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Microbial communities perform key functions for the host they associate with or the environment

they reside in. Our ability to control those microbial communities is crucial for maintaining or

even enhancing the well-being of their host or environment. But this potential has not been fully

harvested due to the lack of a systematic method to control those complex microbial communities.

Here we introduce a theoretical framework to rigorously address this challenge, based on the new

notion of structural accessibility. This framework allows the identification of minimal sets of “driver

species” through which we can achieve feasible control of the entire community. We apply our

framework to control the core microbiota of a sea sponge and the gut microbiota of gnotobiotic mice

infected with C. difficile. This control-theoretical framework fundamentally enhances our ability to

effectively manage and control complex microbial communities, such as the human gut microbiota.

In particular, the concept of driver species of a microbial community holds translational promise in

the design of probiotic cocktails for various diseases associated with disrupted microbiota.
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INTRODUCTION

Microbial communities (MCs) play vital roles in the well-being of their hosts or environment [1–4].

For example, the human gut microbiota —the aggregate of microorganisms that resides in our intestines—

plays a very important role in human physiology and diseases. Many gastrointestinal diseases such as

inflammatory bowel disease, irritable bowel syndrome, and C. difficile Infection, as well as a variety of

non-gastrointestinal disorders as divergent as autism and obesity, have been associated with disrupted gut

microbiota [5–7]. For soil microbiota, its disruption may reduce the resistance of crops to diseases [8, 9].

For ocean microbiota, the disruption may impact global climate by altering carbon sequestration rates in

the oceans [3, 4] Controlling these disrupted MCs to restore their healthy or normal states will be important

for addressing a variety of challenges, including complex human diseases, global warming and sustainable

agriculture [10–13].

In general, MCs can be affected by four types of control actions. Bacteriostatic agents and bactericides

are antibiotics that decrease the abundance of targeted species∗ by inhibiting their reproduction or directly

killing them, respectively [14]. Prebiotics are chemical compounds that selectively stimulate the growth

of targeted species [15]. The fourth type of control action is transplantation, in which certain combination

of species (e.g., all species from a “healthier” MC) is introduced to an MC at discrete intervention time

instants. For the human gut microbiota, probiotics administration [16] and fecal microbiota transplantations

(FMTs) [17] are examples of transplantations. To date, the empirical use of those control actions have

already shown their efficacy for restoring disrupted MCs. For example, transplanting adequate soil species

(i.e., soil inoculation) has been shown to be the key to successful restoration of terrestrial ecosystems [18].

And FMT is so far the most successful therapy in treating patients with recurrent C. difficile Infection [17].

But in order to harvest their full potential for restoring healthy MCs from disrupted ones, a systematic and

rational control design method is required [10, 11, 19].

There are two fundamental challenges. First and foremost, we lack an efficient algorithm to identify

minimal sets of species, which we call driver species, whose control can help us steer the whole community

∗ In this paper the term “species” is used in the general context of ecology, i.e., a set of organisms adapted to a particular set
of resources in the environment. It doesn’t necessarily represent the lowest major taxonomic rank. In fact, one could think of
organizing microbes by strains, genus or operational taxonomical units as well.
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to desired states. Consequently, we don’t quite understand why microbiota transplantation works for some

conditions but fails for others. Second, even if we have those driver species right in our hands, microbial

dynamics are typically complicated and highly uncertain, rendering the systematic design of control strate-

gies extremely difficult. Here, we developed a new control-theoretic framework that systematically address

those two challenges. We first define the new notion of structural accessibility and derive a graph-theoretical

characterization of it. This enables us to efficiently identify minimal sets of driver species of any MC purely

from the topology of its underlying ecological network. Once the driver species are identified, the notion of

structural accessibility also allows us to systematically design control strategies that steer an MC towards

desired states. We demonstrate our framework in restoring the core microbiota of a sea sponge and the gut

microbiota of gnobiotic mice infected by C. difficile.

PROBLEM STATEMENT

Define the state of an MC as the abundance profile x ∈ Rn of its n species. Consider that host or

environmental factors influencing the MC remain constant during the time-interval that the control is to be

performed (see Remark 1 in SI-1.2). Then, the evolution of the state along time t can be described by a

general population dynamics model in the form of the ordinary differential equation

ẋ(t) = f(x(t)), (1)

where the function f : Rn → Rn models the intrinsic growth and inter/intra-species interactions of the n

species in the MC.

The exact functional form of f is often unknown because species can interact via a multitude of mecha-

nisms [20], forming complex ecological networks [21] that give rise to various population dynamics models

even at the scale of two species [22]. This leads us to only assume that (i) the topology of the underlying

ecological network G of the MC is known; and (ii) f is some meromorphic function (i.e., its n entries

fi(x) are the quotient of analytic functions of x). The ecological network of an MC has one state node

X = {x1, · · · , xn} per species and edges (xj → xi) ∈ G iff the j-th species directly promotes or inhibits

the growth of the i-th one (Fig.1A). Those interactions can be directly inferred from co-culture experiments

[21, 23], or indirectly inferred from time-resolved metagenomics data using system identification tech-

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149765doi: bioRxiv preprint 

https://doi.org/10.1101/149765
http://creativecommons.org/licenses/by/4.0/


4

niques [24, 25]. Assumption (ii) is very mild and is satisfied for most population dynamics models (Remark

2 in SI-1), including the classical Generalized Lotka-Volterra (GLV) model: f(x) = diag(x)[Ax+ r] with

A ∈ Rn×n and r ∈ Rn the inter-species interaction matrix and the intrinsic growth rate vector, respectively

[17, 19, 21, 26–32].

Consider now m different control inputs u ∈ Rm applied to an MC with population dynamics as Eq.

(1), aiming to steer it from an initial towards a desired state (Fig. 1B). To describe which species are

actuated by (i.e., directly susceptible to) the control inputs, we introduce the controlled ecological network

Gc. This network contains the same set of state nodes X and inter-species interaction edges as G, as well

as an additional control node set U = {u1, · · · , um} —one per control input— and edges of the form

(uj → xi) ∈ Gc denote that the i-th species is actuated by the j-th control input (Fig.1A).

We consider two control schemes to analyze the effect of the control inputs on the state of the MC. The

first control scheme models a combination of prebiotics (ui(t) > 0) and bacteriostatic agents (ui(t) < 0) as

continuous control signals modifying the growth of certain species (Fig.1C):

ẋ(t) = f (x(t)) + g (x(t))u(t), t ∈ R. (2)

The second control scheme models a combination of probiotic administrations or microbiota transplanta-

tions (ui(t) > 0) and bactericides (ui(t) < 0) as impulsive control signals (Fig. 1D), which instantaneously

modify the abundance of the actuated species at discrete time instants T = {t1, t2, · · · }:

ẋ(t) = f (x(t)) if t 6∈ T, x(t+) = x(t) + g (x(t))u(t) if t ∈ T. (3)

Here x(t+) = limσ↘t x(σ) denotes the value of x “right after time t”. Notice how the state x(t) “jumps”

if u(t) 6= 0 because of the instantaneous increase or decrease of the abundance of the actuated species (Fig.

1C). For simplicity’s sake, we assume that the control signals are periodically applied every τ > 0 time

units (i.e., tk+1 = tk + τ for all k ∈ N).

In both control schemes, the entry gij(x) of the susceptibility matrix g(x) = [gij(x)] ∈ Rn×m describes

the susceptibility of the i-th species to the j-th control input. If gij 6≡ 0, then the i-th species is actuated by

the j-th control input. The detailed mechanism of the susceptibility of a species to certain control actions is

typically complicated and not exactly known. But we can just assume that g is some unknown meromorphic

function.
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In the trivial case when each species is directly actuated by an independent control input (e.g., g(x) is

the identity matrix In×n), the state of the MC can of course be fully controlled, indicating that the set of all

species is a trivial set of driver species. This control strategy is certainly overkill, since it requires as many

controls as species in the MC. Next we show that knowledge of the topology of Gc can actually be exploited

to significantly reduce the number of driver species.

RESULTS

Given a particular pair of meromorphic functions {f, g} in Eqs. (2) or (3), the topology of its controlled

ecological network Gf,g is given by (xj → xi) ∈ Gf,g iff xj appears in the right-hand side of ẋi for

continuous control, or in the right-hand side of ẋi or xi(t+) for impulsive control. For both control schemes,

(uj → xi) ∈ Gf,g iff gij 6≡ 0. Knowing only the topology of the ecological network of the MC, we are

led to consider the class G of all controlled dynamics of the form of Eqs. (2) or (3) with the same network

topology Gc (i.e., all meromorphic f ’s and g’s such that Gf,g = Gc, see SI-3.1).

Structural accessibility

To identify minimal sets of driver species, we introduce the notion of structural accessibility of G. The

class G is structurally accessible if at least one of its pairs {f, g} lacks autonomous elements —that is,

internal variables of the system, involving certain combination of species, that are completely unaffected by

the control inputs (Definitions 1 and 3 in SI-2). We further proved that this condition implies that almost

all other pairs in G lack autonomous elements as well (Theorem 3 in SI-3). The absence of autonomous

elements guarantees that the dimension of their set of reachable states equals the dimension of the state

space itself, so the control actions are effective enough to locally steer and independently manipulate the

whole state of the MC (Fig.2A). Therefore, if G is structurally accessible, its corresponding set of actuated

species is defined as a set of driver species, and the condition of structural accessibility of Gc can be used

to determine minimal sets of driver species.

By contrast, G is not structurally accessible if all its pairs {f, g} ∈ G have autonomous elements.

This implies that, for all population dynamics f and all susceptibility matrices g, the set of states that

can be reached by using some control input u is constrained to a low-dimensional manifold, representing
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an underlying constraint between some species abundances that the control inputs cannot brake (Fig.2B).

Consequently, those actuated species (encoded in the susceptibility matrix g) cannot be a set of driver

species.

We also say that a pair {f, g} ∈ G is structurally accessible if G is structurally accessible. We proved

that if a pair {f, g} is structurally accessible but does have autonomous elements, then there always exists

an infinitesimal deformation than can be made to {f, g} such that the new pair {f̃ , g̃} is free of autonomous

elements (Proposition 1 in SI-3). If one had originally chosen {f, g} as an adequate dynamics model

for a controlled MC, the new pair {f̃ , g̃} free of autonomous elements is as adequate as the original one,

since it predicts essentially the same temporal behavior of the MC. Therefore, in practice, for a structurally

accessible class of controlled microbial dynamics models G, those pairs with autonomous elements can be

always circumvented.

Characterizing the structural accessibility of G requires us to define the notion of autonomous element

for impulsive control systems for the first time (Definitions 3 in SI-2), since this notion has been studied

only for systems with continuous control inputs [33]. We then characterized the conditions for the absence

of autonomous elements for a given pair {f, g}, finding that, surprisingly, such conditions are identical for

systems with continuous and impulsive control (Theorem 2 and Remark 3 in SI-2). This indicates that,

for controlling MCs, impulsive control actions can be as effective as continuous ones, making unnecessary

the use of continuous control —which is hard to implement anyway for many MCs, especially the human

gut microbiota. Note that other existing approaches that could steer an MC towards desired states, such as

“clamping” the abundance of the species in the so-called Feedback Vertex Set of G to their values at the

desired state [34], also require continuous actuation. This encouraging result assures us to further develop

microbiome-based therapies such as probiotic cocktails and FMTs in an impulsive control manner.

Finally, we used the above obtained conditions to derive a graph-theoretical characterization of the

structural accessibility of G (Theorem 5 in SI-3). We proved that G is structurally accessible if and only if

(i) each state (species) node in Gc is the end-node of a path that starts in the control input node set U; and

(ii) Gc does not have pure dilations of the control inputs. Let S ⊆ X be a set of state nodes and denote its

neighborhood set by T (S) ⊆ X ∪ U (i.e., the set of all nodes that point to S). The controlled ecological

network Gc has a pure dilation of the control inputs (Definition 8 in SI-3) if there exists a set S of state nodes
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such that T (S) only contains control input nodes (i.e., T (S) ⊆ U) and the size of T (S) is smaller than the

size of S, i.e., |T (S)| < |S| (Fig.2B).

Finding minimal sets of driver species

The above graph-theoretical characterization of structural accessibility provides a systematic method to

identify minimal sets of driver species for any MC that has known ecological network G and meromorphic

functions for its controlled population dynamics model. Algorithmically, a minimal set of driver species

can be obtained by choosing one node in each of the root Strongly Connected Components (SCCs) of G

(Fig. 2A). Here, an SCC of G is a maximal subgraph such that there is a directed path between any two of

its nodes. A root SCC is an SCC without incoming edges. If one node per root SCC is actuated by at least

one independent control input, the resulting controlled ecological network Gc cannot have pure dilations in

the control input, rendering the set of all possible controlled dynamical systems G structurally accessible.

Note that the SCCs of general directed graphs can be found in linear time [35, pp. 552-557].

Notice that once Gc satisfies the conditions for structural accessibility, this cannot be undone by adding

new edges to the network. Thus, for example, if we find the driver species of an ecological network G that

includes only the high-confidence interactions in an MC, the identified driver species remain driver species

even if additional interactions exist. Note also that adding or removing self-loops do not change the driver

species of G, since its SCCs remain unchanged.

Designing control signals that steer MCs to desired states

Next we discuss the design of the control signals u(t) that should be applied to those driver species

to steer the entire MC towards some desired state. We will focus on feedback control signals u(x(t)), as

they provide robustness against uncertainty in the system dynamics [36]. We consider two scenarios: when

the controlled dynamics of the MC is approximately known, and when it is highly uncertain. In the first

scenario, we show that the knowledge of the population dynamics can be used to “optimally” steer the

MC towards a desired state. In the second scenario, the controller needs to be designed to cope with large

uncertainties in the population dynamics of the MC.

If a structurally accessible pair {f, g} ∈ G is known to adequately model the controlled population

dynamics of the MC, then the absence of autonomous elements can be used to systematically build feedback
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controllers u(x(t)) that steer the system towards desired states using the so-called “feedback linearization”

methodology [33, pp. 119]. Such methodology yields controllers that steer the MC towards arbitrary desired

states, excepting a set of “singularities” of zero measure. In addition of steering the MC to desired states,

the feedback controller can be designed to satisfy certain optimality conditions using a linear quadratic

regulator [36]. For example, the controller can provide an optimal tradeoff between the convergence rate

towards the desired state xf and the “control energy” that is spent (e.g., a proxy for total abundance of

species that is transplanted or eliminated by bactericides), by minimizing the quadratic index∫ ∞
0

[zᵀ(x(t))Qz(x(t)) + vᵀ(t)Rv(t)]dt,

for continuous control. For impulsive control, the above integral should be replaced by a sum over T.

Here z = Φ(x) ∈ Rn and v ∈ Rm are the linearized state and control inputs, respectively, produced by

the feedback linearization methodology. The symmetric positive semi-definite matrices Q ∈ Rn×n and

R ∈ Rm×m are design parameters: “large” R highly penalizes the control effort, while “large” Q enhances

the convergence rate.

As a concrete example, consider the toy MC shown in Fig.1. This small MC contains 3 species and the

underlying ecological network G is depicted in Fig.1A. G has only one root SCC and this root SCC contains

only one species x3, corresponding to the only driver species that needs to be actuated. The controlled

network Gc does satisfy the graph-theoretical criteria of structural accessibility. Hence the microbial system

is structurally accessible. Indeed, a controller can be designed using the feedback linearization methodology

(see Examples 1 and 2 in SI-2) to obtain a suitable control input u(t) (either continuous or impulsive) that

can be applied to the driver species x3 to steer steer the whole MC towards the desired steady-state (Fig.1B).

The obtained continuous (or impulsive) control input u(t) is shown in Fig.1C (or Fig.1D), respectively. The

time evolution of the species abundances are also shown in Fig.1C and Fig.1D.

`-structural accessibility

Without detailed knowledge of an adequate pair of functions {f, g} that models the controlled population

dynamics of the MC, a systematic controller design for arbitrary MCs would be very challenging if not

impossible [36, 37]. Indeed, the only general class of uncertain systems for which systematic controller

design methods exist is linear systems. However, the selection of driver species by making Gc structurally
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accessible does not always guarantee that those robust linear control techniques can be applied. This is

because, given an structurally accessible class G, it is possible that only its nonlinear function pairs lack

autonomous elements (Example 3 in SI-3). This implies that there exist states that cannot be reached using

any linear controller, despite being infinitesimally close to the initial state of the MC.

To circumvent the above limitation and allow for the design of feedback controllers that can (at least lo-

cally) steer an arbitrary MC with uncertain dynamics, we introduce the notion of `-structural accessibility.

The class G is said `-structural accessible if at least one of its linear pairs {Ax,B} is free of autonomous

elements. We can also prove that this condition implies that almost all linear pairs in G are free of au-

tonomous elements (Proposition 7 in SI-3). Note that the zero-nonzero patterns of the matrices A ∈ Rn×n

and B ∈ Rm×n are fully determined by Gc. Note also that, for linear systems ẋ = Ax+Bu, the absence of

autonomous elements is equivalent to their (linear) controllability [33] —the intrinsic ability to steer these

linear systems between two arbitrary states, which can be verified by the famous Kalman’s rank condition:

rank[B,AB,A2B, . . . , An−1B] = n [36].

If G is `-structurally accessible and {f, g} ∈ G is any pair that adequately models the population

dynamics of the controlled MC, it is always possible to rewrite this pair as

{f, g} = {Ax+ wx, B + wu}, (4)

where (wx, wu) = (f−Ax, g−B) are some nonlinear functions, and the pair (A,B) is linearly controllable.

The selection of (A,B) now becomes a part of the controller design, with better selections (i.e., those

minimizing wx and wu) leading to controllers that can steer the system to more remote states. Of course,

the best selection would be the linearization of {f, g} at the initial state of the MC with zero control. This,

however, requires exact knowledge of the uncertain {f, g}. To circumvent this requirement, we propose

selecting some proxy (A,B) of this linearization; for example, the A matrix can simply be the weighted

adjacency matrix of G. Note that, regardless of the selection, the controllability of (A,B) guarantees that

optimal robust linear feedback controllers u = Kx can always be designed to locally steer the MC. Indeed,

the feedback gain matrixK ∈ Rm×n can be systematically designed using a variety of methodologies, such

as linear quadratic regulators orH∞ control (see details in SI-4).

We proved that, with either continuous or impulsive control, G is `-structurally accessible iff it is struc-

turally accessible and, additionally, its controlled ecological network Gc has no dilations in the state nodes
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(Theorem 6 is SI-3). A dilation in the state nodes exists if there is a subset of state nodes S such that it

neighborhood set T (S) ⊆ U ∪ X has smaller size than S. These conditions turn out to be equivalent to the

conditions for linear structural controllability of Gc [38], which has recently received renewed attention in

the context of network science [39, 40].

Finding minimal sets of `-driver species

Minimal sets of `-driver species can be efficiently found by solving the maximum matching problem

on the directed graph G [39]. Indeed, in addition of having a path that starts in U to each state node, it

is necessary that X is covered by a disjoint union of cycles and paths (a.k.a. the cactus structure in linear

structural control theory [38]). Notice that for general population dynamics model, each species node in

the ecological network G will usually have a self-loop due to the intrinsic growth and the intra-species

interactions. Consequently, all state nodes are matched by themselves and the sets of `-driver species and

driver species coincide. This result suggest that, for most MCs, it might be enough to find their sets of driver

species to design robust linear controllers.

Using control to restore the gut microbiota of mice

We identified a minimal set of driver species and `-driver species for the gut microbiota of germ-free

mice that are pre-colonized with a mixture of human commensal bacterial type stains and then infected

with C. difficile spores [24]. The underlying ecological network G was inferred from time-resolved metage-

nomics data. This MC has fourteen strains (Fig. 3A), with R. obeum and R. mirabilis (x1 and x12) being the

root SCCs of G, thus forming the minimum set of driver species of the community. As discussed earlier, if

all species have intra-species interactions, this set of driver species would also be a set of `-driver species.

To further validate our conclusion that a set of driver species or `-driver species remains valid after

adding new edges to the network, we consider finding a set of `-driver species for the ecological network in

which all self-loops are removed. This makes necessary adding three more actuated species —for example,

B. ovalus, C. ramnosum and A. muciniphila corresponding to {x2, x6, x10}— to obtain a disjoint union of

cycles and paths covering all state nodes (Fig. 3A), providing a minimal set of `-driver species. We validated

by simulation the effectivity of the above five identified `-driver species for steering the system towards a

desired state despite uncertainty in the controlled system dynamics and the presence of self-loops. With this
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aim, the simulation results use the GLV model, which implicitly adds a self-loop to each state node (see

SI-5 for details on the dynamic model used for the simulation). To design the controller, we selected the A

matrix in Eq. (4) as the weighted adjacency matrix of G without self-loops. The zero-nonzero pattern of B

is determined by the selected driver species, while the value of its non-zero entries were randomly chosen.

Linear optimal robust controllers were designed (see SI-4.4) and the resulting control signal was applied

to the driver species to steer the system from an initial “diseased” state x0 ∈ R14, in which C. difficile is

overabundant compared to the rest of the species, towards a desired state with a more balanced abundance

of species (Fig. 3B-D). The efficacy of the control signal also shows that the designed controller is robust

enough to steer the system despite not knowing the presence of self-loops.

Controlling the core microbiota of a sea sponge

We also identified and validated a minimal set of driver species and `-driver species for controlling the

core microbiota of the sea sponge Ircina oros [25], see SI-5 for details of the dynamic model used for the

simulation. This MC has twenty species; 14 of them are driver species, and two more are needed to obtain

a minimal set of `-driver species (Fig. 3E-H).

DISCUSSION

The notion of structural accessibility we introduced here is a generalization of the notion of structural

controllability of linear systems (see e.g.[38–40] and Remark 7 in SI-3). It is also a generalization of the

control theoretic notion of accessibility —defined as the absence of autonomous elements of a controlled

system with known dynamics, a keystone notion in nonlinear control [33]— to systems with uncertain

dynamics.

Although it has been noted before the that notion of controllability could be used to predict the success

of ecosystem management strategies [41], such notion is not completely adequate for MCs and many other

biological systems. First, for those systems, some states are unreachable simply due to their nature (e.g.,

states with negative abundances for MCs) and not due to ineffective control actions. Thus, it would be

overkill to demand that the control actions provide controllability of the system. Second, precise dynamic

models for some particular MCs might be unknown and very difficult to infer, making impossible to an-
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alyze their controllability. The notion of structural accessibility that we introduced here overcomes those

two limitations, opening the door for controlling other complex biological systems beyond MCs. Gene

regulatory systems, for example, have highly uncertain and very nonlinear dynamics, but their underlying

gene regulatory networks have continued being mapped in exquisite detail.

To achieve the ultimate goal of controlling MCs, there are still several steps to be taken to further enhance

our control theoretical framework. First of all, despite structural accessibility is insensitive to missing edges

in the ecological network of the MC, the design of feedback controllers is not. Hence, the systematic design

of controllers that can be very robust to missing interactions will be necessary in order to control real MCs.

Second, we could pose the design of controllers with certain constraints, such as only taking positive values.

For impulsive control inputs, for example, this corresponds to constraining the control actions to be only

microbiota transplantation or probiotic administration. Along this direction, our framework would provide

the basis for a systematic design of probiotic cocktails that restore disrupted MCs.

In conclusion, by identifying driver species, our framework shows that correctly inferring the ecological

networks underlying MCs could open the door for the systematic and rational design of control strategies to

steer MCs towards desired states. It will be necessary to design robust control strategies, letting us calculate

adequate control signals despite having large uncertainties on the dynamics of MCs. Therefore, in order to

fully harvest the potential benefits of controlling microbial communities for ourselves and our environment,

a stronger synergy between microbiology, ecology and control theory will be necessary.
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FIG. 1: Controlling a small microbial community towards a desired state. A. The controlled ecological network
Gc of a toy MC with n = 3 species (green, yellow, blue) and m = 1 control actions (square) actuating the species
x3. Our theoretical framework allows us to identify this actuated species as the minimal set of driver and `-driver
species, since Gc is structurally accessible and `-structurally accessible. B. Based on the identified driver species,
we can design a continuous u(x(t)) or an impulsive feedback controller u(x(tk)) to steer the MC from a initial to a
desired equilibrium state.These two control signals are displayed in panels C and D, respectively. C. In the case of
continuous control, the effect of the control actions u(t) ∈ R on the state x(t) ∈ R3 are modeled as a continuous
signals modifying the growth of the actuated species. Positive and negative control inputs correspond to prebiotics and
bacteriostatic agents, respectively. In simulating this toy controlled MC, for illustration purpose, we used the dynamics
ẋ1 = (1 − x1 + x3)/(1 + x3), ẋ2 = (1 − x3)/(1 + x3) and ẋ3 = u, which has strong nonlinearities and might not
necessarily follow any classic population dynamics. Note that real MCs could have less nonlinear dynamics (the
Generalized Lotka-Volterra equations, for example) and more self-loops in their ecological networks, facilitating the
design of controllers. D. In the case of impulsive control, the control actions u(t) ∈ R are modeled as inputs applied
at discrete time instants T = {t1, t2, · · · }, instantaneously modifying the state of the actuated species. Positive and
negative control inputs correspond to transplantation and bactericides, respectively. In simulating this toy community,
we use the dynamics as in C, except that equations for x3 are replaced by ẋ3 = 0 and x3(t+) = x3(t) +u(t) if t ∈ T.
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FIG. 2: Structural accessibility and its graph-theoretical characterization. A. For an structurally accessible
class of controlled systems G, for almost all its pairs, their set of reachable states has dimension n, guaranteeing that
the control actions can locally steer the whole system. Consequently, the condition of structural accessibility can
be used to find minimal sets of driver species that provide control of the rest of the species in the MC. A minimal
set of driver species is obtained by arbitrary selecting one node per root SCCs of the ecological network G. In this
example, G has two root SCCs characterizing its two driver species. If these two driver species are actuated by two
inputs u1 and u2, the resulting controlled ecological network Gc is structurally accessible. B. The control actions do
not provide full control when the trajectories of the system are always constrained to a low-dimensional manifold for
population dynamics and susceptibility matrix {f, g} ∈ G and all inputs u ∈ Rm. In such case, the class G is not
structurally accessible. In this example, the controlled ecological network Gc indicates that the possible dynamics that
the MC can have are of form ẋ1 = f1(x3), ẋ2 = g2u, ẋ3 = g3u, for some meromorphic function f1 and constants
g2, g3. For all those controlled systems, the function ξ = g3x2 − g2x3 is an autonomous element because ξ̇ = 0
and ξ(t+) = ξ(t). Consequently, the trajectories of the system are always constrained to an hyperplane of the form
x2 = const. + (g2/g3)x3. Our analysis shows that the presence of such autonomous element can be deduced purely
from the topology of Gc, since it contains a pure dilation in the control input.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149765doi: bioRxiv preprint 

https://doi.org/10.1101/149765
http://creativecommons.org/licenses/by/4.0/


18

A

B

C

1

13

9

3

14

11

2

4

7

6

8

5

12
10

D

3

20

7

14

9

6

11

12 18

1

5

15
10

16

4

17
8

19
2 13

input node species node driver species driver species

0 40 80-0.2

0

0.2

co
nt

ro
l

0 40 80-0.2

0

0.2

co
nt

ro
l

time

0 60 120-0.5

0

0.5

co
nt

ro
l

co
nt

in
uo

us

0 60 120-0.5

0

0.5

co
nt

ro
l

time

im
pu

lsi
ve

0.4
-0.5

1

0

1.4

0.50.5 1.52.53.5
PC

impulsive
control

continuous
control

PC

PC

1

2

3

initial 
state

desired
state

0.5
00.4

-1-0.5 0 0.5

1

1.5 -22.5

1.4

PC

PC

PC

1

2

3

initial 
state

desired
state

impulsive
control

continuous
control

co
nt

in
uo

us
im

pu
lsi

ve

E

F

FIG. 3: Controlling two real microbial communities. A. Ecological network of the gut microbiota of gnotobiotic
mice that are pre-colonized with a mixture of human commensal bacterial type stains and then infected with C.
difficile. A minimal set of driver species and `-driver species is shown. In particular, the minimal set of `-driver
species provides a disjoint union of paths that start in the control input set U (purple) and cycles (green) that cover
all species nodes X. Refer to Table 1 SI-5 for species name (C. difficile corresponds to species 7). B. The temporal
response of the MC to the control input was simulated using the GLV equations. Without control, the parameters of
the system were adjusted to have a diseased equilibrium state x0 in which C. difficile is overabundant compared to
the rest of species. The desired healthy state xf is chosen as an equilibrium with a more balanced species abundance
profile. Assuming inexact knowledge of its dynamics, feedback controller were designed to obtain the control signals
applied to the driver species in order to steer the MC towards the desired healthy state (see SI-5 for details). The
figure shows the projection of the high-dimensional abundance profiles (states of the MC) into the first three principal
components (PCs). The temporal response of the complete state of the MC is shown in Fig SI-2. C. Continuous
and impulsive control signals produced by the feedback controllers (see SI-5 for details). D. Ecological network of
the core microbiota of Ircina oros (refer to Table 1 in SI-5 for species names). A minimal set of driver species and
`-driver species is shown. E. The temporal response of the MC to the control input was also simulated using the GLV
equations (see SI-5 for details). Without control, the parameters of the system were adjusted to have an unbalanced
equilibrium. Feedback control applied to the driver species was used to steer the abundance profile towards the desired
healthy state. Only the first three principal components of the state trajectory are shown. The temporal response of the
complete state of the MC is shown in Fig SI-2. F. Continuous and impulsive control signals produced by the feedback
controllers (see SI-5 for details).
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