

0.9919 0.9974 0.0056 0.6786 0.1389

GATK
hard-filters

criterion accuracy TPR FDR specificity threshold

Illumina INDELs
Standard 0.8665 0.9934 0.1456 0.4670 -

Low GQ 0.8254 0.9366 0.1510 0.4757 -

Illumina SNPs
Standard 0.9400 0.9943 0.0566 0.3275 -

Low GQ 0.9223 0.9745 0.0572 0.3332 -

ION
hard-filters

criterion accuracy TPR FDR specificity threshold

ION INDELs

High 0.7707 0.8192 0.1336 0.6282 -

Medium 0.7978 0.8969 0.1576 0.5064 -

Low 0.8033 0.9659 0.1920 0.3248 -

ION SNPs

High 0.8779 0.8795 0.0043 0.7835 -

Medium 0.9601 0.9650 0.0058 0.6800 -

Low 0.9817 0.9885 0.0072 0.5948 -
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