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Abstract

Cellular levels of the versatile second messenger, cyclic-(c)AMP are regulated by the antagonistic

actions of the canonical G protein!adenylyl cyclase pathway that is initiated by G-protein-coupled

receptors (GPCRs) and by phosphodiesterases (PDEs); dysregulated cAMP signaling drives many dis-

eases, including cancers. Recently, an alternative paradigm for cAMP signaling has emerged, in which

growth factor-receptor tyrosine kinases (RTKs; e.g., EGFR) access and modulate G proteins via cytosolic

guanine-nucleotide exchange modulator (GEM), GIV/Girdin; dysregulation of this pathway is frequently

encountered in cancers. Here we present a comprehensive network-based compartmental model for the

paradigm of GEM-dependent signaling that reveals unforeseen crosstalk and network dynamics between

upstream events and the various feedback-loops that fine-tune the GEM action of GIV, and captures the

experimentally determined dynamics of cAMP. The model also reveals that GIV acts a tunable control-

valve within the RTK!cAMP pathway; hence, it modulates cAMP via mechanisms distinct from the

two most-often targeted classes of cAMP modulators, GPCRs and PDEs.

Abbreviations used: cAMP – Cyclic adenosine monophosphate; RTK –Receptor Tyrosine Kinase;

EGFR – Epidermal growth factor receptor; GEM – G protein exchange modulator; GEF – Guanine

nucleotide exchange factor; GDI – Guanine nucleotide dissociation inhibitor; SH2 – Src homology 2; PM –

plasma membrane; DAG – Diacylglycerol; EGF – Epidermal growth factor; AUC – Area under the curve;

AC – Adenylyl cyclase; PDE – Phosphodiesterase; AMP – adenosine monophosptate; ATP – adenosine

triphosphate; CDK5 – cyclin dependent kinase 5; PKC-✓ – Protein kinase C ✓; PLC-� – Phospholi-

pase C �; Epac1 – Exchange factor directly activated by cAMP 1; RIA – Radioimmunoassay; IBMX –

3-isobutyl-1-methylxanthene.
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1 Introduction

Cells constantly sense cues from their external environments and relay them to the interior; sensing and

relaying signals from cell-surface receptors involves second messengers such as cyclic nucleotides [1, 2]. Of

the various cyclic nucleotides, the first to be identified was cyclic adenosine 3,5-monophosphate (cAMP),

a universal second messenger that is used by diverse forms of life, from the unicellular bacteria, to fungi,

protozoans and mammals. cAMP relays signals triggered by hormones, ion channels, and neurotransmitters

[3], and also binds and regulates other cAMP-binding proteins such as PKA and Epac1 [4].

The intracellular levels of cAMP are regulated by the antagonistic action of two classes of enzymes:

adenylyl cyclases (ACs) and cyclic nucleotide phosphodiesterases (PDEs). ACs are membrane-bound en-

zymes that utilize ATP to generate cAMP; they transmit signals from cell-surface receptors to second mes-

sengers. PDEs, on the other hand, are soluble, and catalyze the degradation of the phosphodiester bond

resulting in the conversion of cAMP to AMP. PDEs are activated by protein kinase A (PKA), a downstream

e↵ector of cAMP, resulting in a negative feedback loop between cAMP and PDEs [5–8]. Thus, the level

of cAMP in cells is a fine balance of synthesis by ACs, degradation by PDEs, and feedback through the

PKA-PDE loop [3]. Both ACs and PDEs are also subject to positive and negative regulation by numerous

other signaling pathways [9–11], which coordinately maintain cAMP levels in normal cells within a finite

physiologic range. Dysregulated circuits that give rise to too much or too little cAMP can be unhealthy,

and many diseased states in humans are characterized by signaling programs driven by abnormal levels of

cellular cAMP [see legend, Figure 1A]. For example, in the context of cancers, multiple studies across

di↵erent cancers (e.g., breast [12], melanoma [13], pancreas [14], etc.) agree that high levels of cAMP are

generally protective, whereas low cAMP levels fuel cancer progression [reviewed in [15]]. High cAMP in-

hibits several sinister phenotypes of tumor cells such as proliferation, invasion, stemness and chemoresistance,

while enhancing di↵erentiation and apoptosis [see legend, Figure 1A]. Therapies that target the canonical

GPCR/G-protein-cAMP signaling pathway have been successfully translated to the clinics, and they ac-

count for 40% of currently marketed drugs that can treat a wide range of ailments [16], from hypertension

to glaucoma. However, such strategies have largely failed to impact cancer care or outcome. Thus, how

tumor cells avoid high levels of cAMP appears to be incompletely understood, and therapeutic strategies to

elevate cAMP remain unrealized.

Recently, the regulation of cAMP by non-canonical G protein signaling that is initiated by growth

factors [17–20] has emerged as a new signaling paradigm. Growth factor signaling is a major form of

signal transduction in eukaryotes, and dysregulated growth factor signaling (e.g., copy number variations or

activating mutations in RTKs, increased growth factor production/concentration) is also often encountered

in advanced tumors and is frequently targeted with varying degrees of success [21]. A body of work published

by us and others have revealed that RTKs bind and activate trimeric G proteins via a family of proteins
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called Guanine-nucleotide Exchange Modulators (GEMs; [17]). While the members of this family share very

little sequence homology, and act within diverse signaling cascades, what unites them is the ability to couple

activation of these cascades to G protein signaling via an evolutionarily conserved motif of approximately

30 amino acids that directly binds and modulates G proteins. By demonstrating how GIV, a prototypical

member of a family of cytosolic guanine nucleotide exchange modulators (GEMs; [17, 22]), uses a SH2-like

module [23] to directly bind cytoplasmic tails of ligand-activated RTKs such as EGFR [24] we provided

a definitive structural basis for several decades of observations made by researchers that G-proteins can

be coupled to and activated by growth factors (reviewed in [25]). A series of studies that have followed

since have revealed that growth factor-triggered non-canonical G protein!cAMP signaling through GIV has

unique spatiotemporal properties and prolonged dynamics that are distinct from canonical GPCR-dependent

signaling [reviewed in [18]]. More importantly, by straddling two major eukaryotic signaling hubs [RTKs and

G proteins] that are most frequently targeted for their therapeutic significance, GIV has its own growing list

of pathophysiologic importance, as a therapeutic target in a variety of disease states, most prominently in

cancers. High levels of GIV expression fuels multiple ominous properties of cancer cells, e.g., invasiveness,

chemoresistance, stemness, survival, etc., and is associated with poorer outcome in multiple cancers, and

inhibition of GIV’s G protein modulatory function has emerged as a plausible strategy to combat aggressive

traits of cancers [26]; reviewed in [17,20].

Despite these insights, the paradigm of RTK-dependent cAMP signaling remains nascent with many

unknowns. Although the pathway may appear to be a linear connection between input (the growth factor

RTKs) and output (G-proteins) elements, experimental data shows that non-canonical G protein!cAMP

signaling via GIV-GEM integrates multiple input and output signals, with multiple feedback loops, and yet

remains spatiotemporally segregated [initiated and terminated by specific phosphoevents, at specific times,

on distinct membranes]. However, signaling through this pathway can be disrupted by disassembling any

one of the key signaling interfaces (reviewed in [20]). Therefore, the behavior of such complex systems is

hard to grasp by intuition.

Here, we use systems biology approaches, namely mathematical and computational modeling as

the primary tools to generate a comprehensive model that can provide insight into some of these issues.

This model, the first of its kind, not only connects two of most widely studied eukaryotic signaling hubs

[RTKs and G proteins], but also reveals surprising insights into the workings of GIV-GEM and provides a

mechanistic and predictive framework for experimental design and clinical outcome.
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Results and discussion

Construction and experimental validation of a compartmental model for non-

canonical G-protein signaling triggered by growth factors

The emerging paradigm of non-canonical modulation of Gi/s proteins by growth factor RTKs is comprised

of several temporally and spatially separated components (Figure 1B, C); each component is analyzed as

distinct modules within a larger network model (Figure 1D). The model consists of four modules – Module

1 focuses on the dynamics of EGFR (Table S2); Module 2 represents the dynamics of the formation of the

EGFR·GIV·G↵i complex (Table S3); Module 3 represents the dynamics of the formation of the G↵s·GIV-

GDI complex (Table S4); and Module 4 represents the dynamics of cAMP formation (Table S5,S6).

Within each module, the biochemical reaction network includes several known interactions. For

example, binding of EGF to EGFR at the plasma membrane (PM) initiates a cascade of events, which in-

cludes receptor dimerization, cross-phosphorylation of the cytoplasmic tails, recruitment of signaling adap-

tors, and phosphoactivation of a plethora of enzymes to relay downstream signaling. Of relevance to this

paradigm, GIV, a multi-domain signal transducer contains a SH2-like domain in its C-terminus, which en-

ables its recruitment to autophosphorylated cytoplasmic tails of EGFR [23]. We used this modular network

to investigate the role played by GIV in regulating the dynamics of EGFR, EGFR·GIV·G↵i complex,

G↵s·GIV-GDI complex, and cAMP.

EGFR dynamics at the plasma membrane and the endosomal membrane

Module 1 of the reaction network models the dynamics of EGFR at the PM and the endosome (Figure 2A,

Table S2). At the PM, EGFR is activated by ligand binding, receptor dimerization, and cross-phosphorylation;

activated EGFR is internalized to the early endosome through endocytosis, from where it can be either recy-

cled or degraded [27]. Active PM EGFR also forms a complex with GIV-GEF, and via GIV with G↵i, leading

to the activation of G↵i [22]. On the other hand, while it remains unclear when and where EGF/EGFR

activates G↵s, it is known that a pool of GIV that is on endosomes containing internalized EGFR binds and

inactivates G↵s on the endosomal membrane. Once inactivated, G↵s-GDP enhances the degradation rate

of internalized, endosomal EGFR, thereby limiting the pool of receptors available for recycling to the PM

and serves to attenuate growth factor signaling [28].

Simulations from the model show that EGFR dynamics is governed by multiple time-scales when

ligand stimulation triggers the redistribution of receptors from the PM to di↵erent pools (Figure 2B). The

PM-pool of active receptors increases rapidly upon ligand stimulation (Figure 2B, red line) and subsequently
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recruits GIV, forming GIV-GEF·EGFR complexes (Figure 2B, purple line). The endosomal pool of active

receptors increases at a slower time scale (Figure 2B, yellow line) than the PM-pool of active receptors.

Recycling of the endosomal pool of receptors to the PM leads to a small second burst in the PM pool of

receptors around 10 min (Figure 2B, yellow line). These findings are in agreement with Schoeberl et al. [27],

indicating that our model accurately captures the EGFR dynamics. The total number of active receptors

decreases over time because of receptor degradation (Figure 2B, blue line). The pool of receptors in the

GIV-GEF·EGFR complex subsequently interact with G↵i at the PM to form the EGFR·GIV·G↵i complex.

The e↵ect of kinetic parameters of EGFR dynamics is shown in Figure S1 and we find that the balance

of PM-pool versus internalized pool of EGFR is closely regulated by both the internalization rate and the

G↵s-GDP dependent receptor degradation rate [28].

Dynamics of G↵i signaling: activation kinetics are shaped by both upstream EGFR dynamics

and downstream PLC-�! DAG !PKC-✓ signaling events

We next asked how EGFR dynamics a↵ect the dynamics of G↵i signaling at the PM. Activation of EGFR at

the PM triggers a series of downstream events, including the activation of CDK5 at the PM by its cofactor,

p35 [29]. CDK5 phosphorylates GIV at Ser(S)1675 and enhances GIV’s ability to bind G↵i , i.e., CDK5

turns inactive GIV to into active GIV-GEF [30]. This allows GIV to couple G↵i to EGFR by assembling

ternary EGFR·GIV·G↵i complexes at the PM [31] and activate G↵iin the vicinity of ligand-activated

EGFR (Module 2 in the model, Figure 2C, Table S2, S3). EGFR also triggers the activation of the

PLC-�-DAG-PKC-✓ pathway [32]; PKC-✓ phosphorylates GIV at S1689 and terminates GIV GEF activity

towards G↵i [33]. Such sequential phosphorylation has another function – it converts GIV that is a GEF for

G↵i(GIV-GEF) into GIV that now serves as a GDI for G↵s(GIV-GDI); GIV-GDI binds and inhibits GDP

exchange on G↵s [22].

We asked, how do the CDK5 and the PLC-� pathways regulate dynamics of the EGFR·GIV·G↵i com-

plex formation, which is the key precursor event essential for transactivation of G↵iby EGF/EGFR [23,31].

Because the actual concentration of this complex in cells is not known, and is likely to vary from cell to cell,

we analyzed peak times and normalized density of the EGFR·GIV·G↵i complex formation. The temporal

dynamics of these normalized densities of the EGFR·GIV·G↵i complexes generated from simulations were

in good agreement with experimental measurements, as determined by FRET imaging [26, 31] and GST

pulldown assays [22, 30] carried out in HeLa cells responding to EGF (Figure 2D).

Sensitivity analyses showed that despite the substantial number of model parameters (Tables S10

and S13), the formation of the EGFR·GIV·G↵i complex is sensitive only to a few kinetic parameters and ini-

tial conditions over time (Tables S10 and S13, Figure S2). For example, a ten-fold variation of the forward

rate for the binding of GIV-GEF to the activated receptor (kf in reaction 15, Table S3) a↵ected the peak
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values of the complex formation (Figure S2C) but not the temporal features of the EGFR·GIV·G↵i com-

plex formation (Figure S2D). Similarly, the activation of the GIV-GEF function by CDK5 (reaction 14,

Table S3) a↵ected the density of the complex (Figure S2E) but not the temporal dynamics (Figure S2F).

The dynamics of the EGFR·GIV·G↵i complexes, however, were sensitive to the initial concen-

trations of G↵i (expected), GIV (expected) and PLC-� (unexpected) (Table S10). The sensitivity of

EGFR·GIV·G↵i complex formation to PLC-� likely stems from network cross-talk, because the PLC-

�!DAG!PKC-✓ pathway terminates GIV-GEF, triggering the dissociation of GIV and G↵i, which triggers

the disassembly of the EGFR·GIV·G↵i complexes (Figures 1C, 1D, 2A). Changes in PLC-� impacted

both the density and temporal dynamics of the EGFR·GIV·G↵i complexes. As expected, when the PLC-

�!DAG!PKC-✓ pathway is inhibited, the lifetime of GIV-GEF is prolonged and vice versa (Figure S2G).

This e↵ect is evident when comparing the normalized densities against experiments (Figure S2H).

We conclude that early activation of GIV-GEF, and the observed dynamics of the assembly of

EGFR·GIV·G↵i complexes are not only dependent on the upstream kinetics of EGFR activation, but also

on the downstream conversion of GIV-GEF to GIV-GDI, mediated by the PLC-�!DAG!PKC-✓ path-

way. Findings also indicate that the connections within the network e↵ectively capture the dynamics of

transactivation of G↵i by EGFR via GIV-GEF.

Dynamics of G↵s activation is most compatible with delayed activation triggered by internal-

ized EGFR and inactivation by GIV-GEM on endosomes

Although GIV-GDI inhibits the activity of G↵s-GTP [22], the exact mechanism of G↵s activation by EGFR

is currently unknown. Prior studies have shown that G↵s is located on early, sorting and recycling endosomes

[34] and that upon EGF stimulation, its activation/inactivation on endosomes regulates endosome maturation

and EGFR degradation [35]; in cells without G↵s, or in those expressing a constitutively active mutant G↵s,

internalized EGFR stays longer in endosomes, thereby, prolonging signaling from that compartment [28]. We

asked when and where G↵s is activated. Because compartmentalized EGFR signaling (PM versus endosomes)

occurs are di↵erent time scales (Figure 2B), and G↵i and G↵s have di↵erent timescales of activation [5

min and 15 min respectively] [22], we reasoned that computationally predicted dynamics of all three possible

scenarios of compartmentalized G↵s activation i.e. [1) exclusively at the PM (Figure 3A, blue box); 2)

exclusively at the endosomes (Figure 3A, red box); and 3) both at the PM and then on the endosomes

(Figure 3A, both)], can provide insight into which option might be in accordance with the actual observed

time scales for the same.

In the first scenario, where ligand-activated EGFR triggers G↵s activation exclusively at the PM,

activation is predicted to be rapid, with peak concentration at 15 s; this kinetic pattern mimics the dynam-
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ics of rapid EGFR activation at the PM [compare blue line in Figure 3C with red line in Figure 2B]. In

the second scenario, where ligand-activated EGFR triggers G↵s activation exclusively on endosomal mem-

branes, the time of peak activity is around 15 min (Figure 3C, red line), in accordance with the time scales

of G↵s activation and cAMP production [22]. And finally, if we consider a scenario where ligand-activated

EGFR triggers G↵s activation both at the PM and on endosomes, we observe a first peak of rapid activation

at around 15 sec, followed by a second burst at around 15 min In all three scenarios, activation of G↵s [con-

centration of G↵s-GTP] was higher in the absence of GIV’s GDI activity (i.e., when the concentration of

GIV is set to zero; Figure 3C). Based on the dynamics of EGFR at the PM [rapid, almost instantaneous]

and on the endosome [approximately 10 min] (Figure 2B) and similar timescales for G↵s activation ob-

served from the di↵erent modes of G↵s activation (Figure 3C), we predict that G↵s is likely activated on

the endosomes. It is noteworthy that the spatiotemporal features of such non-canonical G↵s signaling does

not a↵ect the kinetics of G↵i activation, either in the presence (Figure 3B, solid line) or absence of GIV

(Figure 3B, interrupted line), indicating that EGFR transmodulates G↵i and G↵s independently.

To validate model predictions, we used a G↵s conformational biosensor, nanobody Nb37-GFP

that binds and helps detect the nucleotide-free intermediate during G↵s activation [22]. In control cells,

no significant G↵s activity was detected, either before or after ligand stimulation, indicating that G↵s is

either not activated after EGF stimulation or that its activity is e�ciently suppressed by some modulator,

presumably GIV, for sustained periods of time. In GIV-depleted cells [80-85% depletion of endogenous

GIV by shRNA sequence targeting the 3’ UTR [22], G↵s activity was easily detected roughly 15 min after

ligand stimulation and exclusively on vesicular structures, likely to be endosomes (Figure 3D,E); no such

signal was noted at the PM, which is where canonical activation of G↵s by GPCR is initiated [22]. These

results obtained in live cells using conformation sensitive antibodies are in agreement with our in vitro

enzymology assays [22] in that they confirm a role of GIV’s GDI function in the inhibition of G↵s activity,

and confirm a much delayed and compartmentalized pattern of non-canonical cyclical activation/inactivation

of G↵s downstream of EGF. As for what activates G↵s downstream of EGF/EGFR, few studies have shown

that EGFR binds G↵s [36, 37] through its juxtamembrane region [38], and that this interaction triggers

phosphoactivation of G↵s [36]. Such transactivation of G↵s by EGFR in cardiomyocytes is accompanied

by augmented AC activation, elevation of cAMP, increased heart rate and contractility [36, 39]. Our model

neither proves nor disproves this model for direct transactivation of G↵s by EGFR, but reveals that activation

of G↵i is delayed and pinpoints endosomes as the site of such activation.

Finally, we evaluated the dynamics of formation of the G↵s·GIV-GDI complex [Module 2; Fig-

ure 3F], the precursor event that is essential for transinhibition of G↵s by EGF/EGFR [22]. Our model for

the dynamics of assembly of G↵s·GIV-GDI complexes (Table S2, S4, S5) included the kinetics of receptor

internalization, G↵s activation by internalized receptors, conversion of GIV-GEF to GIV-GDI by the PLC-

�!DAG!PKC-✓ pathway, and the G↵s-GDP-dependent degradation of endosomal EGFR (Figure 2A).
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Simulations from this model showed a good qualitative agreement between normalized G↵s·GIV-GDI com-

plex formation between model and cell-based experiments [22], particularly until 50 min after EGF stimula-

tion (Figure 3G). However, our model was unable to capture the normalized concentrations of G↵s·GIV-

GDI complexes at 60 min, exposing limitations of network modeling, i.e., missing interactions in the network

that may operate specifically at later time points. One plausible group of unknown proteins that are missing

in our model are downstream phosphatases that presumably act on GIV-GDI on endosomes, and are re-

sponsible for the decline in the number of G↵s·GIV-GDI complexes at later time points. The role of kinetic

parameters and initial conditions a↵ecting the formation of the G↵s·GIV-GDI complex were explored in

detail (Figure S3) and we found that the dynamics of G↵s-GDI complex formation is more sensitive to

internalization and degradation of EGFR than to other kinetic parameters (Figure S3, Table S14).

Compartmentalized modulation of G↵i and G↵s governs EGF-triggered cAMP dynamics

Because EGF/EGFR triggers activation of G↵i at the PM first, followed by activation of G↵s on the

endosomes later, production of cAMP must be a balance between the antagonistic actions of these two

G proteins on membrane-bound ACs (Figure 4A, Table S5). Because EGFR triggers G↵i activation

predominantly at the PM, we assumed that the PM-pool of G↵i inhibits the PM AC!cAMP pathway at

the PM. Similarly, because G↵sis activated predominantly on endosomes and endosomal ACs [eACs] can

be stimulated at that location to synthesize cAMP locally [40], we assumed that the endosomal-pool of

G↵s likely stimulates the eAC!cAMP pathway (Table S5). To capture the dynamics of cAMP in our

model network, we included such compartmentalized G protein-AC interactions (Figure 4A).

Our model shows that the early inhibition of cAMP is due to the G↵i-mediated inhibition of AC

(the green regime) (Figure 4B); cAMP production is increased later due to the activation of G↵s on the

endosome (the blue regime) (Figure 4B). These dynamics are consistent with previously published GIV-

dependent cAMP dynamics, measured by FRET [22]. While activation of GIV-GEF occurs earlier [within

5 min] at the PM, conversion of GIV-GEF to GIV-GDI occurs later [15-30 min] when EGFR is already

compartmentalized in endosomes (Figure 1C); such temporally separated compartmentalized modulation

of two G↵-proteins with opposing e↵ects on AC ensures suppression of cAMP at both early and later times

during EGF signaling [22]. Because GIV modulates both G↵i and G↵s in di↵erent compartments and at

di↵erent time scales, the model predicts that increasing GIV concentration should dampen overall cAMP

response to EGF, and that decreasing GIV concentration should do the opposite (Figure 4B, compare

GIV = 0 µM with GIV = 10 µM). As expected, sensitivity analyses confirmed that cAMP is sensitive to

the initial concentrations of AC, G↵i, and G↵sand the reaction rates associated with AC, PKA, and PDE

(Table S11, S15).

To understand how the relative contributions of the two G protein modulatory functions of GIV
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[GEF versus GDI] on cAMP production, we investigated cAMP dynamics in three conditions (Figure 4B)

– 1) GEF-deficient but GDI-proficient (mimicked experimentally by the GIV-S1764D/S1689D mutant, GIV-

DD [22], 2) both GEF- and GDI-deficient (mimicked experimentally by GIV-F1685A mutant, GIV-FA [22,41],

and 3) GEF-proficient but GDI-deficient (an in silico mutant because there is no known mutant yet that

can mimic this situation in experiments). In the first scenario, where GIV’s GEF function is selectively

lost, but GDI function is preserved, increase in cAMP concentration occurred early (Figure 4B, dashed

cyan line) as observed previously in cells expressing the GIV-DD mutant [22]. In the second scenario, where

both GEF and GDI functions were lost, increase in cAMP concentration occurred early and such elevation

was sustained (Figure 4B, dashed dark green line), as observed previously in cells expressing the GIV-FA

mutant [22]; this mirrored the profile observed in GIV-depleted cells (Figure 4B, solid green line). Finally,

in the third scenario, selective blocking of GIV’s GDI function using an in silico mutant resulted in an early

decrease followed by a prolonged increase in cAMP concentration (Figure 4B, dot-dashed blue line).

While the dynamics of cAMP production provide insight into how di↵erent conditions lead to

changes in concentration, the area under the curve [AUC] for cAMP concentration provides information

critical for decision-making, bu↵ers from time scale variations, and averages the e↵ect of fluctuations in

concentrations [42]. AUCs for cAMP at di↵erent time points were calculated to investigate how the cumu-

lative cAMP signal varies under di↵erent GIV conditions (Figure 4D). For the control bars (in orange), we

observe that at the 5 min time point, the AUC is negative. This represents the initial decrease in cAMP

concentration. The AUC becomes positive and increases by 15 min, signifying a net accumulation of cAMP.

The AUCs look similar in GIV-FA [a mutant that is defective in both GDI and GEF functions] as well as

in the absence of GIV, i.e., it increases progressively through 60 min (Figure 4D, compare the light green

and dark green bars). If GIV levels are increased (10 µM , red bars) the AUCs remain negative throughout,

showing the sustained nature of the dampening e↵ect of GIV on cAMP. This dampening e↵ect on cAMP is

achieved primarily via activation of G↵i in the short term [GEF regime] and via inhibition of G↵s in the

long term [GDI regime].

We next investigated the e↵ect of cAMP dynamics on PKA and CREB. Activation of PKA by

cAMP was modeled as a Hill function [43] and the fitting was compared against the experimental data as

shown in Figure S4. The temporal dynamics of cAMP are reflected in the downstream dynamics of PKA

and PDE (Figure 4E, F). The delay in PKA and CREB activation at short time scales [5 min] corresponds

to the GIV-GEF mediated decrease of cAMP for control conditions (Figure 4E,F). As cAMP increases,

PKA activity and CREB phosphorylation increase. In cases where there is no GIV-GEF mediated decrease

in cAMP at the short time scale, there is no delay in PKA and CREB activation, resulting in an immediate

and increased accumulation of PKA and CREB.

We also investigated how GIV concentration a↵ects cAMP dynamics [output signal] with varying
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EGF/EGFR numbers [input signals]. When GIV concentrations were set to 0 µM in the model (to simulate

cells that don’t have GIV), the network showed sensitivity, in that, increased input signals triggered increased

output signals Figure 4F); this e↵ect was even more pronounced in the absence of PDE (Figure 4J).

Such sensitivity was replaced by robustness when GIV concentrations were set to high levels (GIV = 5

µM Figure 4G), i.e., increased input signals failed to initiate proportional output signals; this e↵ect was

virtually unchanged and robustness was preserved despite the absence of PDE (Figure 4K). These e↵ects

are also evident by studying the AUC (Figure 4H, L). These predictions were tested by measuring cAMP

as determined by a radioimmunoassay (RIA) in control and GIV-depleted HeLa cells responding to varying

doses of EGF [expermental equivalent of variable input in simulations]. To recapitulate simulations in

the presence or absence of PDE, assays were carried out in parallel in the presence or absence of IBMX

(Figure 4I, M). In the presence of GIV, cAMP production is robustly suppressed in response to increasing

EGF ligand (Figure 4I). In the absence of GIV, cAMP production is sensitive to increased EGF, an e↵ect

that is further accentuated when PDEs are inhibited with IBMX (Figure 4M). Taken together, these results

indicate that GIV primarily serves as a dampener of cellular cAMP that is triggered downstream of EGF;

unlike PDE, which reduces cellular cAMP by degrading it, GIV does so by fine-tuning its production by G

proteins and membrane ACs.

Clinical predictions from the model – from math to man

Concurrent upregulation of both GIV and EGFR maximally reduces cAMP and carries poor

prognosis in colorectal tumors

We next asked how cAMP levels that are triggered by growth factors and modulated via GIV may impact

tumor aggressiveness and clinical outcome. First, we conducted simulations for a wide range of GIV (0-5 µM)

and EGFR (120 to 2400 EGFR molecules/µm

2) concentrations to identify how crosstalk between these two

variable components regulates cAMP levels (Figure 5A-D). Within each category of EGFR concentration

[low or high], cAMP levels are the highest when GIV levels are lowest, and vice versa. In the setting of

high EGFR expression (Figure 5B), the impact of changing GIV was the highest, i.e., the range of cAMP

response was the widest. By contrast, in the setting of low EGFR expression (Figure 5A) the impact of

changing GIV on the cAMP levels was minimal. Because the EGFR copy number and GIV copy number

variables in our model are a surrogate for EGFR or GIV signaling states, respectively, which cumulatively

represents all perturbations that can impact the functions of both EGFR and GIV [i.e., activating mutations,

phosphomodifications, gene copy number variation, or simply protein overexpression in tumors], we conclude

that the G↵i/G↵s/cAMP modulatory function of GIV exerts its maximal impact in the setting of high EGFR

signaling states. These findings indicate that the two modules [EGFR and GIV-dependent G↵s/G↵i/cAMP

signaling] are intertwined via a functional crosstalk.
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In order to quantify the extent of this crosstalk, we conducted simulations for a wider range of

EGFR [48-2400 molecules/µm

2] and GIV concentrations [0-10 µM ] and calculated the AUC for the cAMP

dynamics (Figure 5C, D). Varying GIV concentrations resulted in cAMP changes within a narrow range

in low EGFR state, but showed larger variance in the high EGFR state (Figure 5C). Because cAMP has

potent anti-cancer function, these findings point to the possibility that there are regimes of operation in the

EGFR-GIV space that can be exploited for prognostication in cancers. To further dissect this space, we

plotted the variations in AUC for EGFR and GIV variations (Figure 5D). The value of AUC corresponding

to the control (GIV 1µM and EGFR 120 molecules/µm

2, Table S9) is approximately 0.5 µM · min and

is denoted by the yellow color and marked as a black solid line for di↵erent EGFR and GIV concentrations

in the heat map; elevated cAMP level is denoted by green and reduced cAMP by red. We observed that

increasing EGFR increased cAMP AUC for low GIV concentrations. But as GIV concentrations increased,

even at high EGFR, the cAMP AUC decreased, indicating that the impact of increasing GIV on cAMP AUC

was higher than the impact of increasing EGFR. Therefore, GIV levels, rather than EGFR copy number

alone, can be thought of as a prognosticator for decreased cAMP levels.

To determine the impact of crosstalk between EGFR and GIV on clinical outcome, we compared the

mRNA expression levels to disease-free survival (DFS) in a data set of 466 patients with colorectal cancers

(see Methods). Patients were stratified into negative (low) and positive (high) subgroups with regard to GIV

(CCDC88A) and EGFR gene-expression levels with the use of the StepMiner algorithm, implemented within

the Hegemon software (hierarchical exploration of gene-expression microarrays online; [44]) (Figure 5E).

Kaplan-Meier analyses of DFS over time showed that among patients with high EGFR, expression of GIV

at high levels carried a significantly poorer prognosis compared to those with low GIV (Figure 5F). Among

patients with low EGFR, expression of GIV at high or low levels did not impact survival (Figure 5G).

Conversely, among patients with high levels of GIV, survival was significantly di↵erent between those with

high versus low EGFR; no such trend was noted among patients with low GIV (Figure 5). Thus, the high

GIV/high EGFR signature carried a poorer prognosis compared to all other patients. More importantly,

patients with tumors expressing high EGFR did as well as those expressing low EGFR provided the levels of

GIV in those tumors was low. Consistent with the fact that cAMP is a potent anti-tumor second messenger,

these findings reveal that 1) high levels of EGFR signaling does not, by itself, fuel aggressive traits or carry a

poor prognosis, but does so when GIV levels are concurrently elevated; 2) in tumors with low GIV, the high

EGFR signaling state may be critical for maintaining high cAMP levels and therefore, critical for dampening

several aggressive tumor traits [Figure 1A].

The crosstalk between EGFR and GIV the we define here, and its impact on clinical outcome

provide a plausible explanation for some long-standing conundrums in the field of oncology. Deregulated

growth factor signaling (e.g., copy number variations or activating mutations in EGFR, increased growth

factor production/concentration) is often encountered and targeted for therapy in advanced cancers [21].
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Although activating EGFR mutations, copy number variations, and levels of EGFR protein expression

seem to be closely related to each other [45], the prognostic impact of EGFR expression in cancers has

been ambiguous [46]. In some cancers, high EGFR copy numbers is associated with poor outcome [47, 48];

in others, high EGFR expression unexpectedly favors better overall and progression-free survival [49–51].

Thus, due to reasons that are unclear, not all tumors with high EGF/EGFR signaling have an aggressive

clinical course. Dysregulated GIV expression, on the other hand, is consistently associated with poorer

outcome across a variety of cancers [19]. Our findings that GIV levels in tumors with high EGFR is a key

determinant of the levels of the anti-tumor second messenger cAMP, have provided a potential molecular

basis for why elevated EGFR signaling in some tumors can be a beneficial in some, but a driver of metastatic

progression in others. Because cAMP levels in tumor cells and GIV levels have been previously implicated in

anti-apoptotic [52] and the development of chemoresistance [53], it is possible that the GIV-EGFR crosstalk

we define here also determines how well patients may respond to anti-EGFR therapies, and who may be at

highest risk for developing drug resistance. Whether such is the case, remains to be evaluated.

Concurrent downregulation of both GIV and PDE activity maximally increases cAMP, carries

good prognosis in colorectal tumors

Another factor that plays an important role in regulating cAMP levels is PDE. We next conducted simulations

for di↵erent GIV (0 to 1 µM) and PDE (0.04 to 2 µM) concentrations to identify how the crosstalk between

these two variable components regulates cAMP levels. Within each category of PDE concentration [low vs

high PDE states; (Figure 6A-B)], cAMP levels are the highest when GIV levels are lowest, and vice versa.

In the setting of low PDE activity (Figure 6B), the impact of changing GIV was the highest, i.e., the

range of cAMP response was the widest. By contrast, in the setting of high PDE activity (Figure 6A) the

impact of changing GIV on the cAMP levels was minimal. These e↵ects can be seen also when comparing

the AUCs for the low vs high PDE states, calculated over 1 hr (Figure 6C). While there is no significant

change in the AUC with increasing GIV in a high-PDE state (red bars), increase in GIV leads to a decrease

in cAMP in PDE state (green bars). That is, for a given GIV concentration, the e↵ect of PDE is always

stronger. Furthermore, a heat map of cAMP AUCs (Figure 6D) shows the interplay between PDE and GIV

concentrations over a wide range. For low PDE concentration, increasing GIV decreases cAMP AUC, but

the cAMP AUC is well above the yellow value (marked as control). However, increase in PDE concentration

leads to a dramatic decline in cAMP AUC even when GIV levels are low; this condition is likely to result in

futile cycling [high cAMP production due to low GIV and high cAMP clearance due to high PDE signaling].

Together, these findings indicate that the e↵ect of GIV concentration on cAMP levels in cells is discernible

only when PDE activity is low. Because high PDE state virtually abolishes all e↵ects of GIV-dependent

inhibition of cAMP production, we also conclude that in this GIV-PDE crosstalk, PDE is a dominant node

and GIV is the subordinate node. Because the ‘PDE copy number’ variable in our model is a surrogate for
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PDE activity/signaling, which cumulatively represents all perturbations that can impact the functions of

PDEs in cells [i.e., phosphomodifications, mislocalization, or simply protein overexpression / hyperactivation

in tumors; [54]], we conclude that the G↵i/G↵s modulatory function of GIV exerts its maximal impact on

whether cAMP is high or low in the setting of low PDE signaling states.

To determine the impact of crosstalk between various PDE isoforms and GIV on clinical outcome,

we carried out using the StepMiner algorithm, implemented within the Hegemon software on the same set

of 466 patients with colorectal cancers as before, except patients were now stratified into low and high

subgroups with regard to GIV (CCDC88A) and PDE gene-expression (Figure 6E). Among the 11 known

PDE isoforms, we evaluated those that have previously been linked to colon cancer progression [PDE5A

(Figure 6E-G), 4A and 10A (Figure S9)]. Kaplan-Meier analyses of DFS over time showed that although

expression of GIV at high levels was associated with disease progression and poorer survival in both low and

high PDE groups, the risk of progression was not statistically significant in high PDE state (Figure 6F) but

highly significant in low PDE state (Figure 6G). Thus, the low GIV/low PDE signature carried a better

prognosis compared to all other patients. Consistent with the fact that cAMP is a potent anti-tumor second

messenger, these findings reveal that – 1) high levels of PDE signaling may not be a bad thing, especially

when GIV levels are low; 2) in tumors with low PDE signaling, the low GIV signaling state may serve as a

key synergy for driving up cAMP levels and therefore, critical for dampening several aggressive tumor traits

(Figure 1A).

In the context of PDE, it has been demonstrated that overexpression of PDE isoforms in various

cancer leads to impaired cAMP and/or cGMP generation [55]. PDE inhibitors in tumour models in vitro and

in vivo have been shown to induce apoptosis and cell cycle arrest in a broad spectrum of tumour cells [56].

Despite the vast amount of preclinical evidence, there have been no PDE inhibitors that have successfully

translated to the cancer clinics. For example, based on the role of cAMP in apoptosis and drug resistance,

our model predicts that those with low GIV/high EGFR [high cAMP state] are likely to respond well to

anti-EGFR therapy inducing tumor cell apoptosis, whereas those with high GIV/high EGFR [low cAMP

state] may be at highest risk for developing drug resistance. Similarly, our finding that low PDE levels in

the setting of high GIV carries a poor prognosis predicts that the benefits of PDE inhibitors may be limited

to patients who have low GIV expression in their tumors. Whether such predictions hold true, remains to

be investigated.

Conclusions

Systems biology aims to understand and control the properties of biological networks; experimental data

collected using top-down approaches are used to construct in silico bottom-up models, with the ultimate
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goal of generating experimentally testable predictions. In this work, we used a systems biology approach

to construct the first-ever compartmental network model of growth-factor triggered cAMP signaling, and

identified two key features of non-canonical G protein signaling via GIV-GEM. First, we identified that

compartmentalized RTK signaling at the PM and on the endosomes directly imparts a delayed and prolonged

cAMP dynamics lasting over an hour, which is distinct from the canonical GPCR/G protein pathway; GPCRs

initiate more rapid and finite cAMP dynamics in the order of msec to min (Figure 7A) [57]. In the case of

GPCRs, the PM-based signals are believed to be the dominant component of the overall cAMP dynamics

with signal attenuation during endocytosis (Figure 7A) [58]. By contrast, in the case of RTK-mediated

cAMP dynamics via GIV-GEM, the post-endocytic (i.e., endosomal signaling) component constitutes a

dominant component of the overall cAMP dynamics that are triggered by RTKs (Figure 7A). What may

be the impact of these distinct temporal features on RTK signaling? It is noteworthy that RTK-triggered

cAMP dynamics that is modulated by GIV-GEM spans 5 min to > 60 min, which coincides with other

RTK signaling, tra�cking events and transcriptional response, i.e., the major temporal domain of RTK

activity, the so-called “window of activity” [59]. The 5 min to 1 hour time scale encompasses the time of

peak mRNA expression of many immediate-early genes (which peak at 20 min) and delayed-early genes

(which peak between 40 min and 2 hours); these transcriptional targets not only generate feedback within

the RTK-signaling cascade, but also set up crosstalk with other signaling pathways [59, 60]. In fact, GIV-

GEM has indeed been found to modulate myriad downstream signaling pathways from the activity of small

GTPases, kinases and phosphatases, to transcription factors [reviewed in [18]]; how GIV-GEM has such a

widespread and broad impact had remained a mystery. It is possible that such broad impact could stem

from GIV’s ability to modulate the cellular levels of the versatile second messenger cAMP in a sustained

manner throughout the window of RTK activity. Although our model and simulations were carried out

using the prototype RTK, EGFR, fundamentals identified here are likely to be relevant also in the case of

others RTKs, e.g., VEGFR, IGF-1R, InsulinR, PDGFR, etc. Each of these RTKs are known to engage GIV

and rely on it’s G protein modulatory function [reviewed in [18]] and can signal both at the PM and within

endosomes [61–65]. Future work will explore the impact of such multi-receptor integration by GIV-GEM.

Second, our network model has helped us identify key design principles of the action of GIV-

GEM within signaling circuits by enabling the construction of a map to identify the relationship between

input[EGFR]!valve[GIV] !output[cAMP]!sink[PDE] relationship (Figure 7B). The crosstalk between

the input, the valve, and the sink in regulating cAMP levels is evident from the fact that the isoplanes,

which capture the same cAMP AUC are not flat but are bent surfaces in this space. The maps shows that

the variation of cellular concentration of functionally active GIV-GEM molecules serves as the most tunable

component that regulates the flow of signal from EGF/EGFR [input] to cAMP [output] (Figure 7B-E).

At low concentrations of GIV, such as those found in normal tissues [Figure S11, S12], cAMP levels are

sensitive to increased signal input via EGF/EGFR, i.e., higher input elicits higher output. Such sensitivity

is virtually abolished and replaced by robustness at higher GIV concentrations found in a variety of cancers
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[Figure 7 B, C; S11, S12], i.e., higher input fails to elicit higher output and instead, cAMP levels stay

at low and relatively constant. Regulation of cellular cAMP concentration by the EGFR-GIV interplay

appears to be dependent on PDE concentration (Figure 7D); when PDE is high, there is virtually little

or no e↵ect of changes in EGFR or GIV on cAMP concentrations. The PDE-GIV relationship for cAMP

production responds to di↵erent EGFR inputs proportionally, with increasing EGFR copy numbers resulting

in higher cAMP AUC (Figure 7E). This 3-way interplay between EGFR, GIV and PDE is obvious also in

experimental data derived from HeLa cells (Figure 4, I, M). Heat maps derived from that data (Figure 7F-

G) show that the EGFR!cAMP pathway is most sensitive [i.e., higher input (EGF) signal, produces higher

output (cAMP)] when the activities of both GIV and PDE are at their lowest (shGIV, with PDE inhibition;

Figure 7G). Conversely, the EGFR!cAMP pathway is most robust [i.e., output (cAMP) is maintained

at low levels despite higher input (EGF) signal] when both GIV and PDE are high (shC, without PDE

inhibition; Figure 7F). When GIV is low and PDE is high (shGIV, without PDE inhibition; Figure 7G),

cAMP levels do not go up, likely because increased production is balanced by increased degradation. Why

would a cell waste energy (ATP) in such a ‘futile cycle’? This situation is reminiscent of the maintenance

of steady-state cGMP levels in the sub-µM range in thalamic neurons by concomitant guanylyl cyclase

and PDE2 activities [66] and cAMP levels in pyramidal cortical neurons by concomitant AC and PDE4

activities [67]. Prior studies have suggested that such tonic cAMP production and PKA activity enable signal

integration and crosstalk with other cascades [68]; unlike an on/o↵ system gated exclusively by G↵sproteins,

tonic activity allows both up- and downregulation by activation of G↵i or inhibition of G↵s (via GIV-

GEM) and by PDEs. Our findings suggest that such up/down tunability is best achieved by changing the

cellular concentrations of GIV. Because the flow of information in layers within signal transduction circuits

in general [69–71], and more specifically for RTKs like EGFR [59, 72] is believed to conform to bow-tie

microarchitecture, and cAMP is considered as one of the universal carrier molecules at the knot of such bow-

ties which determines robustness [71], we conclude that GIV-GEM operates at the knot of the bow-tie as a

tunable valve for controlling robustness within the circuit. Because layering of control of [information] flow

is believed to conform to an hourglass architecture [70], in which diverse functions and diverse components

are intertwined via universal carriers, GIV’s ability to control the universal carrier, cAMP could explain why

GIV has been found to be important for diverse cellular functions and impact diverse components [18]. In

an hourglass architecture, the lower and higher layers tend to see frequent evolutionary changes, while the

carriers at the waist of the hourglass appear to be constant/invariant and sometimes, virtually ‘ossified’. Of

relevance to our model, the importance of cAMP appears to be indeed ossified from unicellular organism to

(wo)man alike, and GIV-GEM is expressed in ubiquitously in all tissues from fish to (wo)man and GIV-like

GEMs have so far been identified as early as in C. elegans [73].

Third, our work also provides valuable clues into the impact of increased robustness at high-GIV

states in cancers. Robustness in signaling is an organizing principle in biology, not only for the maintenance

of homeostasis but also in the development and progression of chronic debilitating diseases like cancers; it is
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widely accepted that tumor cells hijack such robustness to gain growth and survival advantage and during the

development of cancer [59, 74, 75]. Consistently, we found that GIV mRNA levels and DNA copy numbers

are invariably higher across multiple cancers when compared to their respective normal tissue of origin

(Figure S11, S12). Because GIV has been found to regulate several sinister properties of tumor cells across

a variety of cancers (multiple studies, reviewed in [20]), it is possible that the high-GIV driven robustness

maintains cAMP at low constant levels despite increasing input signals as a tumor evolves when targeted by

biologicals or chemotherapy agents. Such a phenomenon could be a part of a higher order organizing principle

in most aggressive cancers, and therefore, justify GIV as a potential target for network-based anti-cancer

therapy.

Although our model captures experimentally observed time courses and generates testable hypothe-

ses, it has 3 major limitations. First, the compartmental well-mixed model we used, does not account for

the spatial location and geometries of the di↵erent compartments and cell shape, many of which can a↵ect

the dynamics of cell signaling [76, 77]. Second, our model focuses exclusively on cAMP as output signal

and does not account for other EGF/EGFR-driven signaling pathways that are known to regulate cellular

responses. Third, our model focuses exclusively on EGFR and does not account for the diverse classes of

receptors [multiple RTKs, GPCRs, integrins, etc.] also use GIV to access and modulate G proteins. Despite

these restrictions, we can identify some fundamental features of growth factor-triggered cAMP signaling for

the first time using systems biology, including the role of compartmentalization, cross-talk between EGFR

and GIV, GIV-dependent robustness within the RTK-cAMP signaling axis, and cross-talk between PDE and

GIV in controlling cAMP concentration.

We conclude that GIV utilizes compartmental segregation to modulate the dynamics of RTK-G

protein-cAMP signaling and confers robustness to these dynamics by functioning as a tunable control valve.

Future systems e↵orts will build on this model to unravel further exciting features of GIV as a critical hub

for signaling regulation at the knot of a bowtie [71] and elucidate the hidden complexity that arises from

network architecture in non-canonical G protein signaling.

Methods

Modular construction of the reaction network

A biochemical network model was constructed to capture the main events in the signal transduction cascade

from EGF to cAMP through GIV (Figure 1D). We constructed the compartmental computational model

in a modular manner, where each module represents the key events in the network. We note here that

while there are many more biochemical components involved in signaling from EGF to cAMP, our choice of
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components was based on experimentally measured temporal dynamics of GIV-GEF and GIV-GDI function.

The modules are as follows.

Module 1 consists of EGFR activation through EGF and internalization dynamics leading to the

formation of EGFR·GIV·G↵i trimeric complex. This module includes the phenomenon that endosomal

maturation and EGFR degradation in lysosomes requires the presence of inactive G↵s [GDP-bound state]

[28]. The presence of G↵s in the inactive state promotes maturation of endosomes, shuts down the mitogenic

MAPK-ERK1/2 signals from endosomes and suppresses cell proliferation [28]. In the absence of G↵s or in

cells expressing a constitutively active mutant G↵s, EGFR stays longer in endosomes, MAPK - ERK1/2

signals are enhanced and cells proliferate [28] (Figure 2A).

Module 2 contains EGFR-mediated activation of PLC-� and downstream activation of PKC-✓;

the latter phosphorylates GIV at S1689 and terminates its ability to activate G↵i [33]. This phosphoevent

does not impact GIV’s ability to inhibit G↵s [22]. Consequently, when it comes to G protein modulatory

functions of GIV, phosphorylation by PKC-✓ converts GIV-GEF into GIV-GDI (Figure 3F).

Module 3 contains the dynamics of the endosomal EGFR and how it activates G↵s, and subse-

quently adenylyl cyclase (AC) leading to the synthesis of cAMP (Figure 3A). Overall, the model contains 57

reactions. The complete set of reactions for each of the modules, their parameters and interactions, and the

list of assumptions underlying network construction are provided as online supplementary materials (Tables

S2 – S5).

We assumed that the signaling components were present in large-enough quantities, and di↵er-

ent concentrations of each component were computed to explore how varying expression levels in di↵erent

tissues/cell types impact the signaling pathway. Such assumption allowed us to generate a deterministic dy-

namical model. The model contains six di↵erent compartments: (i)PM, (ii) extracellular space, (iii) cytosol,

(iv) endosomes, (v) endosomal membranes, and (vi) nucleus. It was assumed that each compartment is

well-mixed and fluxes were used to depict transport across the di↵erent compartments so that the dynamic

changes in the concentrations of the di↵erent components can be tracked. Each interaction was modeled as

a chemical reaction either using mass-action kinetics for binding-unbinding reactions, and Michaelis-Menten

kinetics for enzyme-catalyzed reactions, as is standard for models such as this [78, 79].

The network of interactions was constructed using the Virtual Cell modeling platform (http://www.nrcam.uchc.edu).

We chose this platform because it is a user-friendly computational cell biology software, which allows us to

generate the system of di↵erential equations based on the input reactions and has been used successfully to

model signaling networks of various sizes with high degree of numerical accuracy [80–83]. Also, the Virtual

Cell platform has built-in capabilities to conduct dynamic sensitivity analysis, which is an important aspect

of dynamical systems modeling. As we discuss in later sections, we use this capability to identify sources of
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system robustness and sloppiness.

Characteristics of the signaling cascade

In order to characterize the dynamics of the di↵erent protein activities, we use the area under the curve for

the concentration versus time curve [42]. The area under the curve gives the total signal activated over the

time of observation and for the i

th species is given by AUCi in Eq. 1. This gives a measure of the total

signal for di↵erent conditions.

AUCi =

Z 1

0
Xi(t)dt (1)

Comparison with experimental data

The experimental data was extracted from Figure 1D of [22] using ImageJ for GEF-G↵i-EGFR complex

and G↵s-GDI complex. The data was normalized such that the maximum value was 1. Parameter fitting

using COPASI [84] was used to then match the normalized experimental data against the model output.

Goodness of fit between experimental values and model output was determined using a root mean squared

error (RMSE).

Dynamic parametric sensitivity analysis

Since a continuing challenge in building computational models of signaling networks is the choice of kinetic

parameters, we conducted a dynamic parametric sensitivity analysis. This sensitivity analysis of the model

was performed with the goal of identifying the set of parameters and initial concentrations that the model

response is most sensitive to. The log sensitivity coe�cient of the concentration of the i

th species Ci, with

respect to parameter kj is given by [85,86]

Si,j =
@ lnCi

@ ln kj
(2)

Since we are studying a dynamical system and not steady state behavior, we used the Virtual

cell software to calculate the change in log sensitivity over time (dSi,j

dt ). The resulting time course gives us

information about the time dependence of parametric sensitivity coe�cients for the system. The variable of

interest, Ci is said to be robust with respect to a parameter kj if the log sensitivity is of the order 1 [85].

We refer the reader to [85, 86] for a complete introduction to dynamical sensitivity analysis. We conducted

dynamic sensitivity analysis for all the kinetic parameters for the reactions and initial concentrations of the

di↵erent species in the model.
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Measurement of cAMP

HeLa cells were serum starved (0.2 % FBS, 16 h) and incubated with isobutylmethylxanthine (IBMX, 200

µM , 20 min) followed by EGF (60 min). Reactions were terminated by aspiration of media and addition of

150 µl of ice-cold TCA 7.5% (w/v). cAMP content in TCA extracts was determined by radioimmunoassay

(RIA) and normalized to protein [(determined using a dye binding protein assay (Bio-Rad)] [18,87]. Data is

expressed as fmol cAMP / µg total protein.

Stratification of colon cancer patients in distinct gene-expression subgroups and

comparative analysis of their survival outcomes

The association between the levels of GIV (CCDC88A) and either EGFR or PDE mRNA expression and

patient survival was tested in cohort of 466 patients where each tumor had been annotated with the disease-

free survival (DFS) information of the corresponding patient. This cohort included gene expression data

from four publicly available NCBI-GEO data-series (GSE14333, GSE17538, GSE31595, GSE37892) [88–

91], and contained information on 466 unique primary colon carcinoma samples, collected from patients at

various clinical stages (AJCC Stage I-IV/Duke’s Stage A-D) by five independent institutions: 1) the H. Lee

Mo�t Cancer Center in Tampa, Florida, USA (n = 164); 2) the Vanderbilt Medical Center in Nashville,

Tennessee, USA (n = 55); 3) the Royal Melbourne Hospital in Melbourne, Australia (n = 80); 4) the Institut

PaoliCalmette in Marseille, France (n = 130); 5) the Roskilde Hospital in Copenhagen, Denmark (n = 37). To

avoid redundancies (i.e. identical samples replicated two or more times across multiple NCBI-GEO datasets)

all 466 samples contained in this subset were cross-checked to exclude the presence of duplicates. A complete

list of all GSMIDs of the experiments contained within the NCBI-GEO discovery dataset has been published

previously [44]. To investigate the relationship between the mRNA expression levels of selected genes (i.e.

CCDCDDC, Wnt5a, EGFR and FZD7) and the clinical outcomes of the 466 colon cancer patients represented

within the NCBI-GEO discovery dataset, we applied the Hegemon software tool [44]. The Hegemon software

is an upgrade of the BooleanNet software [92], where individual gene-expression arrays, after having been

plotted on a two-axis chart based on the expression levels of any two given genes, can be stratified using the

StepMiner algorithm and automatically compared for survival outcomes using Kaplan-Meier curves and log-

rank tests. Since all 466 samples contained in the dataset had been analyzed using the A↵ymetrix HG-U133

Plus 2.0 platform (GPL570), the threshold gene-expression levels for GIV/CCDC88A, PDE and EGFR were

calculated using the StepMiner algorithm based on the expression distribution of the 25,955 experiments

performed on the A↵ymetrix HG-U133 Plus 2.0 platform. We stratified the patient population of the NCBI-

GEO discovery dataset in di↵erent gene-expression subgroups, based on either the mRNA expression levels

of GIV/CCDC88A alone (i.e. CCDC88A neg vs. pos), PDE alone (i.e., PDE neg vs. pos), EGFR alone

(i.e. EGFR neg vs. pos), or a combination of GIV and either EGFR or PDE. Once grouped based on
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their gene-expression levels, patient subsets were compared for survival outcomes using both Kaplan-Meier

survival curves and multivariate analysis based on the Cox proportional hazards method.
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Figure 1: An emerging paradigm for modulation of cellular cAMP by growth factors. (A)
Schematic summarizing the role of cyclic AMP (cAMP) in diverse biological processes. In cancers (top right),
cAMP is largely protective as it inhibits proliferation, invasion, chemoresistance, and promotes apoptosis
and di↵erentiation of tumor cells. Similarly, in the context of organ fibrosis, cAMP is a potent anti-fibrotic
agent because it inhibits proliferation and migration and triggers apoptosis and return to quiescence for
myofibroblasts, the major cell type implicated in fibrogenic disorders. Red lines indicate suppression and
green lines indicate promotion. (B) A simplified circuit diagram of the non-canonical G protein!cAMP!
PKA!CREB axis that is initiated by EGFR via GIV-GEM’s action on G↵i (inhibits AC) and G↵s (activates
AC). Red lines indicate suppression and green lines indicate promotion. Interrupted black arrow = Activation
of G?s occurs downstream of EGFR via unknown mechanisms. (C) A schematic showing the spatial features
of G↵i and G↵s modulation downstream of EGFR, based on previously published work [17, 22, 28]. When
the ligand binds the receptor, GIV is recruited to EGFR, and GIV-dependent signaling is initiated at the PM
through the activation of CDK5. A single phosphorylation at S1674 activates GIV’s GEF function, which
allows GIV-GEF to activate G↵i near the vicinity of ligand-activated EGFR. GIV’s GEF activity towards
G↵i is subsequently terminated, and its GDI activity towards G↵s is turned ‘ON’ by the phosphorylation
at S1689 by PKC-✓. PKC-✓ is activated by active EGFR through the PLC-�!DAG!PKC-✓ axis (not
shown). Dually phosphorylated GIV (S1674 and S1689) binds and inhibits G↵s signaling on endosomes.
(D) A reaction network model showing the di↵erent signaling nodes and connections from EGFR to the
cAMP!PKA!CREB signaling axis. Solid lines indicate a binding interaction; interrupted lines indicate
enzymatic reaction. The color key (right, boxed) denotes the di↵erent compartments in which the components
reside.

23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149781doi: bioRxiv preprint 

https://doi.org/10.1101/149781
http://creativecommons.org/licenses/by-nc-nd/4.0/


(B)(A)

(C) (D)
Time [min]

0 10 20 30 40 50 60

R
ec

ep
to

rs
 [m

ol
ec

ul
e.

µ
m

-2
]

0

20

40

60

80

100

120
total dimerized receptors
plasma membrane active receptors (EGFR2)
endosomal active receptors (EGFR2)
GEF EGFR
GEF Gi complex

Time [min]
0 20 40 60EG

FR
2•G

IV
•G

   
 [n

or
m

al
iz

ed
]

↵

i

0

0.2

0.4

0.6

0.8

1
Simulation
Experiment (Set 1)
Experiment (Set 2)
Experiment (Set 3)

Figure 2: Early time scale events within the EGF/EGFR signaling cascade that are initiated
at the plasma membrane drive G↵i dynamics. (A) Network module 1 showing receptor interactions
with feedback from G↵s-GDP whose presence on endosomes accelerates receptor degradation due to rapid
endosomal maturation [28]. (B) Graphs display the dynamics of di↵erent pools of EGFR over 1 hour as
determined by simulations. EGFR dynamics at the PM (red line), at the endosome (yellow line), bound to
GIV-GEF (purple line), and in the EGFR·GIV·G↵i complex (green line) are shown. The total number of
dimerized receptors (blue line) decreases over time due to receptor degradation. (C) Module 2 showing the
formation of EGFR·GIV·G↵i ternary complex, a pre-requisite event necessary for activation of G↵i during
EGF signaling. (D) Simulations of dynamics of the formation of the EGFR·GIV·G↵i complex based on
network module in (C). The membrane density of the EGFR·GIV·G↵i complex was normalized to its peak
value and compared against experimental data (*) in which protein-protein interaction assays were performed
using lysates of cells responding to EGF [Figure 1D and S1 of [22]]. The e↵ect of di↵erent kinetic parameters
on the formation of the EGFR·GIV·G↵i complex are shown in Figure S1, S2.
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Figure 3: Late time scale events within the EGF/EGFR signaling cascade that are initiated
on the endosome membrane drive G↵s dynamics. (A) Network module showing the interactions
of G↵s and G↵i with GIV at the PM and the endosome membrane. (B) Simulations conducted for the
module shown in A shows that G↵i-GTP dynamics at the PM are una↵ected by the compartment in which
G↵s-GTP is activated. (C) Simulations conducted for the module shown in A comparing the dynamics of
G↵s activation in response to growth factor stimulation in 3 compartmental settings [see color key] and in the
presence [solid lines] or absence [interrupted] of GIV. Activation of G↵s at the PM alone is predicted to have
a rapid activation and inactivation kinetics, while G↵s activation on the endosome membranes is predicted
to confer prolonged dynamics over longer time scales. In all cases, the presence/absence of GIV only impacts
the prolonged phase, predicting higher G↵s activation without GIV. (D-E) Freeze-frame images from live
cell movies showing the dynamics of G↵sactivation in response to EGF, as determined by a biosensor that
binds and helps detect the nucleotide-free intermediate during G↵s activation [22]. Control (shControl; D)
and GIV-depleted (shGIV; E) Hela cells expressing GFP-tagged anti-G↵s·GTP conformational biosensor,
nanobody Nb37-GFP were serum starved overnight and stimulated with 50 nM EGF and analyzed by live
cell imaging using a Leica scanning disk microscope for 20 min. Freeze frames from representative cells are
shown. In the presence of GIV (shControl) little or no G↵s activity was seen after EGF stimulation; however,
in GIV-depleted cells, G↵s activity was seen on vesicular structures, likely to be endosomes (arrowheads;
see Supplementary Movies 1-2). Bright puncta = active G↵s. Bar = 10 µm. (F) Network module showing
the interactions leading to the formation of G↵s·GIV-GDI complex. (G) Dynamics of the formation of
the G↵s·GIV-GDI complex, a prerequisite event for inhibition of G↵s by GIV, were simulated based on the
network diagram shown in (F). The membrane density of this complex was normalized to its peak value and
compared against experimental data (*) which is protein-protein interaction assays performed using lysates
of cells responding to EGF [Figure 1D and S1 of [22]]. A good qualitative agreement was observed until 50
min, but not at 60 min, indicating that certain downstream regulators of G↵i may be missing from the model
(e.g. phosphates.) The e↵ect of di↵erent kinetic parameters on the formation of the EGFR·GIV·G↵i complex
are shown in Figure S3.
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Figure 4: Dynamics of growth factor triggered cAMP signaling via GIV. (A) Network module of
cAMP synthesis mediated by AC. (B) Simulations of cAMP dynamics in response to EGF based on module
in A identify the two distinct regimes of GIV GEM’s e↵ect on cAMP dynamics. The early 0-5 min phase
(green region) is characterized by a dip in cAMP concentration; GIV’s GEF function on G↵i dominates in
this phase. This is followed by a delayed approximately 10-60 min phase (blue region), which is characterized
by an increase in the concentration of cAMP; GIV’s GDI function on G↵s dominates this phase. Simulations
predict that cAMP dynamics will decrease with increasing GIV expression [compare the yellow line (control
GIV in the model) with the red (high GIV) and the green (low GIV) lines]. In high GIV states (red
line), the transition from GIV-GEF dominant (early, approximately 0-5 min) to GIV-GDI dominant (late,
approximately 10-60 min) regimes is evident as the line transitions from negative to positive. Simulations for
cAMP dynamics are also displayed for 3 other conditions: 1) GIV in the absence of its GEF e↵ect on G↵i (the
GIV-DD mutant), in the absence of both its GEF and GDI e↵ects (GIV-FA mutant), and in the absence
of its GDI e↵ect (in the presence of an in silico GDI-deficient mutant). The GIV-DD mutant (dashed cyan
line) doesn’t show the initial decrease in cAMP concentration; the in silico GDI mutant (dot dashed blue
line) shows an initial decrease in cAMP concentration but then a prolonged increase in cAMP; the GIV-FA
(black dashed lines) shows cAMP dynamics same as that of low GIV (green line), i.e., no initial decrease
and a prolonged increase in cAMP. (C) The area under the curve (AUC) for cAMP dynamics was calculated
for di↵erent time points after EGF stimulation. The transition from GIV-GEF dominant (early, 0-5 min)
to GIV-GDI dominant (late, 10-60 min) regimes is evident in the transition from AUC going from negative
to positive. The AUC remains negative at all times for GIV=10 µM , indicating that cAMP levels do not
increase when GIV is high. The magnified image shows the AUC at 5 min (D-E) PKA and CREB response
upon EGFR stimulation at di↵erent GIV concentrations show that they follow a similar GIV-dependent trend
as cAMP (see panel B). (F-G) Simulations comparing the impact of variable input signals [via EGF/EGFR]
on cAMP dynamics in low GIV (F) and high GIV (G) states. When the concentration of GIV is set at
zero (F), increasing EGFR copy number results in increasing cAMP. When GIV concentration is set at high
levels (5 µM ; (G)), increasing EGFR copy number has little or no impact on cAMP concentrations. (H)
AUCs calculated from F and G are displayed. cAMP AUC over time is pronounced for no-GIV state (0
µM ; green bars); there is a very small change in the AUC over time for high-GIV state (5 µM ; red bars).
(I) Control (shC) or GIV-depleted (shGIV) HeLa cells or GIV-depleted cells rescued with shRNA-resistant
GIV-WT (GIV+) were serum starved (0.2% FBS, 16 h) prior to stimulation with 50 nM EGF for 60 min.
cAMP produced in response to EGF was measured by radioimmunoassay (RIA) as detailed in ‘Materials
and methods’. Bar graphs compare the cAMP levels before (0, blue) and after EGF stimulation (50 nM,
red). Error bars indicate mean ± S.D. of three independent experiments. ⇤p=0.05; ⇤⇤p=0.01; ⇤⇤⇤p=0.001.
(J-K) Same as (F-G) with reduced concentration of PDE to mimic inhibition. Simulations show that when
PDE is inhibited, the impact of variable input signals [via EGF/EGFR] on cAMP dynamics in low GIV
(J) and high GIV (K) states does not change even though the actual concentration of cAMP is increased.
(L) AUC calculations show the higher cAMP concentrations when PDE is inhibited. cAMP AUC over
time is pronounced for no-GIV state (0 µM ; green bars); there is a very small change in the AUC over
time for high-GIV state (5 µM ; red bars). (M) Same as in I, with one additional step of pre-treatment
of cells with 200 µM IBMX (20 min) prior to EGF stimulation. Error bars indicate mean ± S.D. of three
independent experiments. ⇤p=0.05; ⇤⇤p=0.01; ⇤⇤⇤p=0.001; ⇤⇤⇤⇤p=0.0001. See Figure S5 for the e↵ect of
receptor dynamics on cAMP, Figure S6 for additional experimental data, and Figure S7 for the e↵ect of
CDK5 and PKC-✓ phosphorylation of PDE.
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Figure 5: The impact of levels of expression of GIV and EGFR on cAMP dynamics; compari-
son of model predictions and clinical outcome [disease-free survival] in patients with colorectal
cancers. (A-B) Simulations comparing the impact of variable GIV expression on cAMP dynamics in
low EGFR (A) and high EGFR (B) states. When the concentration of EGFR is set at low levels (120
moleculesµm

�2; A), changing GIV copy number has very little impact on cAMP. When EGFR concentra-
tion is set at high levels (2400 moleculesµm

�2; B), changing GIV copy number has a larger impact on cAMP
concentrations. E↵ect of additional combinations of GIV and EGFR concentrations on cAMP dynamics are
shown in Figure S8. (C) Findings in A-B are displayed as bar graphs of area under the curve (AUC) for
cAMP concentration, as integrated over 1 h. Red bars = low EGFR state; green bars = high EGFR state.
(D) A heat map shows the area under the curve for cAMP concentration over 1 h for di↵erent concentra-
tions of GIV [X-axis] and EGFR receptor [Y-axis]. This is a linear plot, with both the GIV axis and the
EGFR axis increasing linearly. The black line, over the yellow region, corresponds to the control condition
in the simulation. For any given level of EGFR expression, increasing GIV expression decreases the AUC for
cAMP. For any given level of GIV expression, increasing EGFR expression increases the AUC for cAMP, but
this e↵ect is true only for lower concentrations of GIV. (E-G) GIV expression status in colon cancers has
an impact on disease-free survival (DFS) when the level of expression of EGFR is high. Hegemon software
was used to graph individual arrays according to the expression levels of EGFR and GIV (CCDC88A) in a
data set containing 466 patients with colon cancer (see Methods; E). Survival analysis using Kaplan-Meier
curves showed that among patients with high EGFR, concurrent expression of GIV at high levels carried
significantly worse prognosis than those with low GIV (F). Survival analysis among patients with low EGFR
showed that levels of expression of GIV did not have a significant impact on DFS (G).
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Figure 6: The impact of levels of expression of GIV and PDE on cAMP dynamics; comparison
of model predictions and clinical outcome [disease-free survival] in patients with colorectal
cancers. (A-B) Simulations comparing the impact of variable GIV expression on cAMP dynamics in high
PDE (A) and low PDE (B) states. When the concentration of PDE is set at high levels (2 µM ; A),
changing GIV copy number has very little impact on cAMP. When PDE concentration is set at low levels
(0.08 µM ; B), changing GIV copy number has a larger impact on cAMP concentrations. E↵ect of additional
combinations of GIV and PDE concentrations on cAMP dynamics are shown in Figure S9. (C) Findings
in A-B are displayed as area under the curve (AUC) for cAMP concentration, as integrated over 1 h. Red
bars = high PDE state; green bars = low PDE state. (D) A heat map shows the area under the curve for
cAMP concentration over 1 h for di↵erent concentrations of GIV [X-axis] and activity levels of PDE [Y-axis].
This is a semi-log plot, with the PDE axis on the log scale and the GIV axis on the linear scale. The black
line, over the yellow region, corresponds to the control condition in the simulation. As anticipated, the
maximum amount of cAMP AUC is seen for low PDE and low GIV concentrations. For any given level of
PDE activity, increasing GIV expression decreases the AUC for cAMP, but this e↵ect is seen exclusively at
low PDE activity states. For any given level of GIV expression, increasing PDE activity levels decreases the
AUC for cAMP across all concentrations of GIV. (E-G) GIV expression status in colon cancers has an impact
on disease-free survival (DFS) only when the level of expression of PDE5A are low. Hegemon software was
used to graph individual arrays according to the expression levels of PDE5A and GIV (CCDC88A) in a data
set containing 466 patients with colon cancer (see Methods; E). Survival analysis using Kaplan-Meier curves
showed that among patients with high PDE5A, high vs low GIV expression did not carry any statistically
significant di↵erence in DFS (F). Survival analysis among patients with low PDE5A showed that patients
whose tumors had high levels of expression of GIV had a significantly shorter DFS than those with tumors
expressing low levels of GIV (G). See also Figure S10 for patient survival curves for other PDE isoforms
and GIV on DFS.

30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149781doi: bioRxiv preprint 

https://doi.org/10.1101/149781
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.2   M.min

0.446
1

2

3.5

cAMP AUC
µ

M.minµ

M.min
µ

M.minµ

M.minµ

(A) (B)

(C)

Time [min]
0 20 40 60

cA
M

P 
[N

or
m

al
iz

ed
]

0

0.2

0.4

0.6

0.8

1

Canonical (GPCR)
Non-Canonical (EGFR +GIV)
Non-Canonical (EGFR -GIV)

0 5 50 300

shC

shGIV

GIV+
2000

EGF concentration (nM)

4000

6000
cAMP response without PDE inhibition

0 5 50 300

shC

shGIV

GIV+
2000

EGF concentration (nM)

4000

6000
cAMP response with PDE inhibition

(D)

(E)

(F)

(G)

(H)

31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149781doi: bioRxiv preprint 

https://doi.org/10.1101/149781
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7: Compartmental modulation of G proteins by GIV allows it to serve as a tunable
valve for growth factor stimulated cAMP production; low-GIV state imparts sensitiveness,
whereas high-GIV state imparts robustness. (A) Simulations of cAMP dynamics that is initiated by
the canonical GPCR-stimulated pathway (�2-adrenergic receptor stimulating G↵s; blue line) and the non-
canonical RTK-stimulated pathway that is modulated by GIV-GEM (red lines; solid = with GIV; interrupted
= without GIV). In both cases, cAMP values (y axis) were normalized to the max value during a 60 min
simulation. Canonical signaling is finite with a predominant PM phase, the non-canonical pathway features
prolonged time scales due to a predominant endosomal phase. The interrupted line at approximately 5
min indicates the time period when ligand activated EGFR is typically rapidly endocytosed, marking a
watershed between end of PM and beginning of endosomal phase of signaling . (B) A 4-D map showing
the relationships between EGFR (input signal), GIV (control valve), and PDE (degradation sink) on cAMP
dynamics (output signal). The di↵erent planes on this map correspond to the same value of cAMP AUC (see
color key on right). The control value is shown in yellow (0.446 µM.min). (C-E) Heatmaps showing AUCs
for di↵erent planes from the 4-D map in B. (C) Constant GIV planes: As GIV concentration increases, the
cAMP AUC decreases for di↵erent values of EGFR and PDE; when GIV is low, cAMP AUC is sensitive to
the amounts of EGFR and PDE (left panel). When GIV concentration increases [left to right], cAMP AUC
loses sensitivity to EGFR input (right panel). (D) Constant PDE planes: When PDE is low, cAMP AUC
is sensitive to the amounts of values of EGFR and GIV (left panel); when PDE activity increases [left to
right], cAMP AUC loses sensitivity until no e↵ect of EGFR or GIV is seen at highest concentrations (right
panel). (E) Constant EGFR planes: When EGFR is low, cAMP AUC is low; since PDE and GIV both
suppress cAMP production (left panel). As EGFR concentration increases, the regions with high cAMP AUC
increases showing a clear e↵ect of increasing input (middle and left panels). (F, G) Heat maps generated
using GraphPad PRISM for cAMP measurements performed in control (shC), GIV-depleted (shGIV) and
GIV-depleted cells rescued with GIV-WT (GIV+) HeLa cells responding to varying EGF concentrations in
Figure 4I (F; without PDE inhibition) and 4M (G; with PDE inhibition). (H) Schematic summarizing the
unique impacts of GIV-GEM on the EGFR!cAMP pathway, as revealed by systems biology. Top: Within
the ‘bow-tie’ microarchitecture of layered signal flow in any circuit, incoming signals from RTKs like EGFR
[signal input; left] are integrated by core proteins like GIV [center] that activate second messengers like cAMP,
which subsequently impacts multiple target proteins such as kinases, phosphatases, and transcription factors
[output signals; right]. Prior systems biology work had concluded that cellular concentrations of cAMP is a
key determinant of robustness at the core of information (signal) flow [69–71]. While cAMP production is
tuned up or down by variable levels of GIV and its compartmentalized action on G↵i/G↵sand ACs within
the RTK!cAMP pathway, cAMP degradation by PDEs serves as a dominant sink [drain pipe]. Bottom:
Within the hourglass microarchitecture for vertical flow of ‘control’, up/down-regulation of GIV-GEM in cells
serves as a tunable control valve, allowing cells to control cAMP production in cells responding to growth
factors. When GIV-GEM expression is low [as seen in the normal epithelium], increasing input signals can
trigger some of the highest levels of cellular cAMP, thereby conferring sensitivity (left). Increasing GIV-GEM
expression throttles the cAMP response [middle], such that, when GIV-GEM is expressed highly [as seen
across all cancers; see supplementary figures Figure S11, S12], cAMP levels remain low, regardless of the
amount of input signals, thereby conferring robustness [right].
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1 Supplementary Movie Legends

Supplementary Movie 1: Activation of G↵
s

in response to EGF, as determined by nanobody Nb37-
GFP in control HeLa cells [shControl]. The movie shows EGF-dependent activation of G↵

s

as detected by
live-cell imaging using the G↵

s

conformational biosensor nanobody Nb37-GFP that binds and helps detect
the nucleotide-free intermediate during G↵

s

activation [3]. In control HeLa cells responding to EGF little
or no G↵

s

activity was seen. Quantification of these findings have been published in [4] (Magnification, 63 x).

Supplementary Movie 2: Activation of G↵
s

in response to EGF, as determined by nanobody NB37-
GFP in GIV-depleted HeLa cells (shGIV). The movie show EGF-dependent activation of G↵

s

as detected
by live-cell imaging using the G↵

s

conformational biosensor nanobody Nb37-GFP that binds and helps
detect the nucleotide-free intermediate during G↵

s

activation [3]. Compared with controls (Movie S1), in
GIV-depleted cells a significant increase in G↵

s

activity was seen on vesicular structures that are likely to
be endosomes. Quantification of these findings have been published in [4] (Magnification, 63x).
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2 Introduction to modeling chemical reactions

2.1 Mass-action kinetics

We generated an ordinary di↵erential equation (ODE) for every species using mass-action kinetics for each
reaction. The law of mass action states that the rate of a chemical reaction is proportional to the product
of the concentration of the reactants raised to the power of their stoichiometric coe�cient. For example,
consider the one-reaction system:

X + Y ⌦ 2Z, (1)

where the forward and backward rates are k1 and k2. The di↵erential equations describing the dynamics of
species X,Y , and Z under mass-action kinetics are:

d[X]

dt
= k2[Z]2 � k1[X][Y ] (2)

d[Y ]

dt
= k2[Z]2 � k1[X][Y ]

d[Z]

dt
= k1[X][Y ]� k2[Z]2.

Mass action kinetics rely on the assumption that the rate constant, k, is constant over time. However, within
a restricted space such as a membrane, the rate constant may change over time due to restricted di↵usion
and mass action kinetics may not be accurate [5]. We assumed that most binding interactions occur rapidly,
allowing the k value to remain constant.

2.2 Michaelis-Menten kinetics

We used Michaelis-Menten kinetics to model enzyme-catalyzed reactions. When a reaction is catalyzed by
an enzyme with kinetic properties k

cat

and K
M

,

S
E

P,

then the reaction rate is given by
d[S]

dt
= �k

cat

[E][S]

K
M

+ [S]
=

d[P ]

dt
. (3)

For Michaelis-Menten kinetics to apply, the concentrations of the reactants and products must be in large
enough quantities, and one of the following conditions must apply:

1. The concentration of substrate is very much larger than the concentration of products: [S]�[P].

2. The energy released in the reaction is very large: �G ⌧ 0.

2.3 Transport between compartments

Flux between di↵erent cellular compartments was modeled as a reaction rate that captures the rate of
species transport per unit time. For the transport of species A between compartments c and d, we used rate
equations of the form

dA
c

dt
= �k1[Ac

] + k2[Ad

], (4)

where k1 and k2 are the transport in and out of compartment c respectively. When utilizing flux for
compartmental transport it is important to note the interaction is only valid when the compartments are
large and the corresponding surface area conversion factors are accounted for.
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3 Model development for growth-factor based cAMP signaling

3.1 Compartment sizes

We conducted simulations using the following compartments for a computational HeLa cell: cytoplasm,
plasma membrane, endosome, endosomal membrane, and a nucleoplasm. We assumed that the cell was
spherical shaped and used a cytosolic volume of 2000 µm3 [6]. We assumed the endosomes to be fixed in size
during the time course of signaling, with a diameter of 87 nm [7], slightly smaller than the size of a large
endosome (100nm). Villasenor et al. [8] reported that about 50 endosomes are created after 30 min of 10 ng

mL

EGF stimulation in HeLa cells. Using this value, we calculated the total endosomal volume to be 0.138 µm3

and surface area of 5 µm2 using V = n 4
3⇡r

3 and membrane area by A = n4⇡r2, where n is the final number
of endosomes. The di↵erent compartment sizes are shown in Table S1.

Table S1: Sizes of di↵erent compartments used within the model

Compartment size Notes and References

EC 5000 µm3 -

PM 1256 µm2 [6]

Cytosol 2000 µm3 [6]

Endosome 0.138 µm3 [8], Est.

Endosomal membrane 5 µm2 [8], Est.

Nucleosol 200 µm3 Assumed 10% of Cytosol

3.2 Model Kinetics

We conducted simulations for 60 min based on the time course of RTK!cAMP signaling [4]. We did not
account for the regeneration of ATP and PIP2, and assumed that these values are constant and high. We
did not include mitogen-activated protein kinase (MAPK) or calcium pathways in this model.

3.3 Module 1: EGF Receptor Module

The receptor module captures the key events of

1. Ligand binding and dimerization.

2. Receptor activation and internalization.

3. Receptor endosomal recycling.

4. Receptor G↵
s

-GDP dependent degradation.

This module is based on Shoerberl et al. [7] for EGFR activation, internalization, and recycling. Binding
of EGFR to sca↵olding proteins was not included in this model. G↵

s

·GIV-GDI dependent degradation
of EGFR was modeled based on [1]. Although the exact mechanism of G↵

s

-GDP based degradation is
unknown, we used a constitutive model to capture the e↵ect of degradation of EGFR by G↵

s

using a
G↵

s

-GDP independent basal rate and a G↵
s

-GDP dependent catalytic rate.
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3.3.1 Kinetic parameters

The kinetic parameters were chosen based on the values given in Schoeberl et al.. The internalization and
degradation rates were modified to fit experimental data for receptor internalization as shown in [8, 9].

3.4 Module 2: Transactivation of G↵i by EGFR via GIV-GEF interactions

The GIV-GEF module captures the key events of

1. Activation of GIV through CDK5.

2. GIV receptor binding and amplification of receptor signaling events.

3. Formation of EGFR·GIV·G↵
i

and activation of G↵
i

.

The activating step for GIV-GEF is CDK5-mediated phosphorylation of S1674 on GIV [4]. GIV-GEF is then
later turned “o↵” by PKC-✓, which is activated downstream of PLC-�. Once activated, GIV-GEF binds
to EGFR and G↵

i

-GDP to assemble the EGFR·GIV·G↵
i

complex [10]. Previously published pathways,
kinetics and dynamics of CDK5 activation were used to build the model [11–13] (see ‘Kinetic parameters’
section below). We did not track the dynamics of �� in this model.

3.4.1 Kinetic parameters

Kinetic parameters were determined through a combination values from the literature and experimental
data fitting. Activation of p35 by the receptor (Table S3 reaction 13), was determined using rates from
Bhalla et al. [14] and by fitting simulations to previously published experimental data [4]. The rate of p35
degradation was determined based on the known half-life of 20 to 30 min [15]. Maximum binding of CDK5
to p35 (Table S3 reaction 14), was set to 80% based on published experimental data [11]. Binding of CDK5
to active p35 was assumed to be very rapid. The rate of GIV-GEF activation by CDK5 (Table S3 reaction
15), was fit to immunoblotting data [4]. EGFR2·GIV and EGFR·GIV·G↵

i

formation rates were determined
by fitting of experimental data using COPASI [16] and using the experimentally determined dissociation
constant (K

d

) of EGFR·GIV·G↵
i

formation [10,17].

3.5 Module 3: Transinhibition of G↵s by EGFR via GIV-GDI

The GIV-GDI module captures the key events of

1. PLC-� activation and PIP2 hydrolysis.

2. Enhanced PLC-� activation through EGFR2·GIV.

3. DAG dependent PKC-✓ activity.

4. Termination of GIV-GEF [for G↵
i

], and its conversion to GIV-GDI through PKC-✓ and reduction of
GEF activity.

The action of PKC-✓ on GIV was based on prior work [4], which showed that targeted phosphorylation on
site S1689 terminates GIV’s GEF function, only allowing GDI function to be active. For the purposes of our
model, it was assumed that the PLC-�!PKC-✓ axis acts after CDK5, as shown previously [4]. In doing so
,the PLC-�!PKC-✓ axis phosphorylates GIV-GEF that is activated by CDK5, but not inactive GIV [4].

In the model, PKC-✓ through the action of PLC-�. PLC-� activation was modeled to be a function of
both EGFR and EGFR2·GIV; the latter assumption was made based on prior work [10], which showed
that GIV enhances EGF triggered PLC-� signaling. Once active, PLC-� hydrolyzes PIP2, creating IP3 and
DAG [18]; DAG then binds and activates PKC-✓, inducing the localization of the latter to the PM. PKC-✓
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then phosphorylates GIV-GEF in both the unbound and the receptor bound form. G↵
s

·GIV-GDI complex
formation and function was based on [1, 4] where it was shown to only act of the GDP form of G↵

s

.

3.5.1 Kinetic parameters

The initial choice of kinetic parameters were based on the previously published rates for activation of PLC-�,
PIP2, and IP3 degradation [14]. These parameters were then refined by fitting the dynamics of the G↵

s

·GIV-
GDI complex to immunobloting data [4]; the rate of GDI activation through PKC-✓ and the rate of formation
of the G↵

s

·GIV-GDI complex were determined by fitting simulations to immunoblot data.

3.6 Module 4: Reactions for the production and degradation of cAMP

The cAMP module captures the key events of

1. Inhibition of basal activity of the PM-pool of AC by G↵
i

.

2. Activation of endosome-pool of AC by G↵
s

.

3. Internalization of AC, G↵
s

, G↵
i

.

4. Production of cAMP, activation of PKA, PDE, and phosphoactivation of CREB.

In the model, we assumed that AC activation through EGFR occurs only on the endosome [12,19], because
we assumed that EGFR is only able to activate G

s

proteins on the endosome. Binding of internalized
G↵

s

-GTP to AC activates and allows increased catalytic activity of AC [20]. The binding of G↵
i

to AC
was modeled to reflect the inhibition of all AC activity [21]. AC inhibition was allowed to occur on both
membranes.

cAMP production by AC was modeled with Michaelis-Menten kinetics [20]. Because cellular ATP is in
the millimolar range [22], a large excess compared to the concentrations of the signaling molecules, the
concentration of ATP was assumed to be constant. Once four cAMP molecules bind to the four distinct
binding sites on PKA, the quadruple occupancy leads to activation of the catalytic subunit, PKAc, which
separates from regulatory subunit [23]. In our model, PKA activation was modeled using a Hill equation [2].
PKAc is known to phosphorylate CREB within the cell’s nucleoplasm [24]. We assumed that PKAc had
the same steady state concentration in the nucleosol as the cytosol. PDE activation through PKAc and
enzymatic function was based on [20]; cAMP is degraded by PDE. We did not consider any AKAPs or
AKIPs because they fall outside the scope of the current model; it possible that their inclusion may impact
response strength and timescales. Our model also did not account for alternative pathways to modulate
CREB activity [24].

3.6.1 Kinetic parameters

Previously published activation kinetics of the AC!cAMP!PKA cascade [20] were modified to be closer to
observed experimental values [25]. The binding rates of G↵

s

-GTP and G↵
i

-GTP to AC were based on values
in [20]. Rates of inactivation of G↵

s

and G↵
i

bound to AC were determined by the GTP hydrolysis activity
of AC [26]. The kinetic rates governing PKA activity were determined by using steady state dose-response
curves to fit a Hill equation (Figure S4) [2], dissociation of cAMP from the regulatory subunits [27], and
reformation of the PKA holoenzyme. The rate of CREB phosphorylation by PKA was assumed.
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3.7 Role of additional interactions from CDK5 and PKC-✓ to PDE

Previous studies have shown that both CDK5 [28] and PKC-✓ [29] influence PDE activation. We modeled
interactions of CDK5 and PKC-✓ to activation of PDE, leading to further suppression of the cAMP signal;
the additional interactions are shown in Table S7. The addition of these interactions did not alter the time
course of cAMP production but reduced the amount of cAMP produced Figure S7.

3.7.1 Kinetic parameters

We tested the role of additional PDE activation pathways through CDK5 and PKC-✓ [28, 29]; We assumed
these interactions would double the maximum PDE concentration based on previously published data [28,29]
that has shown that suppressing the a↵ects of CDK5 and PKC-✓ on PDE reduced PDE activity by 1.25 to
1.5-fold.

4 Model access in Virtual Cell program [VCell]

The simulations for the full network, shown in Figure 1, were carried in the Virtual Cell program
(http://vcell.org/). The model is named ‘GIV-GEM Paradoxical Signaling’ and is available under the pub-
licly shared models with the username ‘mgetz’. The Virtual Cell is supported by NIH Grant Number P41
GM103313 from the National Institute for General Medical Sciences. Complete instructions on how to access
publicly shared models can be found at the Virtual Cell homepage. A detailed protocol/user guide on how
to develop models in Virtual Cell has been published elsewhere [30].
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Tables

Table S2: Reactions for Module 1 (Figure 2A), outlining EGFR activation, internalization, and degra-

dation.

# Reaction Reaction flux Kinetic Parameters Ref.

1 EGF+EGFR $

EGF·EGFR

k
f

[EGF][EGFR]� k
r

[EGF-EGFR] k
f

=30s�1µM�1,

k
r

=3.8x10�3s�1

[7]

2 2 EGF·EGFR $

EGF·EGFR2

k
f

[EGF·EGFR]2 � k
r

[EGF·EGFR2] k
f

=0.523 µm

2

s.molecule

,

k
r

=0.1s�1

[7]

3 EGF·EGFR2 $

EGF·EGFR*2

k
f

[EGF·EGFR2]

�k
r

[EGF·EGFR*2]

k
f

=1s�1, k
r

=0.01s�1 [7]

4 EGF·EGFR*2 $

EGF·EGFR*2i

k
f

[EGF·EGFR2] k
f

=0.001s�1 [7–9]

5 EGF
i

+EGFR
i

!

EGF·EGFR
i

k
f

[EGF
i

][EGFR
i

]

�k
r

[EGF·EGFR2i]

k
f

=0.14s�1µM�1,

k
r

=0.011s�1

[7]

6 2 EGF·EGFR
i

!

EGF·EGFR2i

k
f

[EGF·EGFR
i

]2 � k
r

[EGF·EGFR
i

] k
f

=4x10�5 µm

2

s.molecule

,

k
r

=0.1s�1

[7]

7 EGF·EGFR2i !

EGF·EGFR*2i

k
f

[EGF·EGFR2i]

�k
r

[EGF·EGFR*2i]

k
f

=1s�1, k
r

=0.01s�1 [7]

8 EGFR
i

! EGFR k
f

[EGFR
i

]� k
r

[EGFR] k
f

=0.005s�1,

k
r

=5x10�5s�1

[7]

9 EGF·EGFR*2i !

2 EGF·EGFR
deg

(k
base

+ k
c

[G
s

-GDP
i

+G↵
s

·GIV-GDI])⇤[EGF·EGFR2i]

k
base

=7.5x10�5s�1,

k
c

=1x10�6 µm

2

s.molecule

[1,7,8]

10 EGFR
i

! EGFR
deg

(k
base

+ k
c

[G
s

-GDP
i

+G↵
s

·GIV-GDI])*[EGFR
i

]

k
base

=3.75x10�5s�1,

k
c

=1x10�7 µm

2

s.molecule

[1,7,8]

11 EGF
i

! EGF
deg

k
f

[EGF
i

] k
f

=6x10�4s�1 [7]

12 ! EGFR k
gen

k
gen

=2.17molecules

s

[7]
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Table S3: Reactions for Module 2 (Figure 2C), outlining protein-protein interactions leading to the

transactivation of G↵
i

by EGFR via GIV-GEF.

# Reaction Reaction flux Kinetic Parameters Ref.

13 p35 ! p35* k

cat

[EGF-EGFR2][p35]
K

M

+[p35] �k
r

[p35*] K
M

=957molecule

µm

2 ,

k
cat

=0.1s�1, k
r

=5x10�4s�1

[15,

31]

14 p35*+CDK5 ! CDK5* k
f

[p35*][cdk5]� k
r

[cdk5*] k
f

=45µM�1s�1, k
r

=10s�1 [11,

12]

15 GIV ! GIV-GEF k

cat

[CDK5*][GIV]
K

M

+[GIV ]

�k
r

[GIV-GEF]

K
M

=6µM , k
cat

=0.25s�1,

k
r

=5x10�4s�1

Est.1,

[11]

16 GIV-GEF + EGF·EGFR*2

$ EGFR2·GIV

k
f

[GIV-GEF][EGF·EGFR*2]�

k
r

[EGFR2·GIV]

k
f

=0.0283µM�1s�1

k
r

=0.001s�1

[10]

17 G↵
i

-GDP + EGFR2·GIV

$ EGFR2·GIV·G↵
i

k
f

[EGFR2·GIV][G↵
i

-GDP]�

k
r

[EGFR2·GIV·G↵
i

]

k
f

=0.005 µm

2

s.molecule

,

k
r

=1.142s�1,

(K
d

=0.24µM)

[17]

18 EGFR2·GIV·G↵
i

!

G↵
i

-GTP +EGFR2·GIV

k
f

[EGFR2·GIV·G↵
i

] k
f

=1s�1 [14]

19 G↵
i

-GTP ! G↵
i

-GDP k
f

[G↵
i

-GTP] k
f

=0.139s�1 [20]

20 G↵
i

-GTP ! G↵
i

-GTP
i

k
f

[G↵
i

-GTP]-

k
r

[G↵
i

-GTP
int

]

k
f

=0.05s�1, k
r

=0.001s�1 Est.2

21 G↵
i

-GTP
i

! G↵
i

-GDP
i

k
f

[G↵
i

-GTP
int

] k
f

=0.139s�1 [20]

22 G↵
i

-GDP
i

! G↵
i

-GDP k
f

[G↵
i

-GDP
i

] k
f

=0.0014s�1 Est.2

1Using experimental CDK5 activities [11], an initial guess was used for the rate, and then refined through fitting simulations

to experimental data.
2Internalization rates were found by fitting simulations to experimental data.

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149781doi: bioRxiv preprint 

https://doi.org/10.1101/149781
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S4: Reactions for Module 3 (Figure 3F), outlining protein-protein interactions leading to the

transibhibition of G↵
s

by EGFR via GIV-GDI activation.

# Reaction Reaction flux Kinetic Parameters Ref.

23 PLC-� ! PLC-�* k

cat

[EGF-EGFR2][PLC-�]
K

M

+[PLC-�]

�k
r

[PLC-�*]

k
cat

=0.003s�1, K
M

=1µM ,

k
r

=5*10�4s�1

[31],

Est.1

24 PLC-� ! PLC-�* k

cat

[EGFR2·GIV][PLC-�]
K

M

+[PLC-�] k
cat

=0.01s�1, K
M

=1µM [10],

Est.2

25 PIP2 ! IP3+DAG k

cat

[PLC-�*][PIP2]
K

M

+[PIP2] k
cat

=14 molecule

µm

2
.µM.s

,

K
M

=5000molecule

µm

2

[14]

26 IP3 ! Inositol k
f

[IP3] k
f

=2.5s�1 [14]

27 PKC-✓+DAG ! PKC-✓* k
f

[PKC-✓][DAG]

�k
r

[PKC-✓*]

k
f

=0.1s�1µM�1,

k
r

=1*10�5s�1

[32]

28 DAG ! DAG
deg

k
f

[DAG] k
f

=6.7*10�4s�1 [33]

29 PKC-✓* ! PKC-✓ + DAG
deg

k
f

[PKC-✓*] k
f

=0.0067s�1 Est.3

30 EGFR2·GIV! GIV-GDI +

EGF-EGFR*2

k

cat

[PKC-✓][EGFR2·GIV]
K

M

+EGFR2·GIV k
cat

=0.45s�1,

K
M

=300molecule

µm

2

[14]

31 GIV-GEF ! GIV-GDI k

cat

[PKC-✓][GIV-GEF]
K

M

+[GIV�GEF ] k
cat

=1.24*10�6s�1,

K
M

=0.7µM

[14]

32 GIV-GDI ! GIV k
f

[GIV-GDI] k
f

=5*10�4s�1 Est.1

1Degradation rate set based on an assumed 20 to 30 min half life
2Rate determined by immunoblot fitting
3Degradation rate of DAG assumed 10x faster when bound to PKC-✓
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Table S5: Reactions for Module 4 (Figure 4A), outlining reactions for the activation and inhibition of

cAMP.

# Reaction Reaction flux Kinetic Parameters Ref.

33 AC$ AC
i

k
f

[AC] -k
r

[AC
i

] k
f

=1x10�4s�1

k
r

=2x10�6s�1

Est.1

34 AC+G↵
i

-GTP !

AC
inactive

k
f

[AC][G↵
i

-GTP] k
f

=0.523 µm

2

s.molecule

[21]

35 AC
inactive

!

AC+G↵i-GDP

k
f

[AC
inactive

] k
f

=0.1667s�1 [26]

36 AC
i

+G↵
i

-GTP
i

!

AC
i,inactive

k
f

[AC
i

][G↵
i

-GTP
i

] k
f

=0.0021 µm

2

s.molecule

[21]

37 AC
i,inactive

!

AC
i

+G↵
i

-GDP
i

k
f

[AC
inactive

] k
f

=0.1667s�1 Est.2

38 G↵
s

-GDP-�� !

G↵
s

-GDP-��
i

k
f

[G↵
s

-GDP-��]

-k
r

[G↵
s

-GDP-��
i

]

k
f

=0.0015s�1,

k
r

=1*10�6s�1

[31]

Est.1

39 G↵
s

-GDP-��
i

!

G↵
s

-GTP
i

+��
i

k

cat

[EGF-EGFR*2i][G↵s-GDP-��
i

]
K

M

+[G↵s-GDP-��
i

] k
cat

=0.0233s�1,

K
M

=240000molecule

µm

2

[31]

Est.3

40 G↵
s

-GDP
i

+GIV-GDI $

G↵
s

-GDP-GDI

k
f

[G↵
s

-GDP][GIV-GDI]�

k
r

[G↵
s

-GDP-GDI]

k
f

=0.03µM�1s�1,

k
r

=1.5x10�3s�1

[34]

Est.1

41 G↵s-GTP
i

! G↵s-GDP
i

k
f

[G↵s-GTP
i

] k
f

=0.139s�1 [20]

42 G↵s-GDP
i

+ ��
i

!

G↵s-GDP-��
i

k
f

[G↵s-GDP][��] k
f

=5x10�5 µm

2

s.molecule

[20]

43 AC
i

+ G↵s-GTP ! AC* k
f

[G↵s-GTP][AC] k
f

=0.0021 µm

2

s.molecule

[20]

44 AC*! AC
i

+ G↵s-GDP k
f

[AC*] k
f

=0.1667s�1 [26]

1Rate found through immunoblot data fitting
2set at the same rate of G↵s GAP activity.
3set with immunoblot data fitting around values used in [31], after converting units to surface density.
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Table S6: Reactions for Module 4(cont.)

# Reaction Reaction flux Kinetic Parameters Ref.

45 ATP ! cAMP k

cat

([AC]+[AC
i

])[ATP]
K

M

+[ATP] k
cat

=0.12s�1, K
M

=1030µM ,

=0.004

[20]1

46 ATP ! cAMP k

cat

[AC*][ATP]
K

M

+[ATP] k
cat

=13.34s�1, K
M

=315µM [20]

47 cAMP ! AMP k

cat

[PDE][cAMP]
K

M

+[cAMP] k
cat

=2s�1, K
M

=1.51µM [20]

48 4cAMP + R2C2 !

2PKA + R2

k

cat

[R2C2][cAMP]1.75

K

1.75
M

+[cAMP]1.75
k
cat

=0.05s�1, K
M

=0.54µM [2, 35]

49 R2 !

R2u + 2cAMP

k
f

[R2] k
f

=0.0167s�1 [27]

50 R2u!

R2uu + 2cAMP

k
f

[R2u] k
f

=2.78*10�4s�1 [27]

51 R2uu + 2PKA !

R2C2

k
f

[R2uu][PKA]2 k
f

=10µM�2.s�1 Est.2

52 PDE ! PDE* k

cat

[PKA][PDE]
K

M

+[PDE] k
cat

=5s�1, K
M

=0.5µM [20]

53 PKA $ PKA
inact

k
f

[PKA]� k
r

[PKA
inact

] k
f

=1x10�4s�1, k
r

=1s�1 [14]

54 PKA $ PKA
nuc

k
f

[PKA]� k
r

[PKA
nuc

] k
f

=0.011s�1, k
r

=0.011s�1 Est.3

55 CREB $ CREB*
k

cat

[PKA
nuc

][CREB]
K

M1
�V max

rev

[CREB*]
K

M2

1+ [CREB]
K

M1
+ [CREB*]

K

M2

k
cat

=0.05s�1, K
M1=1µM ,

Vmax
rev

=0.005µM

s

,

K
M2=1µM

Est.3

56 cAMP ! AMP k

cat

[PDE*][cAMP]
K

M

+[cAMP] K
M

=1.26µM , k
cat

=5s�1 [20]

57 PDE* ! PDE k

cat

[PP-PDE][PDE*]
K

M

+[PDE*] K
M

=8µM , k
cat

=5s�1 [20]

1 is the conversion factor from PM to EM
2Rate was determined through fitting steady state responses to a Hill function, see Figure S4
3Rates were set to preserve the expected longer timescale events
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Table S7: Reactions for the additional interactions modeling the e↵ect of PKA and CDK5 phosphorylation

of PDE.

# Reaction Reaction flux Kinetic Parameters Reference

58 PDE ! PDE* k

cat

[PKC✓*][PDE]
K

M

+[PDE] K
M

=0.89µM , k
cat

=1.5s�1 [29]

59 PDE ! PDE* k

cat

[CDK*][PDE]
K

M

+[PDE] K
M

=0.5µM , k
cat

=0.001 µM.µm

2

molecule.s

[28]

Table S8: Reactions for rapid production of cAMP at the PM (blue line in Figure 7A) using the dynamics

shown in [36].

# Reaction Reaction flux Kinetic Parameters Ref.

60 G↵
s

-GDP-��
i

! G↵
s

-

GTP + ��

k

cat

[EGF-EGFR*2+EGFR2·GIV][G↵

s

-GDP-��
i

]
K

M

+[G↵

s

-GDP-��
i

] K
M

=960molecule

µm

2 ,

k
cat

=0.1s�1

Est.1

61 AC+G↵
s

-GTP! AC* k
f

[AC][G↵
s

-GTP] k
f

=0.525 µm

2

s.molecule

[20]

62 AC*! AC+G↵
s

-GDP k
f

[AC*] k
f

=0.1667s�1 [20]

63 G↵
s

-GTP! G↵
s

-

GDP

k
f

[G↵
s

-GTP] k
f

=0.139s�1 [20]

64 G↵
s

-GDP+�� !

G↵
s

-GDP-��
i

k
f

[G↵
s

-GDP][��] k
f

=0.125 µm

2

molecules.s

[20]

65 G↵
s

-GDP+GIV-GDI

! G↵
s

·GDI

k
f

[G↵
s

-GDP][GIV-GDI]-

k
r

[G↵
s

·GDI]

k
f

=0.0015µM�1.s�1

k
r

=7s�1

[20]

66 ATP ! cAMP k

cat

[AC*][ATP]
K

M

+[ATP] K
M

=315µM ,

k
cat

=13.34s�1

[20]

1rates were set the same on PM as on Endosomal Membrane
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Table S9: Initial conditions for components (components not listed have zero initial conditions).

Species Initial concentration Compartment Notes and References

EGFR 240 molecule.µm�2 PM [6,37]

EGF 0.05µM EC Exp. stimulation

PLC-� 0.1µM Cytosol Assumed

PKC-✓ 0.1µM Cytosol Assumed

ATP 5000µM Cytosol [20]

cAMP 0.0045µM Cytosol basal SS1

PKA 0.0066µM Cytosol basal SS1

PDE 0.345µM Cytosol basal SS1

R2C2 0.0967µM Cytosol basal SS1

AMP 1000µM Cytosol [20]

PDEp 0.055µM Cytosol basal SS1

PPPDE 0.2µM Cytosol Assumed

GIV 0.831 Cytosol Set such that GIV
total

= 1 µM

GIV-GEF 0.069µM Cytosol Assumed; immunoblot values

GIV-GDI 0.1µM Cytosol Assumed; immunoblot values

CDK5 0.05µM Cytosol Assumed; [11]

R2 6x10�5 µM Cytosol basal SS1

R2u 0.004µM Cytosol basal SS1

R2uu 0.0025µM Cytosol basal SS1

CREB 0.9929 Nucleosome Set such that CREB
total

= 1 µM

CREBp 0.0061µM Nucleosome basal SS1

p35 957 molecule.µm�2 PM Set such that p35
total

= 1 µM

G↵
i

-GDP 48 molecule.µm�2 PM Set to exp. immunoblot value.

AC 30 molecule.µm�2 PM Average of [20] and [25]

PIP2 9570 molecule.µm�2 PM Assumed

EGFR·GIV·G↵
i

0.075 moleq.µm�2 PM experimental immunoblot value

G↵
s

-GDP-�� 96 molecule.µm�2 PM experimental conditions [4]

G↵
s

·GIV-GDI 48 molecule.µm�2 Endosomal membrane experimental immunoblot value

1All basal Steady Sates are set by running a basal AC case until a stable cAMP, PKA, and CREB responses are received
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Table S10: Sensitivity analysis of EGFR·GIV·G↵
i

complex with respect to initial conditions. The colors

indicate the sensitivity to the respective parameter; red indicates that the EGFR·GIV·G↵
i

complex is sen-

sitive to changes in the initial concentration of the corresponding parameter (i.e. sensitivity index greater

than 1) and blue indicates that the EGFR·GIV·G↵
i

complex is partially sensitive to changes in the initial

concentration of the corresponding parameter (i.e. sensitivity index greater than 0.5) over the time course

of signaling. Sensitivity is shown at 5, 15, 30, and 60 min intervals.

Initial Parameter(index) 5 min 15 min 30 min 60 min

G
↵i

-GDP(11)
GIV(12)

PLC-�(21)

Table S11: Sensitivity analysis of cAMP with respect to initial conditions. The colors indicate the sensitivity

to the respective parameter; red indicates that cAMP is sensitive to changes in the initial concentration of

the corresponding parameter (i.e. sensitivity index greater than 1) and blue indicates that cAMP is partially

sensitive to changes in the initial concentration of the corresponding parameter (i.e. sensitivity index greater

than 0.5) over the time course of signaling. Sensitivity is shown at 5, 15, 30, and 60 min intervals.

Initial Parameter 5 min 15 min 30 min 60 min

AC
G

↵i

-GDP

Table S12: Sensitivity analysis of CREB with respect to initial conditions. The colors indicate the sensi-

tivity to the respective parameter; red indicates that CREB phosphorylation is sensitive to changes in the

initial concentration of the corresponding parameter (i.e. sensitivity index greater than 1) and blue indicates

that CREB phosphorylaton is partially sensitive to changes in the initial concentration of the corresponding

parameter (i.e. sensitivity index greater than 0.5) over the time course of signaling. Sensitivity is shown at

5, 15, 30, and 60 min intervals.

Initial Parameter 5 min 15 min 30 min 60 min

AC
PKA
R2C2

R2u
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Table S13: Sensitivity analysis of EGFR·GIV·G↵
i

complex with respect to the model kinetic parameters.

The colors indicate the sensitivity to the respective parameter; red indicates that the EGFR·GIV·G↵
i

com-

plex is sensitive to changes in the value of the corresponding parameter (i.e. sensitivity index greater than

1) and blue indicates that the EGFR·GIV·G↵
i

complex is partially sensitive to changes in the value of the

corresponding parameter (i.e. sensitivity index greater than 0.5) over the time course of signaling. Sensitivity

is shown at 5, 15, 30, and 60 min intervals. The index in the square brackets refer to the reaction number.

Parameter[reaction] 5 min 15 min 30 min 60 min

k
cat

[R30]
k
cat

[R25]
k
f

[R29]
k
f

[R4]
k
f

[R16]
k
f

[R17]
k
f

[R18]
k
r

[R23]
K

M

[R30]
k
r

[R17]

Table S14: Sensitivity analysis of G↵
s

·GIV-GDI complex with respect to the model kinetic parameters. The

colors indicate the sensitivity to the respective parameter; red indicates that the G↵
s

·GIV-GDI complex is

sensitive to changes in the value of the corresponding parameter (i.e. sensitivity index greater than 1) and blue

indicates that the G↵
s

·GIV-GDI complex is partially sensitive to changes in the value of the corresponding

parameter (i.e. sensitivity index greater than 0.5) over the time course of signaling. Sensitivity is shown at

5, 15, 30, and 60 min intervals. The index in the square brackets refer to the reaction number.

Parameter[reaction] 5 min 15 min 30 min 60 min

k
f

[R4]
k
f

[R40]

Table S15: Sensitivity analysis of cAMP with respect to the model kinetic parameters. The colors indicate

the sensitivity to the respective parameter; red indicates that the cAMP production is sensitive to changes in

the value of the corresponding parameter (i.e. sensitivity index greater than 1) and blue indicates that cAMP

production is partially sensitive to changes in the value of the corresponding parameter (i.e. sensitivity index

greater than 0.5) over the time course of signaling. Sensitivity is shown at 5, 15, 30, and 60 min intervals.

The index in the square brackets refer to the reaction number.

Parameter[reaction] 5 min 15 min 30 min 60 min

k
cat

[R47]
k
cat

[R46]
k
cat

[R45]
k
f

[R35]
k
f

[R44]
K

M

[R47]
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Table S16: Sensitivity analysis of CREB phosphorylation with respect to the model kinetic parameters.

The colors indicate the sensitivity to the respective parameter; red indicates that CREB phosphorylation is

sensitive to changes in the value of the corresponding parameter (i.e. sensitivity index greater than 1) and

blue indicates that CREB phosphorylation is partially sensitive to changes in the value of the corresponding

parameter (i.e. sensitivity index greater than 0.5) over the time course of signaling. Sensitivity is shown at

5, 15, 30, and 60 min intervals. The index in the square brackets refer to the reaction number.

Parameter[reaction] 5 min 15 min 30 min 60 min

k
cat

[R47]
k
cat

[R55]
k
cat

[R48]
k
f

[R54]
K

M

[R47]
K

M

[R46]
K

M1[R55]
K

M2[R55]
k
r

[R54]
V
max,rev

[R55]
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5 Supplementary Figures
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Figure S1: Supplementary figure for Figure 2 – Dynamics of di↵erent pools of EGFR. Simula-
tions are shown for the dynamics of the PM (red line) and endosomal (yellow line) pools of EGFR computed
over 1 h based on network Module 1. Parameter variations were conducted for values one order of magnitude
above and below the control value for (A) basal degradation rate (reaction number 9 in Table S2), (B) re-
ceptor internalization rate (reaction number 4 in Table S2), and (C) rate of G↵

s

-GDP dependent catalytic
degradation of EGFR (reaction number 9 in Table S2). The solid line shows the value used in the control
model, the dot dashed lines represent a ten-fold increase the value of the parameter from the control value
and the dashed lines represent a ten-fold decrease in the value of the kinetic parameter from the control
value. Variation of the basal degradation rate of EGFR doesn’t a↵ect the PM receptors but proportionally
a↵ects the endosomal receptor pool (A); an increase in the basal degradation rate decreases the endosomally
active receptors (Reaction 9, Table S2). On the other hand, variation in the rate of internalization of
EGFR a↵ects both the PM and endosome pool of receptors (Reaction 4, Table S2). An increase in the rate
of internalization of EGFR leads to a rapid decrease in the PM receptor pool with a corresponding rapid
increase in the endosome pool of receptors (B). Variation of the G↵

s

-GDP-dependent catalytic degradation
rate of EGFR (Reaction 9, Table S2) a↵ects the endosomal receptor pool proportionally, with no discernible
e↵ect on the PM receptor pool (C).
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Figure S2: Supplementary figure for Figure 2 – Impact of model parameters on the dynamics
of the formation of the EGFR·GIV·G↵

i

complexes downstream of EGFR activation. (A-F)
E↵ect of di↵erent kinetic parameters on the dynamics of the EGFR·GIV·G↵

i

complex formation was tested
by changing the parameter of interest to one order of magnitude above (dot dashed lines) and one order
of magnitude below (dashed line) the control value (solid line) used in the model. (A) and (B) show
the e↵ect of binding rate constant of GIV-GEF to ligand-bound, dimerized EGFR (reaction number 15 in
Table S3) on the dynamics of the formation of the EGFR·GIV·G↵

i

complex. Although the density of
the EGFR·GIV·G↵

i

complex is a↵ected by this rate constant (A), the normalized complex density shows
good agreement with experiment. (C) and (D) show the e↵ect of CDK5-mediated phosphorylation of GIV
to GIV-GEF on the formation of the EGFR·GIV·G↵

i

complex (k
cat

reaction number 14 in Table S3).
Even though the density of the EGFR·GIV·G↵

i

complex is a↵ected by the k
cat

(C), the normalized values
are in good agreement with experiment. (E) and (F) Simulations display the e↵ect of PKC-✓-mediated
phosphorylation at S1689 for GIV-GEF·EGFR, resulting in conversion of GIV-GEF to GIV-GDI (reaction
number 29 in Table S4). Changing this k

cat

changes the dynamics of the EGFR·GIV·G↵
i

complex
formation such that a decrease in this rate constant leads to a prolonged lifetime of the complex and this
e↵ect is seen both in the number density of the complex (E) and in the normalized data compared against
experiments (F).
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Figure S3: Supplementary figure for Figure 3 – Dynamics of G↵
s

·GIV-GDI complex formation
downstream of EGFR and the e↵ect of di↵erent kinetic parameters. (A-F) E↵ect of di↵erent
kinetic parameters on the dynamics of the G↵

s

·GIV-GDI complex formation was tested by changing the
parameter of interest to one order of magnitude above (dot dashed lines) and one order of magnitude
below (dashed line) the control value (solid line) used in the model. (A-B) Variation of the binding rate
of GIV-GDI binding rate to G

↵s

-GDP (reaction number 39 in Table S5) a↵ects both the density of the
bound G↵

s

·GIV-GDI molecules (A) and the temporal dynamics (B). Reducing the value of this rate
constant shifted the peak time of complex formation to the right, an e↵ect that is clearly visualized when
comparing the normalized data (B). (C-D) Varying the internalization rate of dimerized EGFR, from the
PM to the endosomal compartment (reaction number 4 in Table S2) dramatically changes the dynamics of
the G↵

s

·GIV-GDI complex formation both in terms of the surface density (C) and when the normalized
quantities are compared against experiment (D). Faster internalization rates of EGFR lowered the density of
the complex (C) and the complexes were assembled earlier than observed in experiments (D). Reducing the
rate of EGFR internalization, on the other hand, also lowered the density of G↵

s

·GIV-GDI complexes, and
they were assembled later. (E-F) The dynamics of the G↵

s

·GIV-GDI complex formation are a↵ected by
the catalytic degradation rate of internalized dimerized EGFR, which is enabled by G↵

s

-GDP [1] (reaction
number 9 in Table S2). The e↵ect of changing this parameter was proportional on both the membrane
density of the G↵

s

·GIV-GDI complex (E) and a↵ected the peak time and dynamics of the complex formation
F. Because the degradation of internalized EGFR requires endosomal maturation that is enhanced by G↵

s

-
GDP [1], increasing the rate of G↵

s

-GDP dependent endosome maturation and EGFR degradation decreased
the G↵

s

-GDI density and increased the rate of the G↵
s

·GIV-GDI complex formation, whereas decreasing
the rate of the G↵

s

- GDP-mediated EGFR degradation increased the density of the complex formation and
slowed down the process.
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Figure S4: Supplementary figure for Figure 4 – Parameter estimation and validation of cAMP-
PKA interactions. Dose response curve for PKA activation as a function of cAMP concentration was
calculated from simulations and compared against previously published experiments. The red starred line
shows the normalized PKA activation from [2] and the blue line shows the model PKA activation as a
function of cAMP concentration. Experimental data from Bruystens et al. [2] was fit to a Hill function to
obtain a Hill coe�cient of n=1.73 and an EC50=54 nM. These values were used in our model (Module 4,
Reactions 48-51) to obtain a good qualitative agreement between simulations and experimental data for
cAMP-mediated activation of PKA.
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Figure S5: Supplementary figure for Figure 4 – E↵ect of EGFR dynamics on cAMP dynamics.
Simulations display the impact of variation of receptor internalization and catalytic rate on cAMP (A), PKA
(B) and CREB (C). An increase in the internalization rate of EGFR leads to the rapid increase in cAMP
and loss of the early G↵

i

-dependent reduction in cAMP concentration (A). On the other hand, a decrease in
the internalization rate of EGFR leads to a reduction in cAMP concentration without an appreciable increase
in cAMP concentration. An increase in the EGFR degradation rate diminishes cAMP concentration because
of reduced G↵

s

activation in the endosomes and a corresponding decrease in the degradation rate leads to
an increase in the cAMP concentration (A). Neither of these conditions a↵ect the early reduction of cAMP
due to G↵

i

. PKA and CREB mimic the response of cAMP (B, C) by virtue of being downstream e↵ectors
of cAMP. Increasing endosomal stimulation times, by reducing catalytic degradation rate or by increasing
internalization rates, resulted in an amplified PKA and CREB response.
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Figure S6: Supplementary figure for Figure 4 – GIV is required for suppressing EGF-triggered
cAMP production in HeLa cells. Control (shC) or GIV-depleted (shGIV) HeLa cells or GIV-depleted
cells rescued with shRNA-resistant GIV-WT (GIV+) were serum starved (0.2% FBS, 16h), treated with 200
µM IBMX (20 min) prior to stimulation with 50 nM EGF for 60 min cAMP produced in response to EGF
was measured by radioimmunoassay (RIA) as detailed in ‘Materials and methods’. Bar graphs compare the
cAMP levels before (0, blue) and after EGF stimulation (50nM, red). Error bars indicate mean ± S.D. of
three independent experiments.
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Figure S7: Supplementary figure for Figure 4 – E↵ect of PKC-✓ and CDK5 phosphorylation
on PDE phosphorylation. Simulations of the impact of phosphorylation of PDE by PKC-✓ and CDK5
(reactions are shown in Table S7) on (A)cAMP, (B) PKC-✓, and (C) CREB phosphorylation are shown.
The control values of cAMP, PKC-✓, and CREB without accounting for either of the two feedforward
interactions are shown in blue. Inclusion of the feedforward loops. i.e., phosphorylation of PDE by either
CDK5 alone (red) or PKC-✓ alone (yellow), or both (purple) are also displayed. When both CDK5 and
PKC-✓ feedback loops are taken into account (purple), PDE activity appears to be enhanced because cellular
cAMP dynamics are significantly dampened.
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Figure S8: Supplementary figure for Figure 5 – Impact of varying EGFR and GIV concentra-
tions on cellular levels of cAMP (A) cAMP AUC, computed at 1 h is shown for di↵erent values of GIV
and EGFR. Time-course of cAMP for various EGFR concentrations at (B) GIV=0 µM , (C) GIV=0.2 µM ,
(D) GIV=0.5 µM , (E) GIV=1 µM , (F) GIV=2 µM , (G) GIV=5 µM are shown.

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149781doi: bioRxiv preprint 

https://doi.org/10.1101/149781
http://creativecommons.org/licenses/by-nc-nd/4.0/


GIV[µM]
0  0.2 0.4 0.6 0.8 1  1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 10 

cA
M

P
 A

U
C

[µ
M

 m
in

]

0

2.5

4.17
PDE=2µM
PDE=1.4µM
PDE=0.8µM
PDE=0.4µM
PDE=0.2µM
PDE=0.08µM
PDE=0.04µM

Time [min]
0 20 40 60

cA
M

P
 [µ

M
]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
GIV = 0.5µM

Time [min]
0 20 40 60

cA
M

P
 [µ

M
]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
GIV = 0.2µM

Time [min]
0 20 40 60

cA
M

P
 [µ

M
]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
GIV = 5µM

PDEtotal=2µM
PDEtotal=0.8µM
PDEtotal=0.4µM (Model)
PDEtotal=0.2µM
PDEtotal=0.08µM

Time [min]
0 20 40 60

cA
M

P
 [µ

M
]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
GIV = 2µM

Time [min]
0 20 40 60

cA
M

P
 [µ

M
]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
GIV = 1µM (Model)

(C) (D)

(E) (F)

(B)

(G)Time [min]
0 20 40 60

cA
M

P
 [µ

M
]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
GIV = 0µM

(A)

PDEtotal=2µM
PDEtotal=0.8µM
PDEtotal=0.4µM (Model)
PDEtotal=0.2µM
PDEtotal=0.08µM

PDEtotal=2µM
PDEtotal=0.8µM
PDEtotal=0.4µM (Model)
PDEtotal=0.2µM
PDEtotal=0.08µM

PDEtotal=2µM
PDEtotal=0.8µM
PDEtotal=0.4µM (Model)
PDEtotal=0.2µM
PDEtotal=0.08µM

PDEtotal=2µM
PDEtotal=0.8µM
PDEtotal=0.4µM (Model)
PDEtotal=0.2µM
PDEtotal=0.08µMPDEtotal=2µM

PDEtotal=0.8µM
PDEtotal=0.4µM (Model)
PDEtotal=0.2µM
PDEtotal=0.08µM

Figure S9: Supplementary figure for Figure 6 – Impact of varying PDE and GIV concentrations
on cellular levels of cAMP. (A) cAMP AUC, computed at 1 h is shown for di↵erent values of GIV
andPDE. Time-course of cAMP for various PDE concentrations at (B) GIV=0 µM , (C) GIV=0.2 µM , (D)
GIV=0.5 µM , (E) GIV=1 µM , (F) GIV=2 µM , (G) GIV=5 µM are shown.
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Figure S10: Supplementary figure for Figure 6 – The impact of levels of expression of GIV
and PDE on cAMP dynamics; comparison of model predictions and clinical outcome [disease-
free survival] in patients with colorectal cancers. (A-D) GIV expression status in colon cancers has
an impact on disease-free survival (DFS) only when the level of expression of various PDE isoforms are
low. Hegemon software was used to analyze individual arrays according to the expression levels of GIV
(CCDC88A) and either PDE4A (A), or 5A (B), 10A (C), 4D (D) in a data set containing 466 patients
with colon cancer (Left panels, A-D; see Methods; E). Survival analysis using Kaplan-Meier curves showed
that among patients with high PDEs [middle panels, A-D], high vs low GIV expression did not carry any
statistically significant di↵erence in DFS (all p values > 0.05). Survival analysis among patients with low
PDEs [right panels, A-D] showed that patients whose tumors had high levels of expression of GIV had a
significantly shorter DFS than those with tumors expressing low levels of GIV (all p values < 0.05). See also
Figure 6 for patient survival curves for PDE5A isoform and GIV on DFS.
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Figure S11: Supplementary figure for Figure 7 – GIV mRNA expression is elevated in various
cancers. Expression levels of GIV [CCDC88a] mRNA in normal vs. cancers was analyzed in publicly
available RNA Seq datasets using Oncomine.org. PMIDs listed under each box plot refers to the original
manuscript associated with the dataset.
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Figure S12: Supplementary figure for Figure 7 – Copy numbers of GIV-gene is elevated in
various cancers. Copy numbers of GIV gene is elevated in various cancers. TCGA datasets were analyzed
for copy number variations (CNV) in GIV gene [CCDC88a] in normal vs. cancers using Oncomine.org.

29

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149781doi: bioRxiv preprint 

https://doi.org/10.1101/149781
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

[1] A. O. Beas, V. Taupin, C. Teodorof, L. T. Nguyen, M. Garcia-Marcos, and M. G. Farquhar. Gas
promotes EEA1 endosome maturation and shuts down proliferative signaling through interaction with
GIV (Girdin). Mol Biol Cell, 23(23):4623–4634, 2012.

[2] J. G. H. Bruystens, J. Wu, A. Fortezzo, A. P. Kornev, D. K. Blumenthal, and S. S. Taylor. PKA RI↵
Homodimer Structure Reveals an Intermolecular Interface with Implications for Cooperative cAMP
Binding and Carney Complex Disease. Structure, 22(1):59–69, 2014.

[3] R. Irannejad, J. C. Tomshine, J. R. Tomshine, M. Chevalier, J. P. Mahoney, J. Steyaert, S. G. Ras-
mussen, R. K. Sunahara, H. El-Samad, B. Huang, and M. von Zastrow. Conformational biosensors
reveal GPCR signalling from endosomes. Nature, 495(7442):534–538, 2013.

[4] V. Gupta, D. Bhandari, A. Leyme, N. Aznar, K. K. Midde, I. C. Lo, J. Ear, I. Niesman, I. Lopez-Sanchez,
J. B. Blanco-Canosa, M. von Zastrow, M. Garcia-Marcos, M. G. Farquhar, and P. Ghosh. GIV/Girdin
activates G↵i and inhibits G↵s via the same motif. P. Natl. Acad. Sci. U.S.A., 113(39):E5721–5730,
2016.

[5] H. Berry. Monte Carlo Simulations of Enzyme Reactions in Two Dimensions: Fractal Kinetics and
Spatial Segregation. Biophys J, 83(4):1891–1901, 2002.

[6] L. Zhao, C. D. Kroenke, J. Song, D. Piwnica-Worms, J. J. H. Ackerman, and J. J. Neil. Intracellular
water-specific MR of microbead-adherent cells: The HeLa cell intracellular water exchange lifetime.
NMR Biomed, 21(2):159–164, 2008.

[7] B. Schoeberl, C. Eichler-Jonsson, E. D. Gilles, and G. Müller. Computational modeling of the dynamics
of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol.,
20(4):370–375, 2002.

[8] R. Villasenor, H. Nonaka, P. Del Conte-Zerial, Y. Kalaidzidis, and M. Zerial. Regulation of EGFR
signal transduction by analogue-to-digital conversion in endosomes. eLife, 4, 2015.

[9] L. Foret, J. E. Dawson, R. Villasenor, C. Collinet, A. Deutsch, L. Brusch, M. Zerial, Y. Kalaidzidis, and
F. Julicher. A General Theoretical Framework to Infer Endosomal Network Dynamics from Quantitative
Image Analysis. Current Biology, 22(15):1381–1390, 2012.

[10] P. Ghosh, A. O. Beas, S. J. Bornheimer, M. Garcia-Marcos, E. P. Forry, C. Johannson, J. Ear, B. H.
Jung, B. Cabrera, J. M. Carethers, and M. G. Farquhar. A Galphai-GIV molecular complex binds
epidermal growth factor receptor and determines whether cells migrate or proliferate. Mol. Biol. Cell,
21(13):2338–2354, 2010.

[11] D. W. Peterson, D. M. Ando, D. A. Taketa, H. Zhou, F. W. Dahlquist, and J. Lew. No di↵erence in
kinetics of tau or histone phosphorylation by CDK5/p25 versus CDK5/p35 in vitro. P. Natl. Acad. Sci
USA, 107(7):2884–2889, 2010-02-16.

[12] K.-H. Sun, Y. de Pablo, F. Vincent, E. O. Johnson, A. K. Chavers, and K. Shah. Novel Genetic Tools
Reveal Cdk5’s Major Role in Golgi Fragmentation in Alzheimer’s Disease. Mol. Biol. Cell, 19(7):3052–
3069, 2008.

[13] R. Dhavan and L.-H. Tsai. A decade of cdk5. Nat. Rev. Mol. Cell. Bio., 2(10):749–759, 2001.

[14] U. S. Bhalla and R. Iyengar. Emergent properties of networks of biological signaling pathways. Science
(New York, N.Y.), 283(5400):381–387, 1999.

[15] G. N. Patrick, P. Zhou, Y. T. Kwon, P. M. Howley, and L.-H. Tsai. P35, the Neuronal-specific Activator
of Cyclin-dependent Kinase 5 (Cdk5) Is Degraded by the Ubiquitin-Proteasome Pathway. J Biol Chem,
273(37):24057–24064, 1998.

[16] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, and U. Kum-
mer. Copasi–a complex pathway simulator. Bioinformatics, 22(24):3067–3074, 2006.

30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149781doi: bioRxiv preprint 

https://doi.org/10.1101/149781
http://creativecommons.org/licenses/by-nc-nd/4.0/


[17] G. S. Ma, N. Aznar, N. Kalogriopoulos, K. K. Midde, I. Lopez-Sanchez, E. Sato, Y. Dunkel, R. L. Gallo,
and P. Ghosh. Therapeutic e↵ects of cell-permeant peptides that activate G proteins downstream of
growth factors. P. Natl Acad Sci USA, 112(20):E2602–E2610, 2015.

[18] S. McLaughlin, J. Wang, A. Gambhir, and D. Murray. PIP(2) and proteins: Interactions, organization,
and information flow. Annu. Rev. Bioph. Biom., 31:151–175, 2002.

[19] H. Poppleton, H. Sun, D. Fulgham, P. Bertics, and T. B. Patel. Activation of Gsalpha by the epidermal
growth factor receptor involves phosphorylation. J. Biol. Chem., 271(12):6947–6951, 1996.

[20] S. R. Neves, P. Tsokas, A. Sarkar, E. A. Grace, P. Rangamani, S. M. Taubenfeld, C. M. Alberini, J. C.
Scha↵, R. D. Blitzer, I. I. Moraru, and R. Iyengar. Cell shape and negative links in regulatory motifs
together control spatial information flow in signaling networks. Cell, 133(4):666–680, 2008.

[21] C. B. Melsom, Ø. Ørstavik, J.-B. Osnes, T. Skomedal, F. O. Levy, and K. A. Krobert. G i Proteins
Regulate Adenylyl Cyclase Activity Independent of Receptor Activation. PLOS ONE, 9(9):e106608,
2014.

[22] H. Imamura, K. P. H. Nhat, H. Togawa, K. Saito, R. Iino, Y. Kato-Yamada, T. Nagai, and H. Noji.
Visualization of atp levels inside single living cells with fluorescence resonance energy transfer-based
genetically encoded indicators. P. Natl. Acad. Sci. U.S.A., 106(37):15651–15656, 2009.

[23] C. Kim, D. Vigil, G. Anand, and S. S. Taylor. Structure and dynamics of pka signaling proteins. Eur.
J. Cell. Biol., 85(7):651–654, 2006.

[24] A. J. Silva, J. H. Kogan, P. W. Frankland, and S. Kida. CREB and memory. Annu. Rev. Neurosci.,
21:127–148, 1998.

[25] A. A. Alousi, J. R. Jasper, P. A. Insel, and H. J. Motulsky. Stoichiometry of receptor-Gs-adenylate
cyclase interactions. FASEB J., 5(9):2300–2303, 1991.

[26] D. Cassel, F. Eckstein, M. Lowe, and Z. Selinger. Determination of the turn-o↵ reaction for the hormone-
activated adenylate cyclase. J Biol Chem, 254(19):9835–9838, 1979.

[27] M. Zorn, K. E. Fladmark, D. Øgreid, B. Jastor↵, S. O. Døskeland, and W. R. G. Dostmann. Ala335 is
essential for high-a�nity cAMP-binding of both sites A and B of cAMP-dependent protein kinase type
I. FEBS Letters, 362(3):291–294, 1995.

[28] F. Plattner, K. Hayashi, A. Hernández, D. R. Benavides, T. C. Tassin, C. Tan, J. Day, M. W. Fina,
E. Y. Yuen, Z. Yan, M. S. Goldberg, A. C. Nairn, P. Greengard, E. J. Nestler, R. Taussig, A. Nishi,
M. D. Houslay, and J. A. Bibb. The role of ventral striatal cAMP signaling in stress-induced behaviors.
Nat. Neurosci., 18(8):1094–1100, 2015.

[29] J. S. Bian, W. M. Zhang, J. M. Pei, and T. M. Wong. The role of phosphodiesterase in mediating the
e↵ect of protein kinase C on cyclic AMP accumulation upon kappa-opioid receptor stimulation in the
rat heart. J. Pharmacol. Exp. Ther., 292(3):1065–1070, 2000.

[30] S. R. Neves. Developing models in Virtual Cell. Sci. Signal, 4(192):tr12, 2011.

[31] P. Rangamani, A. Lipshtat, E. U. Azeloglu, R. C. Calizo, M. Hu, S. Ghassemi, J. Hone, S. Scarlata,
S. R. Neves, and R. Iyengar. Decoding Information in Cell Shape. Cell, 154(6):1356–1369, 2013.

[32] A. Watts. Protein-Lipid Interactions. Elsevier, 1993.

[33] E. M. Griner and M. G. Kazanietz. Protein kinase C and other diacylglycerol e↵ectors in cancer. Nat
Rev Cancer, 7(4):281–294, 2007.

[34] Y.-W. Wu, L. K. Oesterlin, K.-T. Tan, H. Waldmann, K. Alexandrov, and R. S. Goody. Membrane
targeting mechanism of Rab GTPases elucidated by semisynthetic protein probes. Nat Chem Biol,
6(7):534–540, 2010.

[35] R. D. Malmstrom, A. P. Kornev, S. S. Taylor, and R. E. Amaro. Allostery through the computational
microscope: cAMP activation of a canonical signalling domain. Nat Commun, 6:7588, 2015.

31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149781doi: bioRxiv preprint 

https://doi.org/10.1101/149781
http://creativecommons.org/licenses/by-nc-nd/4.0/


[36] J. D. Violin, L. M. DiPilato, N. Yildirim, T. C. Elston, J. Zhang, and R. J. Lefkowitz. �2-adrenergic
receptor signaling and desensitization elucidated by quantitative modeling of real time camp dynamics.
J Biol Chem, 283(5):2949–2961, 2008.

[37] F. Capuani, A. Conte, E. Argenzio, L. Marchetti, C. Priami, S. Polo, P. P. Di Fiore, S. Sigismund, and
A. Ciliberto. Quantitative analysis reveals how EGFR activation and downregulation are coupled in
normal but not in cancer cells. Nat Commun, 6:7999, 2015.

32

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149781doi: bioRxiv preprint 

https://doi.org/10.1101/149781
http://creativecommons.org/licenses/by-nc-nd/4.0/

