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Summary 30 

Daptomycin is a lipopeptide antibiotic with activity against Gram-positive bacteria. We have 31 

shown previously that Staphylococcus aureus can survive daptomycin exposure by releasing 32 

membrane phospholipids that inactivate the antibiotic.  To determine whether other 33 

pathogens possess this defence mechanism, phospholipid release and daptomycin activity 34 

were measured after incubation of Staphylococcus epidermidis, Group A or B streptococci, 35 

Streptococcus gordonii or Enterococcus faecalis with the antibiotic. All bacteria released 36 

phospholipid in response to daptomycin, which resulted in at least partial inactivation of the 37 

antibiotic. However, E. faecalis showed the highest levels of lipid release and daptomycin 38 

inactivation. As shown previously for S. aureus, phospholipid release by E. faecalis was 39 

inhibited by the lipid biosynthesis inhibitor platensimycin. In conclusion, several pathogenic 40 

Gram-positive bacteria, including E. faecalis, inactivate daptomycin by releasing 41 

phospholipids, which may contribute to the failure of daptomycin to resolve infections caused 42 

by these pathogens. 43 
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Manuscript text 60 

Daptomycin is a lipopeptide antibiotic used as a last resort in the treatment of infections 61 

caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant 62 

enterococci (VRE) [1-3]. The use of daptomycin is becoming more common, with prescriptions 63 

increasing 72 % between 2012 and 2015 in the UK [4]. Daptomycin is the only lipopeptide 64 

antibiotic used clinically and functions in a similar manner to antimicrobial peptides [5]. The 65 

antibiotic inserts into the membrane of Gram-positive bacteria by targeting 66 

phosphatidylglycerol, where it forms oligomeric complexes [6-8]. The precise mechanism by 67 

which the antibiotic kills bacteria is unclear, but involves depolarisation of the bacterial 68 

membrane and inhibition of cell wall biosynthesis without causing lysis [8-13].  Although 69 

daptomycin resistance is rare, treatment failure occurs in up to 30 % of staphylococcal 70 

infections and 23 % of enterococcal infections [14,15]. Failure rates are highest in invasive 71 

infections such as bacteraemia or osteomyelitis, with rates of 24 % and 33 % respectively, 72 

resulting in poor patient prognoses [14]. Understanding the reasons for this treatment failure 73 

is crucial to improving the effectiveness of daptomycin treatment. 74 

We recently discovered that S. aureus has a transient defence mechanism against 75 

daptomycin, which contributed to treatment failure in a murine model of invasive infection 76 

[16]. In response to the antibiotic, phospholipids were released from the cell membrane 77 

which sequestered daptomycin and abrogated its bactericidal activity [16]. Phospholipid 78 

release occurred via an active process, which was blocked by the lipid biosynthesis inhibitor 79 

platensimycin [16,17]. In addition to daptomycin, phospholipid shedding also provided 80 

protection against the antimicrobial peptides nisin and melittin, suggesting a general defence 81 

against membrane-targeting antimicrobials [16]. 82 

It is currently unknown whether other Gram-positive bacteria release phospholipids 83 

in response to daptomycin, although membrane vesicles have been observed on the surface 84 

of E. faecalis cells exposed to daptomycin [18].  In addition, there is growing evidence that 85 

other Gram-positive pathogens, including Group A streptococci (GAS) and group B 86 

streptococci (GBS), release phospholipids from their surfaces in the form of extracellular 87 

vesicles [19,20]. Production of these membrane vesicles is increased in the presence of 88 

antimicrobials and, at least for GAS, are rich in phosphatidylglycerol, which was shown to be 89 

essential for daptomycin inactivation by S. aureus [16,19,21]. Therefore, we hypothesised 90 
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that phospholipid release is a common strategy amongst Gram-positive pathogens to resist 91 

membrane-acting antimicrobials.  92 

Given the increasing use of daptomycin to treat enterococcal infections, the primary 93 

aim of this work was to determine whether enterococci release membrane phospholipids that 94 

inactivate the antibiotic. We also examined pathogenic streptococci, and S. epidermidis, as 95 

the rising tide of antibiotic resistance may necessitate the use of daptomycin to tackle these 96 

bacteria in the future.  97 

We initially determined the daptomycin minimum inhibitory concentration (MIC) for 98 

a representative panel of Gram-positive pathogens: S. aureus SH1000 [22], S. epidermidis 99 

ATCC 12228 [23], GAS strain A40 [24]; GBS strains 515 [25] and COH1 [26]; S. gordonii strain 100 

Challis [27]; and E. faecalis strains JH2-2 [28] and OG1X [29]. Bacteria were grown in Muller 101 

Hinton Broth containing calcium (0.5 mM) and MIC determined by the broth microdilution 102 

approach [30]. The most susceptible species were the pathogenic GAS strain A40 (0.125 μg 103 

ml-1), and GBS strains 515 (0.5 μg ml-1) and COH1 (0.5 μg ml-1), whilst S. aureus (1 μg ml-1), S. 104 

epidermidis (1 μg ml-1), S. gordonii Challis (2-4 μg ml-1) E. faecalis strains OG1X (2 μg ml-1) and 105 

JH2-2 (4 μg ml-1) were the least susceptible.  106 

To determine whether E. faecalis or streptococci respond to daptomycin by releasing 107 

membrane phospholipids, we exposed streptococci and enterococci (108 CFU ml-1) to various 108 

supra-MIC concentrations of the antibiotic (5-40 μg ml-1) in Brain-Heart Infusion (0.5 mM 109 

CaCl2) broth at 37 oC under static conditions with 5% CO2 and measured bacterial survival, 110 

antibiotic activity and phospholipid release (Fig. 1c-h). Staphylococci were also exposed to 111 

daptomycin (5-40 μg ml-1), but in tryptic soy broth (TSB) containing 0.5 mM CaCl2 at 37 oC with 112 

shaking (180 RPM) (Fig. 1a,b). 113 

 For all strains, there was a dose-dependent decrease in survival after 8 h exposure to 114 

daptomycin, as assessed by CFU counts (Fig. 1a-h). However, as expected from the MIC data, 115 

survival of the two enterococcal strains, the staphylococci and S. gordonii was greater than 116 

survival of GAS or GBS strains at every concentration of daptomycin examined (Fig. 1a-h).  117 

Using the phospholipid-reactive fluorescent dye FM-4-64 (Life Technologies), we 118 

found that daptomycin triggered phospholipid release from all of the bacteria examined, 119 

albeit to differing levels. The quantity of phospholipid released was much greater for 120 

staphylococci than the other species examined (Fig. 1i-p). However, for both staphylococci 121 

and streptococci, the quantity of phosphlipid released was lowest when the daptomycin 122 
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concentration was highest, suggesting that the antibiotic may have killed the bacteria before 123 

they could release the lipid (Fig. 1i-p). By contrast, the enterococci released high levels of 124 

phospholipid in the presence of the highest concentrations of daptomycin (Fig. 1o,p). This 125 

may indicate different daptomycin concentration thresholds for triggering of phospholipid 126 

release.   127 

To determine whether phospholipid release resulted in the inactivation of 128 

daptomycin, the activity of the antibiotic in the culture supernatants was measured using a 129 

previously described zone of inhibition assay [16] (Fig. 1q-x). Daptomycin was inactivated to 130 

varying degrees by the bacteria, depending on the concentration of the antibiotic used. 131 

However, both staphylococcal strains, both enterococcal strains, S. gordonii and the GAS 132 

strain completely inactivated daptomycin at 5 µg ml-1, but GBS strains only partially 133 

inactivated the antibiotic at this concentration. At 10 µg ml-1 daptomycin, only the 134 

staphylococci, S. gordonii and the enterococci showed significant inactivation of the antibiotic 135 

and at a concentration of 20 µg ml-1 daptomycin, only staphylococci and enterococci 136 

inactivated the antibiotic to any significant degree, with a loss of 30-60% of antibiotic activity. 137 

However, despite triggering phospholipid release, at 40 µg ml-1 daptomycin there was 138 

relatively little (<20%) inactivation of the antibiotic by any of the bacteria tested.  Therefore, 139 

phospholipid release is finite and can be overcome with a sufficiently high dose of 140 

daptomycin. 141 

These data extend our previous finding that S. aureus releases phospholipid in 142 

response to daptomycin and that this results in inactivation of the antibiotic by revealing a 143 

very similar phenotype for S. epidermidis. These data also support the previous observation 144 

that E. faecalis releases phospholipid in response to daptomycin [18], and show that this 145 

phospholipid release correlates with daptomycin inactivation and bacterial survival. 146 

Streptococci, particularly S. gordonii, also released phospholipid and inactivated daptomycin, 147 

albeit less efficiently than E. faecalis. Therefore, daptomycin-induced phospholipid release 148 

appears to be a conserved mechanism across Gram-positive pathogens.  149 

Next, we wanted to explore whether the mechanism of phospholipid release and 150 

daptomycin inactivation by enterococci and streptococci was similar to that of S. aureus. 151 

Therefore, we undertook further experiments with E. faecalis, which was most efficient of the 152 

enterococci and streptococci at releasing phospholipid and inactivating daptomycin, and S. 153 

aureus, in which daptomycin-triggered phospholipid release has been well characterised [16].  154 
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In S. aureus, daptomycin-triggered phospholipid release is an active process that 155 

requires energy, as well as protein and lipid biosynthesis [16]. To determine whether 156 

phospholipid release by E. faecalis exposed to daptomycin was occurring via an active 157 

process, or simply a consequence of damage caused by the antibiotic, bacteria were exposed 158 

to the antibiotic in the presence or absence of a sub-inhibitory concentration of the 159 

phospholipid biosynthesis inhibitor platensimycin [17]. As described previously, exposure of 160 

S. aureus to daptomycin (10 µg ml-1) resulted in increased phospholipid in the supernatant 161 

but this was significantly reduced in the presence of platensimycin at half the MIC (0.25 μg 162 

ml-1) (Fig. 2a). Similarly, phospholipid was released upon exposure of E. faecalis to daptomycin 163 

(10 µg ml-1), but this was blocked when platensimycin was present at half the MIC (0.5 μg ml-164 

1) (Fig. 2b). The presence of platensimycin prevented S. aureus from inactivating daptomycin 165 

(Fig. 2c) and significantly reduced the ability of E. faecalis to inactivate daptomycin (Fig. 2d). 166 

This confirmed that daptomycin-induced phospholipid release by E. faecalis is an active 167 

process that requires de novo lipid biosynthesis and is not simply a consequence of membrane 168 

damage caused by the antibiotic. The ability of platensimycin to block phospholipid release 169 

and prevent daptomycin inactivation by E. faecalis also provided strong evidence that, as for 170 

S. aureus, daptomycin activity is blocked by the phospholipid in the supernatant. However, it 171 

was necessary to rule out an alternative hypothesis; that the loss daptomycin inactivation was 172 

simply due to binding of the antibiotic to the bacterial surface.  173 

To measure binding of daptomycin to bacteria, daptomycin was labelled with the 174 

Bodipy fluorophore (Life Technologies) as described previously [11,16]. As reported 175 

previously, a killing assay with E. facealis indicated that the labelled antibiotic had slightly 176 

altered bactericidal activity relative to unlabelled daptomycin [11] (Fig 3a). However, as 177 

described above for unlabelled antibiotic (Fig. 1q,x), the activity of the antibiotic decreased 178 

after incubation with E. faecalis or S. aureus (Fig. 3b), confirming that the Bodipy label does 179 

not significantly affect the interaction of the antibiotic with the bacteria studied.  180 

After 8 h incubation with Bodipy-daptomycin, bacterial cells were pelleted and the  181 

fluorescence of both the cells and the supernatants was measured separately using a Tecan 182 

microplate reader with excitation at 502 nm and emission at 510 nm. Antibiotic attachment 183 

to the E. faecalis cellular fraction was similar for both Bodipy-daptomycin concentrations 184 

examined, suggesting saturated binding to cells (Fig. 3c). However, most of the antibiotic 185 

remained in the supernatant (Fig. 3d). By comparison, Bodipy-daptomycin bound S. aureus 186 
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more strongly than E. faecalis, with higher levels of fluorescence associated with bacterial 187 

cells and a corresponding drop in the fluorescence of the supernatant (Fig. 3c,d). This 188 

difference in antibiotic binding may explain why the daptomycin MIC of the E. faecalis strains 189 

used here (2-4 µg ml-1) is higher than that of the S. aureus strain examined (1 µg ml-1) and why 190 

daptomycin triggers greater phospholipid release from staphylococci than enterococci.  191 

 Together, these data confirmed that the loss of daptomycin activity in E. faecalis 192 

cultures was not due to binding of the antibiotic to the bacterial surface or the plastic vessels 193 

used in the assays. However, as a final confirmation that phospholipid released from E. 194 

faecalis inactivated daptomycin, we exposed the bacterium to daptomycin (5 µg ml-1) to 195 

trigger phospholipid release, collected the cell-free culture supernatant and added a second 196 

dose of the antibiotic (5 µg ml-1). The culture supernatant containing the released 197 

phospholipids significantly reduced the activity of the second dose of daptomycin (by ~25%, 198 

Fig. 3e). Therefore, as described for S. aureus, the release of phospholipids by E. faecalis in 199 

response to daptomycin inactivates the antibiotic. The data described above also indicate that 200 

several species of streptococci release phospholipids in response to daptomycin, which 201 

inactivate the antibiotic, albeit to a lesser extent than E. faecalis or S. aureus.  202 

Streptococci and enterococci cause a range of serious diseases, including septicaemia 203 

and endocarditis, which can be treated by daptomycin, especially when the pathogen is multi-204 

drug resistant or the patient has a β-lactam allergy [1,31]. The presence of this defence 205 

mechanism in a variety of clinically-relevant Gram-positive bacteria indicates that it is 206 

conserved and could be a viable target to improve the effectiveness of daptomycin therapy 207 

against these pathogens.   208 

In this work, we focussed on daptomycin because it is a last resort antibiotic and is 209 

associated with high rates of treatment failure. However, whilst daptomycin use is increasing, 210 

it is very unlikely to have provided the selection pressure for the evolution of the phospholipid 211 

release defence mechanism described here and previously [16]. Since cationic antimicrobial 212 

peptides (cAMPs) act via a similar mechanism to daptomycin in targeting the Gram-positive 213 

cell membrane [5] we hypothesise that these host defence molecules have likely driven the 214 

evolution of phospholipid release as a defence mechanism. 215 

The discovery of phospholipid release in several Gram-positive pathogens expands our 216 

growing appreciation of broad-spectrum extracellular defence mechanisms that protect 217 

bacteria against antibiotics or host defences. For example, previous work has shown that the 218 
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production of outer-membrane vesicles by E. coli can protect against membrane-acting 219 

antimicrobials such as polymixin E and colistin [32], whilst another report revealed that 220 

lipochalins released by Burkholderia can sequester several different antibiotics [33]. These 221 

findings underline the complex nature of innate antibiotic resistance, but also provide 222 

opportunities for mechanistic insight and improved therapeutic approaches. For example, in 223 

this report and previously, we have shown that inhibition of phospholipid biosynthesis using 224 

platensimycin prevents the inactivation of daptomycin by both S. aureus and E. faecalis [16]. 225 

Although platensimycin has not entered clinical trials due to poor pharmacokinetic properties 226 

[17,34], other inhibitors of lipid biosynthesis are in clinical development [35]. Therefore, the 227 

use of daptomycin in combination with lipid biosynthesis inhibitors may provide an effective 228 

way of enhancing treatment outcomes compared to the lipopeptide antibiotic alone. 229 

In summary, we have demonstrated that Enterococcus faecalis releases phospholipids 230 

in response to daptomycin via an active mechanism requiring de novo lipid biosynthesis and 231 

that these phospholipids inactivate daptomycin. Pathogenic streptococci also appear to be 232 

capable of inactivating daptomycin by releasing phospholipids, indicating that this mechanism 233 

is conserved amongst Gram-positive pathogens.   234 

 235 

 236 

 237 

 238 
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Fig. 1. Streptococci and enterococci release phospholipid and inactivate daptomycin.                    389 

(a-h), percentage survival of bacteria after 8 h incubation in broth containing the indicated 390 

concentrations of daptomycin. (i-p) the concentration of phospholipid in culture supernatants 391 

of bacteria exposed to daptomycin as determined by reactivity with a fluorescent dye (RFU: 392 

relative fluorescence units). Note the different Y-axis scale for staphylococci vs other bacteria. 393 

(q-x) relative percentage of daptomycin activity remaining in culture supernatants of bacteria 394 

exposed to daptomycin for 8 h. The activity of daptomycin incubated in culture medium only 395 

for 8 h was taken to be 100 %. For all data, the mean of 4 independent experiments are shown, 396 

and error bars represent the standard deviation of the mean.  397 

 398 
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 424 

 425 

Fig. 2. De novo lipid biosynthesis is required for enterococcal inactivation of daptomycin.  426 

Phospholipid concentration (RFU) in culture supernatants from S. aureus (a) or E. faecalis 427 

OG1X (b) incubated for 8 h in media containing daptomycin (10 µg ml-1) only (dap) or both 428 

daptomycin and 0.5 X MIC platensimicin  (dap + pla). (c,d) relative % daptomycin activity in 429 

supernatants from cultures described in (a) and (b), respectively. Data in (a) and (b) were 430 

analysed using a one-way ANOVA with Tukey’s post-hoc test. Data in (c) and (d) were analysed 431 

by a Student’s t-test. *P=<0.05. 432 
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 444 

Fig. 3. Loss of daptomycin activity in supernatant is not due to antibiotic binding to bacteria. 445 

(a) percentage survival of E. faecalis OG1X incubated with various concentrations of
 

446 

daptomycin (dapt) or Bodipy-daptomycin (Bodipy-dapt) for 8 h. (b) relative percentage 447 

daptomycin activity in culture supernatants described in (a). (c) binding of Bodipy-daptomycin 448 

to S. aureus or E. faecalis OG1X after 8 h incubation in media containing the indicated 449 

concentration of the labelled antibiotic. (d) quantification of Bodipy-daptomycin (RFU) 450 

remaining in culture supernatants from S. aureus or E. faecalis OG1X, after 8 h incubation with 451 

Bodipy-daptomycin as described in (c) * indicates significantly different from 0 h time point. 452 

(e) relative percentage activity of daptomycin (5 μg ml-1) activity in TSB only (TSB + dapt), in 453 

the supernatant from E. faecalis incubated with daptomycin for 8 h (s/n) and after the addition 454 

of 5 μg ml-1 daptomycin to the supernatant from E. faecalis incubated with daptomycin for 8 455 

h (s/n + dapt). 456 

Data in (d) and (e) were analysed by a two-way ANOVA with Tukey’s post-hoc test. Graphs 457 

show the mean average and, where shown, error bars represent the standard deviation of the 458 

mean. For each panel *P=<0.05.  459 
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