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vqtl: An R package for Mean-Variance QTL Mapping
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*Department of Genetics, University of North Carolina at Chapel Hill

ABSTRACT Most existing methods for QTL mapping in experimental crosses assume that the residual variance
is constant across all individuals. But common situations violate this assumption. For many phenotypes, one  QTL
sex is more variable than the other, some experimenters make more precise measurements than others, and
specific genetic factors influence environmental sensitivity. In these cases, mean-variance QTL mapping
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provides higher power and better protection against false positives. It also allows for detection of QTL that

influence phenotype variance, termed vQTL.

We present R package vqtl. This package makes it easy for geneticists to apply the mean-variance QTL
mapping approach, control family-wide error rate (FWER), and visualize and interpret their results. Because
this package is interoperable with the popular R/qt1 package and uses many of the same data structures and
input patterns, it will be easy for geneticists to analyze future experiments with R/vqtl as well as re-analyze

past experiments, possibly discovering new QTL.

QTL mapping studies have provided important insights on nearly
every trait of interest in human health and disease. Advances in
breeding, phenotyping (Yang ef al. 2014), and genotyping (Williams
et al. 1990) model organisms as well as statistical methods (Lander
and Botstein 1989) and software tools (Broman et al. 2003) have
supported these discoveries.

One common assumption in the design and analysis of these
studies is that, across all organisms in a study population, the resid-
ual variance is constant. Said another way, it is typically assumed
that nothing — neither environmental factors nor genetic factors —
influences the residual variance of the trait. “vQTL” analysis chal-
lenges that assumption by seeking to identify genetic factors that
influence the extent of residual variation (Rénnegard and Valdar
2011, 2012). In the companion piece [Corty2017a], we describe an
elaboration of “vQTL” analysis, the mean-variance QTL mapping
approach. This approach allows for QTL mapping in the pres-
ence of both genetic and non-genetic effects on phenotype mean
and variance. We compare its behavior to other QTL mapping
approaches, and illustrate the discovery of a new QTL from an
existing study.

In support of other researchers who may be interested in
mvQTL mapping, we created R package vqtl, which provides
functions for conducting genome scans, assessing the statistical
significance of results, and visualizing and interpreting significant
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findings. R package vqt1 uses the same cross data structure as the
popular qtl package and is available on CRAN, so it is easy to get
started.

Here, we demonstrate typical use of the vqt1 package. The code
used to simulate the phenotypes, calculate the statistics, estimate
their significance, and visualize significant results is available at
github.com/rcorty.

SIMULATION OF AN ILLUSTRATIVE DATASET

We used the popular R/qt1 package to simulate an example exper-
imental cross. This cross consisted of 200 male and 200 female F2
offspring, with 3 chromosomes of length 100 cM, each tagged by
11 equally-spaced markers and estimated genotype probabilities
at 2cM intervals with R/qt1’s hidden Markov model.

We simulated four phenotypes:

1. phenotypel consists only of random noise and will serve as
an example of negative results for all tests.

2. phenotype?2 is influenced by the 6th (middle) marker on chro-
mosome one. The marker influences the mean of the pheno-
type, but not the variance, so it will serve as an example of a
pure “mQTL".

3. phenotype3 is influenced by the 6th (middle) marker on chro-
mosome two. The marker influences the variance of the phe-
notype, but not the mean, so it will serve as an example of a
pure “vQTL”.

Volume X | June 2017 | 1


https://doi.org/10.1101/149377
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/149377; this version posted June 20, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

phenotypel
5-
4-
— mQTL
8 3- — vQTL
= 2- — mvQTL
— traditional
L SAALLS
0- 7 [ [ [ [ 1 [T [ [ [ [ [ [ [ [ (] 1
1 2 3
phenotype2
4-
— mQTL
8 3- — vQTL
=2 — mvQTL
m Zé — traditional
1-
0= [ [ [ [ [ [ [ [ [ [ (] [ [ [ (] [
1 2 3
phenotype3

— mQTL
— QTL
— mvQTL

LoD

— traditional

phenotype4
5-
4-

— mQTL
3- — vQTL
2- — mvQTL
1-
0= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T [ 1 [l 1 1 1 1
1 2

Figure 1 For each of the four simulated phenotypes, the genome
scan shows the LOD score of each test — mean, variance, and
joint — in blue, red, and black, respectively. The traditional test is
in green and globally similar to the mean test.

LoD

— traditional

4. phenotype4 is influenced by the 6th (middle) marker on chro-
mosome three. The marker influences both the mean and the
variance of the phenotype, so it will serve as an example of a
mixed “mvQTL".

We additionally consider phenotypelx through phenotype4x,
which have the same type of genetic effects as phenotypel through
phenotype4, but additionally have covariate effects on pheno-
type variance. All the same analyses and plots that are shown
for phenotype1 through phenotype4 are shown for phenotypelx
through phenotype4x in the appendix.

GENOME SCANS

The central function for genetic mapping in package qt1is scanone
(Broman et al. 2003). Analogously, the central function for genetic
mapping in package mvqtl is scanonevar. It takes three required
inputs:

1. cross contains the genetic and phenotypic information from
an exerimental cross. This object can be the same cross object
used in package qt1.

2. mean.formula specifies the phenotype to be mapped, the
covariates to be corrected for, and the QTL terms to be fit-
ted (additive and dominance components by default). The
mean.formula uses the standard R formula notation.

3. var.formula specifies the covariates to be corrected for as
well as the QTL terms to be fitted (additive and dominance
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components by default) in modeling the residual variance.
The var.formula also uses the standard R formula notation.

Optional argument chrs is used to specify a subset of chromo-
somes to be scanned, defaulting to all chromosomes. Optional
argument return.covar.effects is used to specify whether or
not fitted effects of all covariates should be returned as part of the
scan result, defaulting to FALSE.

Unlike scanone, which only tests for association between each
locus and the phenotype mean, scanonevar computes three tests
for each locus — association with phenotype mean, association with
phenotype variance, and joint association with phenotype mean
and variance. The statistic for each of these associations is a LOD
score, the log of the ratio of the likelihood of the alternative model
to the null model. The results of scanonevar on each of the four
described phenotypes is shown in figure 1. The details of the null
and alternative models used in each of the three tests can be found
in the companion article [Corty2017a, Corty2017b].

The LOD Score — Problems and an Alternative

The traditional test statistic in QTL mapping is the LOD score, but
its interpretation can be difficult for two reasons: (1) LOD scores
must be interpreted differently in autosomes and sex chromosomes.
The sex chromosomes are typically fit with fewer parameters, de-
pressing the expected value of the LOD scores under the null, and
thus increasing the significance of any observed LOD score. (2)
LOD scores from different tests must be interpreted differently. For
example, the LOD score of the mvQTL test is always higher than
the LOD score of the mQTL and vQTL tests. This relationship is
due to the nested nature of the mvQTL test and the other two tests.
All three tests use the same alternative model, but the null model
in the mvQTL test imposes all the constraints of the null of the
mQTL test and all the constraints of the null of the vQTL test, so
the LOD score of the mvQTL test must, by definition, be greater
than the LOD score of the other tests.

These difficulties in interpreting the LOD score are evident in
figure 1. It seems that there are no important signials in the genome
scan of phenotypel and it is visually clear that the most interesting
signals for phenotype2, phenotype3, and phenotype4 are on chro-
mosomes one two and three, respectively. But important questions
remain: (1) If we didn’t have the genome scans from phenotype2 -
phenotype4 available for comparison, would we be confident there
are no statistically significant signals related to phenotypel? (2)
How can we compare the results of the mvQTL test to the results
of the other tests? (3) How could we compare the results of tests
on autosomes to tests on sex chromosomes (if they were present)?
(4) How often do we expect to observe results of this magnitude or
greater when there is no true association, due simply to sampling
variation and the multiplicity of tests conducted?

To put all genetic loci and all three tests on a level playing
field, we consider two types of p-values: (1) Asymptotic p-values
are calculated by scanonevar using the x? distribution with the
appropriate degrees of freedom for each locus. Though these
p-values overcome the questions 1 through 3 of working with
LOD scores described above, they leave problem 4 unresolved.
(2) Empirical, family-wide error rate (FWER)-corrected p-values
resolve all the above issues with interpreting LOD scores, thus
they are the recommended means of assessing the significance of
QTL mapping results. Methods for calculating them are described
in the next section.

The object returned by the scanonevar function has class
scanonevar. Calling plot on this object produces a publication-
quality plot that shows the three association statistics at each locus.
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Figure 2 For each of the four simulated phenotypes, the genome
scan shows the -log10 of the FWER-corrected p-value of each test
—mean, variance, and joint — in blue, red, and black, respectively.
Thus, a value of 3 implies that the quantity of evidence against
the null is such that we expect to see this much or more evidence
once per thousand genome scans when there is no true effect.

Calling summary on this object produces a summary of how the
scan was conducted and what the results were. With this example
dataset, it takes five seconds to run one genome scan on a Intel
Core i5.

ASSESS THE SIGNIFICANCE OF RESULTS

The p-value assigned to each locus by calculating the position of its
calculated LOD score in its null distribution answers the question,
“How probable is it to observe this much of a deviation from the
null at this locus, given that there is no true effect?” This question
is not entirely relevant for genetic mapping, however, because we
typically test for association at many loci, with no special interest
in any individual locus a priori. Thus, a more appropriate p-value
would answer the question, “How probable is it to observe this
much or more deviation from the null at some locus in the genome,
given that there are no true effects?” This is precisely the reasoning
behind the family-wide-error-rate (FWER) controlling procedure
we illustrate below.

To calculate a FWER-controlling p-value, one typically must
estimate the effective number of statistical tests conducted. The
effective number of tests in a genome scan, however, is difficult
to estimate. One lower bound is the number of chromosomes.
Due to the randomization in meiosis no two non-syntenic loci are
correlated in an experimental cross and therefore tests on different
chromosomes are always independent. But there are many non-
identical tests conducted on each chromosome, so the number
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of chromosomes is an under-estimate. One upper bound on the
effective number of tests is the total number of loci. But, loci on the
same chromosome are often in linkage disequilibrium, therefore
the tests are not independent and the total number of loci is an
over-estimate (Lander and Botstein 1989).

Like previous work on permutation-based thresholds for ge-
netic mapping (Churchill and Doerge 1994; Carlborg and Anders-
son 2002), our permutation approach sidesteps estimation of the
effective number of tests. We conduct many permuted genomes
scans, each executing a carefully-constructed model comparison
to maintain all mean and variance effects of covariates and any
non-focal genetic effects on mean and variance. The details of
these model comparisons are provided in the companion article
[Corty2017a]. For each test, we extract the highest observed value
of the test statistic from each permutation scan and use those to
model a generalized extreme value (GEV) density (Stephenson
2002). The observed LOD scores from the genome scan are then
transformed by the cumulative distribution function of the extreme
value density to estimate the FWER-controlling p-values. This ap-
proach is implemented in the function, scanonevar.perm, which
requires two inputs:

1. sov is the scanonevar object, the statistical significance of
which will be assessed through permutation.

2. n.perms is the number of permutations to conduct.

The object returned by scanonevar . permis a scanonevar object
with one important additional piece of information, an empirical
p-value for each test at each locus. These p-values are FWER-
corrected, so a value of 0.05 for a specific test at a specific locus
implies that in 5% of similar experiments where there is no true
genotype-phenotype association, we would expect to observe some
locus with this much or more evidence of association. Addition-
ally, the returned object contains a list of the per-genome-scan
maximum observed LOD for each test and each chromosome type.

Accurate estimation of the FWER-controlled p-values requires
many permutation scans. We recommend at least 100, and rarely
more than 1000 (Churchill and Doerge 1994; Carlborg and An-
dersson 2002). These permutation scans can be run on multiple
processors by specifying the optional n. cores argument. On an
Intel Core i5, running 100 permutations on this dataset packtakes
about five minutes. When many phenotypes are studied, or if
faster runtimes are needed, these permutation scans can be broken
into groups with different values for random. seed, run on separate
computers, and combined with the c function. This function com-
bines the permutations from all the inputted scans, re-evaluates
the observed LOD scores in the context of all available permuta-
tions, and returns a new scanonevar object with more precisely
estimated empirical p-values.

INVESTIGATE SIGNIFICANT FINDINGS

Having identified some QTL, we want to visualize the allele effects
at those loci. Because the vqtl package models both mean and
variance effects, existing plotting utilities aren’t able to display the
entirety of the modeling results. To investigate the results of a vqt1
scan at one particular locus, we developed the mean_var_plot.
This plot shows information about the phenotype mean on the
horizontal axis and information about the phenotype variance on
the vertical axis. There are both “model-free” and “model-based”
versions of this plotting utility. Here we show only the “model-
based” version.
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Figure 3 mean_var_plots show the estimated genotype effects
at a locus, with mean effects on the horizontal axis and variance
effects on the vertical axis. Horizontal lines indicate standard
errors for mean effects and vertical lines indicate standard errors
for variance effects. More information on the interpretation of
these plots is provided in the ‘Investigate Significant Findings’
section.

Figure 3 shows a model-based mean_var_plot for each of the
four phenotypes. In each plot, the location of the dot shows the esti-
mated mean and standard deviation of each genotype group, with
the mean indicated by the horizontal position and the standard
deviation indicated by the vertical position. The horizontal lines
extending to the left and right from each dot show the standard
error of the mean estimate, and the vertical lines extending up and
down from each dot show the standard error of the standard devi-
ation estimate. There are two types of grouping factors considered
by the function mean_var_plot_model_based: (1) focal.groups
are groups that are modeled and the prediction for each group
is plotted. For example, a genetic marker is the focal.group in
each plot in figure 3; DIM1 in the top left, D1M6 in the top right,
etc. (2) nuisance.groups are groups that are modeled, but then
averaged over before plotting. When there are many grouping fac-
tors thought to play a role in determining the mean and variance
of an individual’s phenotype, such as sex, treatment, and batch,
we recommend putting just one or two in focal.groups and the
others in nuisance. groups for clarity, cycling through which are
displayed to gain a thorough understanding of the factors that
determine the mean and variance of the phenotype.

For phenotypel, the mean_var_plot is shown at the first
marker of the first chromosome. The estimates of the genotype
effects on phenotype mean and variance are within one standard
error of each other. This pattern is consistent with the fact that
there are no genetic effects, and the p-value was not statistically
significant at any locus.

For phenotype2, the mean_var_plot is shown at the most sig-
nificant marker, the sixth marker on the first chromosome. The
estimates of the genotype effects differ in the horizontal axis, but
not the vertical axis. This pattern is consistent with the fact that
there is a genetic effect on phenotype mean but none on phenotype
variance and with the highly significant p-value for the mQTL test,
but non-significant p-value for the vQTL test.

For phenotype3, the mean_var_plot is shown at the most sig-
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nificant marker, the sixth marker on the second chromosome. The
estimates of the genotype effects differ in the vertical axis, but
on on the horizontal axis. This pattern is consistent with the fact
that there is a genetic effect on phenotype variance but none on
phenotype mean and with the highly significant p-value for the
vQTL test but non-significant p-value for the mQTL test.

For phenotype4, the mean_var_plot is shown at the most sig-
nificant marker, the sixth marker on the third chromosome. The
estimates fo the genotype effects differ somewhat in both the hori-
zontal and vertical axes, but not as much on the horizontal axis as
phenotype2 and not as much on the vertical axis as phenotype3.
This pattern is consistent with the fact that there is a genetic effect
on both phenotype mean and variance and with the highly signif-
icant p-value for the mvQTL test and the marginally significant
p-values for the other two tests.

Additional plotting utilities, phenotype_plot, effects_plot
and mean_var_plot_model_free are described in the online vi-
gnette for the vqtl package, available at github.com/rcorty.

CONCLUSION

We have demonstrated typical usage of the new vqtl R package
for QTL mapping in experimental crosses. This package is most
appropriate for crosses and phenotypes where nuisance covariates
or genetic factors are known or suspected to influence phenotype
variance. In the case of genetic factors, they can be mapped. In the
case of nuisance covariates, they can be accommodated.

The central function of this package, scanonevar, carries out the
initial genome scan. The permutation function, scanonevar. perm,
executes a carefully-constructed set of permutations to empirically
estimate a FWER-controlling p-value for each observed LOD score.
A suite of plotting functions, e.g. the mean_var_plot, allows ge-
neticists to evaluate the allelic and covariate effects that underlie
detected signals.
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Figure 4 For each of the four simulated phenotypes, the genome
scan shows the LOD score of each test — mean, variance, and
joint — in blue, red, and black, respectively. The traditional test is
in green and globally similar to the mean test.

=2 G3:Genes| Genomes | Genetics

phenotypelx
25-
50- =001
2 s — mQTL
S a=0.05 — VQTL
E’ 1.0- — mvQTL
T
— traditional
05-
00 T T T T T L e e ———— L -
1 2 3
phenotype2x
25-
20
2 . — mQTL
% — vQTL
S 10- — mvQTL
1
05- — traditional
00- & T T i L T —— L T —
1 2 3
phenotype3x
25-
20- @=0.01
2 . — mQTL
g a=0.05 —vQrL
E 1.0- — mvQTL
1
— traditional
05~
1 2 3
phenotype4dx
25-
20- =001
2 . — mQTL
S a=0.05 — vQTL
8 10- — mvQTL
T
— traditional
05-
00 =TT T T L e ———— L S T R R R —
1 2 3

Figure 5 For each of the four simulated phenotypes, the genome
scan shows the -log10 of the FWER-corrected p-value of each test
—mean, variance, and joint — in blue, red, and black, respectively.
Thus, a value of 3 implies that the quantity of evidence against
the null is such that we expect to see this much or more evidence
once per thousand genome scans when there is no true effect.
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Figure 6 mean_var_plots show the estimated genotype effects
at a locus, with mean effects on the horizontal axis and variance
effects on the vertical axis. Horizontal lines indicate standard
errors for mean effects and vertical lines indicate standard errors
for variance effects. More information on the interpretation of
these plots is provided in the ‘Investigate Significant Findings’
section.
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