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DNA methylation patterns have profound impacts on genome stability, gene expression,

and development. The molecular base of DNA methylation patterns has long been fo-
cused at single CpG sites level. Here, we construct a kinetic model of DNA methylation

with collaborations between CpG sites, from which a correlation function was established

based on experimental data. The function consists of three parts that suggest three pos-
sible sources of the correlation: movement of enzymes along DNA, collaboration between

DNA methylation and nucleosome modification, and global enzyme concentrations within

a cell. Moreover, the collaboration strength between DNA methylation and nucleosome
modification is universal for mouse early embryo cells. The obtained correlation function

provide insightful understanding for the mechanisms of inheritance of DNA methylation

patterns.
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1. Introduction

DNA methylation is a process by which methyl groups are added to DNA segments.

Methylation represents a key epigenetic modification that changes the activity of a

DNA segment without changing the sequence. The DNA methylation patterns are

dynamically regulated during development, and are important for stable silencing of

gene expression, maintenance of genome stability, and establishment of genomic im-

printing 1,18. Methylation of the fifth position of cytosine (5-methylcytosine, 5mC) is

found in most plant, animal, and fungal models, and is primarily restricted to palin-

dromic CpG (CG/GC) dinucleotides 12,16. Biologically, the molecular base of DNA

methylation patterns has been focused at single CpG sites level, which is regulated

by various types of enzymes, such as DNMT1/UHRF1 for the maintenance of methy-

lation marks, TET families for the active demethylation, and DNMT3a/DNMT3b

for the de novo methylation 18.

1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/149815doi: bioRxiv preprint 

https://doi.org/10.1101/149815
http://creativecommons.org/licenses/by/4.0/


June 2, 2017 6:7 WSPC/INSTRUCTION FILE DNAMethy

2 SONG, REN, LEI

There are now substantial evidences that additional mechanisms should be at

work to ensure the robust maintenance of methylation patterns. During mouse ga-

metes and early embryos, most functional genomic elements undergo significant

demethylation, except CpG islands (CGIs) and 5’ untranslated regions (UTRs)

whose methylation levels are already very low in gametes 17. In zebrafish early em-

bryos, the oocyte methylome is gradually discarded after 16-cell stage, and then

progressively reprogrammed to a pattern similar to that of the sperm methylome
10. DNA methylation patterns of human hematopoietic stem cells (HSCs) from

four different sources show different profiles, and DNA methylation dynamics of

myeloid-lymphoid lineage choice display an asymmetric pattern 6. These collabora-

tive changes in DNA methylation patterns suggest potential correlations between

the kinetics of CpG sites methylation/demethylation.

A computation model has shown that dynamic collaboration between nearby

CpG sites can provide strong error-tolerant inheritance of methylation states of a

cluster of CpGs, and shown stable bimodal methylation patterns 8. It was proposed

that the collaboration can be achieved by recruitment of methylase or demethylase

enzymes. However, the molecular based of the correlation remains unclear, and this

proposed mechanism fail to explain the CpG site distance dependence correlation

from experimental data (Figure 1b).

In this study, we examine experimental data for patterns of DNA methylation

correlation between adjacent CpG sites, and establish a computational model of

methylation/demethylation kinetics in which CpG site distance dependence corre-

lations are involved. The correlation function is obtained from experimental data.

Mechanisms of correlation are discussed in accordance with the obtained correlation

function.

2. Results

2.1. Pearson correlations between CpG site methylations

To examine the patterns of DNA methylation, we study data from mouse early

embryo (GSM1386021)17, which includes 5mC reads of each CpG sites from dif-

ferent stages of mouse embryo from sperm/oocyte to E13.5. In mouse genome, the

distances between adjacent CpG sites range from 2 to a few thousand bp. Dif-

ferent chromosomes show similar spectrum of CpG distance distributions and the

frequency decreases with the CpG distance (Figure 1a). For adjacent pairs of CpG

sites with given distance d (in bp), the Pearson correlation C(d) was obtained as

C(d) =

∑
i(Xi − 〈X〉)(Yi − 〈Y 〉)√∑

i(Xi − 〈X〉)2
∑
i(Yi − 〈Y 〉)2

, (1)

where (Xi, Yi) is the DNA methylation level of a pair of CpG sites, 〈X〉 and 〈Y 〉
are average of {Xi} and {Yi}, respectively.

We examine data from the parental strain chromosome 1 of 2-cell stage at mouse

embryo (P-chr1-2-cell-mouse in short), and see clear correlation between methyla-
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Fig. 1. Experimental data. (a) Distribution of the distances between adjacent CpG sites from
chr1 to chr19 of mouse DNA. (b) Pearson correlations between DNA methylation levels of adjacent

CpG sites of given distance (in bp). Data obtained from the parental strain chromosome 1 of 2-cell

stage at mouse embryo (P-chr1-2-cell-mouse) (data source: GSM1386021).

tion levels of adjacent CpG sites. There is strong correlation with Pearson’s r = 0.84

when the CpG distance is 2 bp, and the correlation decreases with the CpG distance

(Figure 1b). The correlation displays a local maximum at the distance of about 160

bp (Figure 1, arrow). Moreover, the Pearson correlation is consistent when we ex-

amine data for different chromosomes in the same cell (Appendix A). While we

calculate the correlation patterns from cells of different embryonic stages, the cor-

relations show evolutionary dynamics during embryo development (Appendix B).

These results suggest that the correlation pattern is universal for all chromosomes,

however can be dependent on the cellular status.

2.2. Kinetic model of DNA methylation

To investigate the molecular mechanism of correlation between CpG sites, we con-

struct a kinetic model aiming to uncover the molecular mechanism of CpG sites

correlation in DNA methylation. Here, we introduce a key assumption that the

correlation between methylation/demethylation of CpG sites is dependent on the

CpG distance (Figure 2). Each CpG site can transit between fully un-metheylated

(u), half-methyalted (h), and fully methylated (m) states (solid arrows in Figure 2).

The transition rates are affected by the status of nearby CpGs (dashed arrows in

Figure 2), and the correlation strength φ(d) is represented with a function of the

distance (in bp) between the two CpGs. Our aim was to formulate the function φ(d)

to reproduce the experimental correlation.

Our model was established based on the collaboration model in Haerter et al.

(2014)8. The i’th CpG site can at one of the states u, h ,or m, and randomly

methylate with a rate u+i from the state u to h, or a rate h+i from the state h to

m. Moreover, the methyl mark can be removed from the CpG site with a rate m−i
from m to h, or a rate h−i from h to u. The kinetic rates (u+i , h

+
i ,m

−
i , h

−
i ) consist of

two parts of contributions, the contribution from basal level rates (u+, h+,m−, h−),

and the contribution due to collaboration between neighboring CpG sites. According

the assumptions in Haerter et al. (2014)8, when a CpG is at state m, it promotes

the methylation of the nearby CpG, and hence the methylation rate from u to h
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Table 1. Default kinetic parameter values used in the simulations. Pa-

rameters are referred to Haerter et al.(2014).

u+ h+ m− h− h+h h+m u+m h−u m−u

0.008 0.008 0.04 0.04 0.24 0.24 0.24 0.05 0.05

increases by φ(d)(u+m−u+), and the rate from h to m increases by φ(d)(h+m−h+).

Similarly, a CpG of state h contributes an increase φ(d)(h+h−h+) to the methylation

rate of the nearby CpG site h+i , and a CpG of state u promotes the demethylation

processes, so that the demethylation rate m−i increases by φ(d)(m−u −m−), and

the rate h−i increases by φ(d)(h−u − h−).

Mathematically, the kinetic rates of the i’th CpG in a DNA sequence are given

by



u+i = u+ +

N∑
j=1

pi,j · χj(m) · φ(di,j) · (u+m − u+),

h+i = h+ +

N∑
j=1

pi,j · χj(m) · φ(di,j) · (h+m − h+)

+

N∑
j=1

pi,j · χj(h) · φ(di,j) · (h+h − h+),

m−i = m− +

N∑
j=1

pi,j · χj(u) · φ(di,j) · (m−u −m−),

h−i = h− +

N∑
j=1

pi,j · χj(u) · φ(di,j) · (h−u − h−).

(2)

Here pi,j = 1 when the i’th CpG is affected by the j’th CpG, otherwise pi,j = 0.

The index χj(s) = 1 (s = u, h,m) if the j’th CpG has the status s, and χj(s) = 0

if otherwise. We simply consider the nearby correlation so that pi,j = 1 only when

j = i ± 1. Here we note that although only the nearby CpGs are involved in the

correlation, however the distance between nearby CpG sites can be separated by

hundreds base pairs. We note that the function φ(d) is assumed to be the same for

all type correlations. This simplification was trying to construct a minimal model,

however biologically can be different. In model simulations, we refer the kinetic

models from Haerter et al.(2014) 8, which are listed at Table 1.

The kinetic rates in Eq. 2 define the dynamics of in each cell cycle. To include the

effect of reallocation at DNA replication, we reset the status m to h at the beginning

of each cell generation. For a given DNA sequence and a well defined function φ(d),

stochastic simulation based on the above kinetic rates for ∼ 20 generations lead to

a stationary DNA methylation pattern, which give a model predicted correlation

profile.
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Fig. 2. Schematic illustration of the model. (a) Three possible states of a CpG: un-methylated (U),

half-methylated (H), or methylated (M). (b) Kinetics of the transitions between the methylation
state of a CpG site. Solid arrows represent the transition between the states, dashed arrows show

the correlations from the nearby CpG.

2.3. Correlation function

To obtain the function φ(d), we refer the experimental data from P-chr1-2-cell-

mouse, denoted as C(d) (Figure 1b). The procedure is given below.

(1) Set φ in model as a constant independent to the distance d and run the model

simulation. Thus, the correlation defined in above is dependent on the value of

φ, however is independent to the distance d (Figure 3(a)). Larger φ leads larger

correlations (Figure 3(b)). Fitting the dependence of the simulated correlation

with φ, we obtained the function R0(φ) (Figure 3(b), red)

R0(φ) =
φ1.1

5.02 + φ1.1
+ 0.65

√
φe−0.51φ. (3)

In fitting the data, we first fit with Hill type function φs

a+φs to obtain good

fit with φ < 5 to have s = 1.1, next fit the remaining part of data with the

function of form b
√
φe−cφ to obtain c = 0.51. Finally, we adjust the coefficients

a and b to obtain a good fit for overall data. The function R0(φ) is monotonous

increasing.

(2) Consider the simulated correlation R0(φ) and the correlation obtained from ex-

perimental data (Figure 1), which is denoted as C(d). While assuming the two

correlations equal to each other, i.e., R0(φ) = C(d), we obtain the approxima-

tion φ = R−10 (C(d)) (Figure 3(c)).

(3) Substitute the function φ(d) obtained at the above step and run the model

simulation to obtain the first approximation of correlation, which is denoted as

C0(d) (Figure 3(d)). We note that the simulated correlation C0(d) has the same

tendency as the experimental data C(d), however C0(d) is in general larger than

C(d).

(4) Let the correlation R0(φ) equals C0(d), which gives R0(φ) = C0(d). Solve this
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equations to have the correlation function φ(d) = R−10 (C0(d)) (Figure 3(e),

blue dots). We note that the numerical data show power law decay in small

d region, and a bell-shape bulb at around d = 160. Hence, we introduce a

function that combines power law decay 1
(β+γd)p , a bell-shape bulb function

α
30
√
2π

exp
[
− (d−160)2

2×302

]
, and a constant tail, so that the the numerical data can

be fitted with a correlation function of form (Figure 3(e), red line):

φ(d) =
1

(β + γd)p
+

α

30
√

2π
exp

[
− (d− 160)2

2× 302

]
+ c. (4)

In numerical fitting, we can first find the power law p with data of small d

region (d < 130), and then find the fitting coefficients through FindFit of

Mathematica.

(5) Now, we substitute the correlation function (4) into model equations, and run

the simulation to obtain the simulated correlation, which show good agreement

with experimental results (Figure 3(f)).

Table 2. Parameters for the correlation functions corresponding to dif-
ferent stages and strands from mouse embryo cells.

Para. sperm 2-cell 4-cell E6.5 E7.5 PGC E13.5

p 1.5 1 1 1 1 1

α 12 12 12 12 12 12
β 0.001 0.195 0.3 0.15 0.04 0.09

γ 0.0068 0.04 0.036 0.06 0.042 0.06

c 0.005 0.13 0.1 0.06 0.02 0.001

Para. oocyte 2-cell 4-cell E6.5 E7.5 PGC E13.5
p 1.5 1 1 1 1 1

α 12 12 12 12 12 12

β 0.07 0.0015 0.032 0.001 0.001 0.138
γ 0.0135 0.0092 0.0065 0.05 0.03 0.075

c 0.19 0.09 0.07 0.07 0.02 0.001

The above procedure gives the correlation function obtained from experimental

data. Substituting the obtained φ(d) into Eq. 2 and perform stochastic simulation,

we can nicely reproduce the correlation profile, in good agreement with experimental

data (Fig. 3f).

We note that both kinetic parameters in Table 1 and experimental data are in-

volved in the procedure of obtaining φ(d). The kinetic parameters usually affect the

mean methylation level, and may alter the coefficients in the correlation function

(detailed below). However, the formulation of the function φ(d) maintains for dif-

ferent sets of parameters. Here, as we intended to study the correlation, we always

fixed the kinetic parameters and examined the dependence of φ(d) on experimental

data. Nevertheless, the kinetic parameters are dependent on the enzyme activities,

and can be alter from cell to cell.
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Fig. 3. Procedure to obtain the correlation function φ(d). (a) Simulated Pearson correlations with

fixed value φ: φ = 0.3 (green), φ = 2 (blue), and φ = 30 (black). (b) Dependence of the Pearson

correlation on the value φ. Red curve shows the fitting with equation (3). (c) The approximation
correlation function calculated by φ = R−1

0 (C(d)). (d) The Pearson correlation obtained from

experimental data (red) and from model simulation with φ = R−1
0 (C(d)) (blue). (e) The correlation

function φ(d) = R−1
0 (C0(d)) (blue dots). Red curve shows the fitting with equation (4), with

parameters α = 12, p = 1, β = 0.195, γ = 0.036, c = 0.13. (f) Pearson correlations obtained from
experimental data (red) and from model simulation with φ(d) given by equation (4) (blue).

We apply the procedure to experimental data from different stages of mouse early

embryo. The function Eq. (4) is well fitting with different stages data, however the

coefficients can be varied (Table 2)(Figure 5). Moreover, we apply the procedure

to data from different tissues of mouse and human, and show small root-mean-

square deviations (RMSDs) between experimental correlation and model simulation

correlation (Appendix C, Table C1). These results imply that the correlation φ(d)

of form Eq. (4) can provide insights to the dynamics of DNA methylation.

2.4. Effects of kinetic parameters to the correlation function

To examine the effects of changing kinetic parameters to the correlation function, we

increase or decrease each kinetic parameter by 50% and examine the corresponding

changes in the coefficients in the correlation function. Default values of the kinetic

parameters are listed in Table 1, changes in the average methylation level and
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Fig. 4. Effects of changes in the kinetics parameters. We either increased (blue bars) or decreased

(yellow bars) each kinetic parameters by 50%, and examine the effects to the average methylation
level and to the coefficients in the correlation function Eq. 4. Here the dashed line at the upper

panel shows the methylation level with default parameters. Here β, γ, c represent the coefficients for

modified parameters, and β0, γ0, c0 represent the coefficients for default parameters, respectively.
We always set α = 12 in fitting the data. See the text for discussion. In the last three panels, the

absent bars (zero) mean no difference in the parameter values.

parameters in the correlation function in response to changes in kinetic parameters,

are given by Figure 4. Results show that changing the kinetic parameters can affect

the average methylation level, as well as the coefficients β, γ and c in the correlation

function given by Eq. 4 (here we fixed p = 1 and α = 12).

Usually, decreasing the methyl adding rates u+ and h+ decrease the methylation

level, and decreasing the methyl removing rates m− and h− increase the methylation

level. The average methylation level is not sensitive to changes in the correlative

parameters h+h, h+m, u+m, h−u, and m−u. These observations are confirmed by

Figure 4.

From Figure 4, the consequences of changing the kinetic parameters to the cor-

relation function parameters β, γ, and c are complicated. According to the pro-

cedures of obtaining the correlation function, the kinetic parameters mainly affect

the function R0(φ) and the first order approximation C0(d). However, these two

functions are obtained from model simulation, therefore the stochastic effects are

non-negligible in obtaining these correlation function parameters.

2.5. The parameter α in the correlation function

For the parameter α, we have seen from Table 2 that α = 12 can be applied to

different stage embryonic cells. This suggests that the correlation may be insensitive

with the parameter α. To test is hypothesis, we alter the value α to examine its

effect to the simulated correlations. We increase or decrease α by 50% in Eq. 4

and keep other parameters unchanged and run the model simulation. We repeat
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the simulations based on data of different embryonic cells, and found no obvious

variations in obtained correlations (Figure 5). The RMSD of between simulated

correlations and correlations obtained from experimental data are not sensitive with

the parameter α Table 3. We further apply the produce to various mouse and

human somatic tissue cells, the results give two catalogues cells, either α = 0.001 or

α = 4 (Appendix C, Table C1). These results suggest that the α can be a universal

parameter under certain conditions. Nevertheless, the mechanism waiting for further

investigation through models with more kinetics details of the regulation of DNA

methyaltion.
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Fig. 5. Correlations with α = 6.5 (decreased by %50, green), α = 12 (default, red) or α = 19.5

(increased by %50, blue) based on different stages of mouse embryonic cells. Other coefficients or

kinetic parameters were taken as default values as Table 1 and Table 2.

Table 3. The Root Mean Squared errors of correlations from sim-

ulations (α = 6.5, 12 or 19.5) relative to the correlations from ex-
perimental data of different stages or strains of mouse embryonic

cells.

α sperm 2-cell 4-cell E6.5 E7.5 PGC E13.5

6.5 0.209 0.13 0.156 0.203 0.214 0.269

12 0.211 0.129 0.147 0.197 0.215 0.26
19.5 0.209 0.129 0.146 0.194 0.207 0.254

α oocyte 2-cell 4-cell E6.5 E7.5 PGC E13.5

6.5 0.179 0.212 0.263 0.182 0.185 0.282
12 0.18 0.217 0.266 0.172 0.188 0.274

19.5 0.183 0.218 0.263 0.17 0.184 0.271

2.6. The parameter c in the correlation function

The constant tail represents a global impact of the correlation. We examine the av-

erage methylation level versus the constant tail for different stages in mouse embryo

cells and tissues. The results show a nonlinear dependence, except the stage of PGC

at E13.5 when the DNA methylation is extreme low due to active demethylation
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(Figure 6). Moreover, we test the data from human tissue cells, which reveal similar

form nonlinear dependences (Figure 6). These results suggest that the constant tail

in the correlation function is related to the global methylation level, however the

molecular mechanism is waiting for further investigation.
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Fig. 6. Experimental average methylation level versus constant tail c in the correlation function,

data obtained form mouse early embryo cells (paternal, red triangles; maternal, blue triangles)

and tissue (green squares), or human tissues (blue circles).

3. Discussion

We have established a kinetic model of DNA methylation, from which and combining

with experimental data we obtained the correlation function for the collaboration

effects of adjacent CpG sites methylation. The function φ(d) consists of three parts:

the power law decay, a bell-shape bulb, and a constant tail. Here we discuss the

biological sources of the three parts based on mathematical formulation.

It was proposed in 8 that collaboration between CpGs can be achieved by re-

cruitment of methylase or demethylase enzymes, which akin to the situation of

nucleosome modifications 19. Here, the power law decay suggests an alternative

mechanism, by which the enzymes perform random walk along DNA and self-

enhance dissociation. Accordingly, the enzyme concentration along the DNA can

be described with a diffusive equation of form

∂A

∂t
= D

∂2A

∂x2
− γAn, A(0) = A0. (5)

This equation gives the power-law decaying steady state solution of form A =

A0(x/ε+ 1)−2/(n−1) in the case of self-enhance dissociation (n > 1) 14. Biologically,

many experiments have revealed similar cohesin movement along DNA that play

crucial roles in gene expression 4,11. Nevertheless, evidences for the molecular based
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of the correlation, either recruitment or movement along DNA, are waiting to further

studies.

Interestingly, the bell-shape bulb is central at 160bp, right the distance of about

one nucleosome. The strength coefficient α = 12 is consistent for early mouse embryo

cells from sperm/oocyte to PGC E13.5 (Table 2), and the correlation is insensitive

with changes in the parameter α (Figure 5). Moreover, various mouse and human

somatic tissue cells give two catalogues cells with either small or large α values (Ap-

pendix C, Table C1). These observations suggest that the term α
30
√
2π

exp[ (d−160)
2

2×302 ]

may represent a collaborative effect between DNA methylation and nucleosome

modification, the collaboration strength α can be different for different type cells,

but is insensitive with the kinetic parameters. A type of nucleosome modification,

histone H3 lysine 9 dimethylation (H3K9me2), often show nucleation sites over-

lap to CGIs 2, and is involved in DNA methylation 13,15,7. Moreover, loss of DNA

methylation enhances the removal of H3K3me3 under transcriptional stimulus 9.

These evidences support the correlation between nucleosome modification and DNA

methylation, however the molecular mechanism is not yet clear.

Data analysis and model simulation have shown that the constant tail coefficient

c is related to the global methylation level. Biologically, the global methylation level

can be regulated by the enzyme activities that regulate DNA methylation. This

observation remains further confirmation and theoretical consideration from the

perspective of competition and collaboration of enzymes in methylation kinetics.

4. Conclusion

Inheritance of DNA methylation pattern is crucial during development. Here, driven

from experimental data, we establish the formulation of the collaboration of DNA

methylation. Applying the obtained function to a simple stochastic dynamic model

can well reproduce the experimental observed correlation. The function reveal that

there are three possible sources of the correlation: movement of enzymes along DNA,

collaboration between DNA methylation and nucleosome modification, and global

enzyme concentrations in the cell. Moreover, the collaboration strength between

DNA methylation and nucleosome modification is universal in our study of mouse

early embryo. These findings provide insightful understanding of the collaborations

in DNA methylation, and for the mechanisms of inheritance of DNA methylation

patterns. Nevertheless, despite the well support from experimental data, molecular

details of the correlation in DNA methylation proposed here are waiting for further

experimental studies.
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Appendix A. Correlation patterns are similar for different chromosomes
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in a cell

We calculated the correlation patterns of DNA methylation from the mouse

embryo MethylC-Seq data 17. We choose the experimental data from the parental

strain of mouse embryo at the 2-cell stage, and calculated the Pearson correlation

of methylation levels between two adjacent CpG sites from chromosome 1 to 18.

The relationship between the correlation and CpG distance are shown at Figure

1. From Figure 1, we can see that the correlation patterns are similar for different

chromosomes.
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Fig. A1. Pearson correlations, from chromosome 1 to 18, between DNA methylation levels of
adjacent CpG sites as function of the distance (in bp) between CpG sites. Data obtained from the

parental strain of mouse embryo at the 2-cell stage (P-2-cell-mouse, GEO: GSM1386021).

Appendix B. Correlation patterns are different at different embryo

stages

We calculated the correlation patterns of DNA methylation from different mouse

embryo stages (Figure 2). The correlation patterns of paternal and maternal chro-

mosomes are distinct to each other before E6.5, and tend to be consistent in latter

stages.

Appendix C. Correlation function for mouse and human tissues

Table C1 gives the coefficients and RMSD while we apply the procedure to experi-

mental data of mouse and human tissues. Experimental data were obtained from the

Whole Genome Bisulfite Sequencing (WGBS) data, GEO(ref. 5), and ENCODE(ref.
3). Fitting results are shown at Figure C1-C2.
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Fig. B1. Pearson correlations between DNA methylation levels at adjacent CpG sites from differ-

ent embryo stage of mouse (GEO: GSE56697). The correlation patterns of upper row are paternal
chromosomes, and the bottom row are maternal chromosomes.
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8. Jan O Haerter, Cecilia Lövkvist, Ian B Dodd, and Kim Sneppen. Collaboration be-
tween CpG sites is needed for stable somatic inheritance of DNA methylation states.
Nucleic Acids Res, 42(4):2235–2244, January 2014.

9. Nathaniel A Hathaway, Oliver Bell, Courtney Hodges, Erik L Miller, Dana S Neel,
and Gerald R Crabtree. Dynamics and Memory of Heterochromatin in Living Cells.
Cell, 149(7):1447–1460, June 2012.

10. Lan Jiang, Jing Zhang, Jing-Jing Wang, Lu Wang, Li Zhang, Guoqiang Li, Xiaodan

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/149815doi: bioRxiv preprint 

https://doi.org/10.1101/149815
http://creativecommons.org/licenses/by/4.0/


June 2, 2017 6:7 WSPC/INSTRUCTION FILE DNAMethy

Collaborations in DNA methylation 15

Yang, Xin Ma, Xin Sun, Jun Cai, Jun Zhang, Xingxu Huang, Miao Yu, Xuegeng
Wang, Feng Liu, Chung-I Wu, Chuan He, Bo Zhang, Weimin Ci, and Jiang Liu.
Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell,
153(4):773–784, May 2013.

11. Mai Kanke, Eri Tahara, Pim J Huis in’t Veld, and Tomoko Nishiyama. Cohesin acety-
lation and Wapl-Pds5 oppositely regulate translocation of cohesin along DNA. EMBO
J, 35(24):2686–2698, December 2016.

12. Julie A Law and Steven E Jacobsen. Establishing, maintaining and modifying DNA
methylation patterns in plants and animals. Nat Rev Genet, 11(3):204–220, February
2010.

13. Bernhard Lehnertz, Yoshihide Ueda, Alwin A H A Derijck, Ulrich Braunschweig,
Laura Perez-Burgos, Stefan Kubicek, Taiping Chen, En Li, Thomas Jenuwein, and
Antoine H F M Peters. Suv39h-Mediated Histone H3 Lysine 9 Methylation Directs
DNA Methylation to Major Satellite Repeats at Pericentric Heterochromatin. Current
Biology, 13(14):1192–1200, July 2003.

14. Jinzhi Lei, Wing-Cheong Lo, and Qing Nie. Mathematical models of morphogen
dynamics and growth control. Annals of Mathematical Sciences and Applications,
1(2):427–471, July 2016.

15. Toshinobu Nakamura, Yu-Jung Liu, Hiroyuki Nakashima, Hiroki Umehara, Kimiko
Inoue, Shogo Matoba, Makoto Tachibana, Atsuo Ogura, Yoichi Shinkai, and Toru
Nakano. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC
in early embryos. Nature, 486(7403):415–419, June 2012.

16. Stefanie Seisenberger, Julian R Peat, Timothy A Hore, Fátima Santos, Wendy Dean,
and Wolf Reik. Reprogramming DNA methylation in the mammalian life cycle:
building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci,
368(1609):20110330–20110330, January 2013.

17. Lu Wang, Jun Zhang, Jialei Duan, Xinxing Gao, Wei Zhu, Xingyu Lu, Lu Yang, Jing
Zhang, Guoqiang Li, Weimin Ci, Wei Li, Qi Zhou, Neel Aluru, Fuchou Tang, Chuan
He, Xingxu Huang, and Jiang Liu. Programming and inheritance of parental DNA
methylomes in mammals. Cell, 157(4):979–991, May 2014.

18. Hao Wu and Yi Zhang. Reversing DNA methylation: mechanisms, genomics, and
biological functions. Cell, 156(1-2):45–68, January 2014.

19. Hang Zhang, Xiao-Jun Tian, Abhishek Mukhopadhyay, K S Kim, and Jianhua Xing.
Statistical mechanics model for the dynamics of collective epigenetic histone modifi-
cation. Phys Rev Lett, 112(6):068101, February 2014.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/149815doi: bioRxiv preprint 

https://doi.org/10.1101/149815
http://creativecommons.org/licenses/by/4.0/

