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BAYESIAN COMPARISON OF CAUSAL INFERENCE STRATEGIES 2

Abstract

The precision of multisensory heading perception improves when visual and vestibular

cues arising from the same cause, namely motion of the observer through a stationary

environment, are integrated. Thus, in order to determine how the cues should be

processed, the brain must infer the causal relationship underlying the multisensory cues.

In heading perception, however, it is unclear whether observers follow the Bayesian

strategy, a simpler non-Bayesian heuristic, or even perform causal inference at all. We

developed an efficient and robust computational framework to perform Bayesian model

comparison of causal inference strategies, which incorporates a number of alternative

assumptions about the observers. With this framework, we investigated whether human

observers’ performance in an explicit cause attribution and an implicit heading

discrimination task can be modeled as a causal inference process. In the explicit

inference task, all subjects accounted for cue disparity when reporting judgments of

common cause, although not necessarily all in a Bayesian fashion. By contrast, but in

agreement with previous findings, data from the heading discrimination task only could

not rule out that several of the same observers were adopting a forced-fusion strategy,

whereby cues are integrated regardless of disparity. Only when we combined evidence

from both tasks we were able to rule out forced-fusion in the heading discrimination

task. Crucially, findings were robust across a number of variants of models and

analyses. Our results demonstrate that our proposed computational framework allows

researchers to ask complex questions within a rigorous Bayesian framework that

accounts for parameter and model uncertainty.

Keywords: Bayesian, model fitting, model comparison, causal inference,

multisensory, heading
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Bayesian Comparison of Explicit and Implicit Causal Inference Strategies in

Multisensory Heading Perception

Introduction

We constantly interact with people, animals and objects around us. As a

consequence, our central nervous system (CNS) receives sensory inputs from multiple

modalities (e.g., visual, auditory, vestibular, proprioceptive) that arise from the same or

different events in the world. For efficient interaction with the world, the CNS must5

decide whether the multisensory cues originated from the same cause and should be

integrated into a single percept or cues should be interpreted in isolation as they arose

from different causes (segregation). Despite the abundance of sensory information, we

typically are able to integrate relevant cues while ignoring irrelevant sensory input. It is

thus plausible that our brain infers the causal relationship between multisensory cues to10

determine if and how the cues should be integrated.

Bayesian causal inference – inference of the causal relationship between observed

cues, based on the inversion of the statistical model of the task – has been proposed as

the decision strategy adopted by the CNS to address the problem of integration vs.

segregation of sensory cues (Körding et al., 2007). Such a decision strategy has15

described human performance in spatial localization (Beierholm, Quartz, & Shams,

2009; Bejjanki, Knill, & Aslin, 2016; Körding et al., 2007; Odegaard & Shams, 2016;

Odegaard, Wozny, & Shams, 2015; Rohe & Noppeney, 2015a, 2015b; Sato, Toyoizumi,

& Aihara, 2007; Wozny, Beierholm, & Shams, 2010; Wozny & Shams, 2011), orientation

judgment van den Berg, Vogel, Josić, and Ma (2012), oddity detection (Hospedales &20

Vijayakumar, 2009), speech perception (Magnotti, Ma, & Beauchamp, 2013) and

time-interval perception (Sawai, Sato, & Aihara, 2012). Over the years, Bayesian

models have become more complex as they include more precise descriptions of the

sensory noise (de Winkel, Katliar, & Bülthoff, 2015, 2017; Odegaard et al., 2015) and

alternative Bayesian decision strategies (Rohe & Noppeney, 2015b; Wozny et al., 2010).25

However, it is still unknown whether observers fully implement Bayesian causal

inference, or merely an approximation that does not take into account the full statistical
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structure of the task. For example, the Bayes-optimal inference strategy ought to

incorporate sensory uncertainty into its decision rule. On the other hand, a suboptimal

heuristic decision rule may disregard sensory uncertainty (Ma, 2012; Qamar et al.,30

2013). Thus, the growing complexity of models and the need to consider alternative

hypotheses require an efficient computational framework to address these open

questions while avoiding trappings such as overfitting or lack of model identifiability

(Acerbi, Ma, & Vijayakumar, 2014).

Visuo-vestibular integration in heading perception presents an ideal case to35

characterize the details of the causal inference strategy in multisensory perception.

While a wealth of published studies have shown that integration of visual and vestibular

self-motion cues increases perceptual precision (Butler, Campos, Bülthoff, & Smith,

2011; Butler, Smith, Campos, & Bülthoff, 2010; de Winkel et al., 2013; de Winkel,

Weesie, Werkhoven, & Groen, 2010; Dokka, DeAngelis, & Angelaki, 2015; Fetsch,40

Turner, DeAngelis, & Angelaki, 2009; Gu, Angelaki, & DeAngelis, 2008; Prsa, Gale, &

Blanke, 2012), such an integration only makes sense if the two cues arise from the same

cause – that is movement of the observer through a stationary visual environment.

Despite the putative relevance of causal inference in heading perception, the inference

strategies that characterize visuo-vestibular integration in the presence of sensory45

conflict remain poorly understood (Dokka et al., 2015). For example, a recent study has

found that observers predominantly integrated visual and vestibular cues even in the

presence of large spatial discrepancies (de Winkel et al., 2015) – whereas a subsequent

work has presented evidence in favor of causal inference (de Winkel et al., 2017).

Furthermore, these studies did not vary cue reliability – a manipulation that is critical50

to test whether a Bayes-optimal inference strategy or a suboptimal approximation was

used (Ma, 2012).

Another aspect that can influence the choice of inference strategy is the type of

inference performed by the observer. In particular, de Winkel and colleagues (de Winkel

et al., 2015, 2017) asked subjects to indicate the perceived direction of inertial heading55

– an ‘implicit’ inference task as subjects implicitly assessed the causal relationship
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between visual and vestibular cues on their way to indicate the final (integrated or

segregated) heading percept. Even in the presence of spatial disparities as high as 90◦,

subjects fully integrated visual and vestibular cues (de Winkel et al., 2015; but see also

de Winkel et al., 2017). It is plausible that performing an explicit inference task, which60

forces subjects to indicate whether visual and vestibular cues arose from the same or

different events, may elicit different inference strategies, as previously reported in

category-based induction (Chen, Ross, & Murphy, 2014), multi-cue judgment (Evans,

2008), and sensorimotor decision-making (Trommershäuser, Maloney, & Landy, 2008).

While some studies have tested both explicit and implicit causal inference (Körding et65

al., 2007; Rohe & Noppeney, 2015b; Wallace et al., 2004), to our knowledge only one

previous study contemplated the possibility of different strategies between implicit and

explicit inference tasks (Rohe & Noppeney, 2015b), and a systematic comparison of

inference strategies in the two tasks has never been carried out within a larger

computational framework.70

Thus, the goal of this work is two-fold. First, we introduce a set of techniques to

perform robust, efficient Bayesian factorial model comparison of a variety of Bayesian

and non-Bayesian models of causal inference in multisensory perception. Factorial

comparison is a way to simultaneously test different orthogonal hypotheses about the

observers (Acerbi, Vijayakumar, & Wolpert, 2014; Acerbi, Wolpert, & Vijayakumar,75

2012; Rohe & Noppeney, 2015b; van den Berg, Awh, & Ma, 2014). Our approach is

fully Bayesian in that we consider both parameter and model uncertainty, improving

over previous analyses which used point estimates for the parameters and compared

individual models. A full account of uncertainty in both parameter and model space, by

marginalizing over parameters and model components, is particularly prudent when80

dealing with internal processes, such as decision strategies, which may have different

latent explanations. An analysis that disregards such uncertainty might produce

unwarranted conclusions about the internal processes that generated the observed

behavior (Acerbi, Ma, & Vijayakumar, 2014). Second, we demonstrate our methods by

quantitatively comparing the decision strategies underlying explicit and implicit causal85
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inference in visuo-vestibular heading perception within the framework of Bayesian

model comparison. We found that even though the study of explicit and implicit

inference in isolation might suggest different inference rules, a joint analysis that

combines all available evidence points to no difference between tasks, with subjects

performing some form of causal inference in both the explicit and implicit tasks that90

used identical experimental setups.

In sum, we demonstrate how state-of-the-art techniques for model building, fitting,

and comparison, combined with advanced analysis tools, allow us to ask nuanced

questions about the observer’s decision strategies in causal inference. Importantly, these

methods come with a number of diagnostics, sanity checks and a rigorous quantification95

of uncertainty that allow the experimenter to be explicit about the weight of evidence.

Results

Computational framework

We compiled a diverse set of computational techniques to perform robust Bayesian

comparison of models of causal inference (CI) in multisensory perception, which we dub100

the ‘Bayesian cookbook for CI in multisensory perception’, or herein simply ‘the

cookbook’. The main goal of the cookbook is to characterize observers’ decision

strategies underlying causal inference, and possibly other details thereof, within a

rigorous Bayesian framework that accounts for both parameter uncertainty and model

uncertainty. The cookbook is ‘doubly-Bayesian’ in that it affords a fully Bayesian105

analysis of observers who may or may not be performing Bayesian inference themselves

(Huszár, Noppeney, & Lengyel, 2010). Fully Bayesian model comparison is

computationally intensive, hence the cookbook is concerned with efficient algorithmic

solutions.

The cookbook comprises of: (a) techniques for fast evaluation of a large number of110

CI observer models; (b) procedures for model fitting via maximum likelihood, and

approximating the Bayesian posterior of the parameters via Markov Chain Monte Carlo

(MCMC); (c) state-of-the-art methods to compute model comparison metrics and
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perform factorial model selection. It is noteworthy that this cookbook is general and

can be applied to multisensory perception across sensory domains.115

Causal inference in heading perception

We demonstrate our framework taking as a case study the comparison of explicit

vs. implicit causal inference strategies in heading perception. In this section we briefly

summarize our methods. Extended details and description of the cookbook can be

found in the Methods and Appendix A, B, and C.120

Experiments. Human observers were presented with synchronous visual (svis)

and vestibular (svest) headings in the same direction (C = 1) or in different directions

(C = 2) separated by a directional disparity ∆ (Figure 1A). Mean stimulus direction

(−25◦,−20◦,−15◦,. . . ,25◦), cue disparity (0◦, ±5◦, ±10◦, ±20◦, and ±40◦), and visual

cue reliability cvis (coherence: high, medium and low) changed randomly on a125

trial-by-trial basis (Figure 1B). On each trial, non-zero disparity was either positive

(vestibular heading to the right of visual heading) or negative. Observers (n = 11) first

performed several sessions of an explicit causal inference task (‘unity judgment’), in

which they indicated if the visual and vestibular stimuli signaled heading in the same

direction (‘common cause’) or in different directions (‘different causes’). The same130

observers then participated in a number of sessions of the implicit causal inference task

(‘inertial left/right discrimination’) wherein they indicated if their perceived inertial

heading (vestibular) was to the left or right of straight forward. Both tasks consisted of

a binary classification (same/different or left/right) with identical experimental

apparatus and stimuli. No feedback was given to subjects about the correctness of their135

response. All observers also performed a number of practice trials and an initial session

of a ‘unisensory left/right discrimination’ task in which they reported heading direction

(left or right of straight forward) of visual or vestibular stimuli presented in isolation.

Theory. For each task we built a set of observer models by factorially

combining three model components that represent different assumptions about the140

observers: shape of sensory noise, type of prior over stimuli, and causal inference
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Figure 1 . Experiment layout. A: Subjects were presented with visual (svis) and
vestibular (svis) headings either in the same direction (C = 1) or in different directions
(C = 2). In different sessions, subjects were asked to judge whether stimuli had the
same cause (‘unity judgment’, explicit causal inference) or whether the vestibular
heading was to the left or right of straight forward (‘inertial discrimination’, implicit
causal inference). B: Distribution of stimuli used in the task. Mean stimulus direction
was drawn from a discrete uniform distribution (−25◦,−20◦,−15◦,. . . ,25◦). In 20% of
the trials, svis ≡ svest (‘same’ trials, C = 1); in the other 80% (‘different’, C = 2),
disparity was drawn from a discrete uniform distribution (±5◦, ±10◦, ±20◦, ±40◦),
which led to a correlated pattern of heading directions svis and svest. Visual cue
reliability cvis was also drawn randomly on each trial (high, medium and low).

strategy (Figure 2A).

In each trial of the explicit and implicit causal inference tasks, two stimuli are

presented: a visual heading svis with known reliability cvis ∈ {high,medium, low}, and a

vestibular heading svest. We assume that stimuli svis, svest induce noisy measurements145

xvis (resp., xvest) with conditionally independent distributions p(xvis|svis, cvis) and

p(xvest|svest). For any stimulus s we assume that the noise distribution is Gaussian

centered on s and with variance σ2(s). For each observer model we consider a variant in

which σ2 depends only on the stimulus modality and reliability (constant, ‘C’) and a

variant in which σ2(s) also depends on stimulus location, growing with heading150

eccentricity, that is with the distance from 0◦ (eccentricity-dependent, ‘X’; see Methods).

With a few notable exceptions (de Winkel et al., 2015, 2017; Odegaard et al., 2015),

stimulus-dependence in the noise has been generally ignored in previous work

(Beierholm et al., 2009; Körding et al., 2007; Rohe & Noppeney, 2015a, 2015b; Wozny

et al., 2010). The base noise magnitude is governed by model parameters σ0vest and155
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Figure 2 . Observer models. A: Observer models were built by factorially combining three
model components: Causal inference strategy, Shape of sensory noise, and Type of prior over
stimuli (see text for details). Note that Fusion (‘Fus’) models are instantianted in different
ways depending on the task. B: Graphical representation of the observer model. In the left
panel (C = 1), the visual (svis) and vestibular (svest) heading direction have a single, common
cause. In the right panel (C = 2), svis and svest have separate sources, although not
necessarily statistically independent. The observer has access to noisy sensory measurements
xvis, xvest, and knows the visual reliability level of the trial cvis. The observer is either asked
to infer the causal structure of the task, C

?= 1 (unity judgment, explicit inference), or
whether the vestibular stimulus is rightward of straight ahead, svest

?
> 0 (inertial

discrimination, implicit inference). Model factors affect different stages of the observer model:
how the observer decides to combine the two causal scenarios (causal inference strategy); the
prior over heading directions pprior(svis, svest|C) (type of prior over stimuli); and shape of noisy
measurements distributions p(xvis|svis, cvis) and p(xvest|svest) (shape of sensory noise; note that
this model factor affects equally both the generative model, that is how noisy measurements
are generated, and the observer model, that is the observer’s beliefs about such noise). C:
Example decision boundaries for the Bay-X-E model (for the three reliability levels), and for
the Fixmodel, for a representative observer. The observer would report ‘unity’ when the noisy
measurements xvis, xvest fall within the boundaries. Note that the Bayesian decision
boundaries expand with larger noise. Nonlinearities in the Bayesian boundaries are due to the
interaction between eccentricity-dependence of the noise and the prior. In particular, wiggles
are due to the discrete empirical prior.
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σ0vis(cvis), where the latter is one parameter per visual reliability level. The

eccentricity-dependent noise model has additional parameters wvest and wvis which

govern the growth of noise with heading eccentricity (see Methods and Appendix A for

details). We assume that the noise distribution equally affects both the generative

model and the observer’s decision model, that is, observers have an approximately160

correct model of their own sensory noise (Alais & Burr, 2004; Ernst & Banks, 2002).

We assume that the observer considers two causal scenarios (Körding et al., 2007):

either there is a single common heading direction (C = 1) or the two stimuli correspond

to distinct headings (C = 2) (Figure 2B). If C = 1, the observer believes that the

measurements are generated from the same underlying source s with prior distribution165

pprior(s). If C = 2, stimuli are believed to be distinct, but not necessarily statistically

independent, with prior distribution pprior(svis, svest). For the type of these priors, we

consider an empirical (‘E’) observer whose priors correspond to an approximation of the

discrete, correlated distribution of stimuli in the task (as per Figure 1B); and an

independent (‘I’) observer who uses a common and independent uni-dimensional prior170

for the two stimuli. Parameter σprior represents the SD of each independent prior (for ‘I’

priors), or of the prior over mean stimulus direction (for ‘E’ priors); whereas ∆prior

governs the SD of the prior over disparity (‘E’ priors only). See Methods for details.

We assume that observers are Bayesian in dealing with each causal scenario (C = 1

or C = 2), but may follow different strategies for weighting and combining information175

from the two causal hypotheses. Specifically, we consider three families of causal

inference strategies. The Bayesian (‘Bay’) strategy computes the posterior probability

of each causal scenario Pr(C|xvis, xvest, cvis) based on all information available in the

trial. The fixed-criterion (‘Fix’) strategy decides based on a fixed threshold of disparity

between the noisy visual and vestibular measurements, disregarding reliability and180

other statistics of the stimuli. Finally, the fusion (‘Fus’) strategy disregards any location

information, either always combining cues, or combining them with some probability

(depending on whether the task involves implicit or explicit inference).

In the explicit inference task, the Bayesian (‘Bay’) observer reports a common
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cause if its posterior probability is greater than 0.5, Pr(C = 1|xvis, xvest, cvis) > 0.5. The185

prior probability of common cause, pc ≡ Pr(C = 1), is a free parameter of the model.

The fixed-criterion (‘Fix’) observer reports a common cause whenever the two noisy

measurements are closer than a fixed distance κc, that is |xvis − xvest| < κc, where the

criterion κc is a free parameter that does not depend on stimulus reliability (Qamar et

al., 2013). The fixed-criterion decision rule differs fundamentally from the Bayesian one190

in that it does not take cue reliability and other stimulus statistics into account

(although noise will still affect behavior). As an example, Figure 2C shows the decision

boundaries for the Bayesian (constant noise, empirical prior) and fixed-criterion rule for

a representative observer. Finally, as a variant of the ‘fusion’ strategy we consider an

observer that does not perform CI at all, but simply reports unity with probability195

η(cvis) regardless of stimulus disparity, where ηlow, ηmed, ηhigh are the only parameters of

the model (stochastic fusion, ‘SFu’). This variant generalizes a trivial ‘forced fusion’

strategy (η ≡ 1) that would always report a common cause in the explicit inference.

For the implicit inference task, the observer first computes the posterior

probability of rightward vestibular motion, Pr(svest > 0◦|xvest, xvis, cvis, C = k) for the200

two causal scenarios, k = 1, 2. The Bayesian (‘Bay’) observer then reports ‘right’ if the

posterior probability of rightward vestibular heading, averaged over the Bayesian

posterior over causal structures, is greater than 0.5. The fixed-criterion (‘Fix’) observer

reports ‘right’ if Pr(svest > 0◦|xvest, xvis, cvis, C = kfix) > 0.5, where kfix = 1 if

|xvis − xvest| < κc, and kfix = 2 otherwise. Finally, for the Fusion strategy we consider205

here the forced fusion (‘FFu’) observer, for which C ≡ 1. The forced fusion observer is

equivalent to a Bayesian observer with pc ≡ 1, and to a fixed-criterion observer for

κc →∞.

Observers also performed a unisensory left/right heading discrimination task, in

which either a visual or vestibular heading was presented on each trial. In this case210

observers were modeled as standard Bayesian observers that respond ‘right’ if

Pr(svis > 0◦|xvis, cvis) > 0.5 for visual trials, and if Pr(svest > 0◦|xvest) > 0.5 for

vestibular trials. These data were used to constrain the joint model fits (see below).

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/150052doi: bioRxiv preprint 

https://doi.org/10.1101/150052
http://creativecommons.org/licenses/by-nc-nd/4.0/


BAYESIAN COMPARISON OF CAUSAL INFERENCE STRATEGIES 12

For all observer models and tasks (except stochastic fusion in the explicit task),

we considered a lapse probability 0 ≤ λ ≤ 1 of the observer giving a random response.215

Finally, we note that the Bayesian observer models considered in our main analysis

perform Bayesian model averaging (the proper Bayesian strategy). At the end of the

Results section we will also consider a ‘probability matching’ suboptimal Bayesian

observer (Wozny et al., 2010).

Analysis strategy. Our analysis strategy consisted of first examining subjects’220

behavior separately in the explicit and implicit tasks via model fitting and comparison.

We then compared the model fits across tasks to ensure that model parameters were

broadly compatible, allowing us to aggregate data from different tasks without changing

the structure of the models. Finally, we re-analyzed observers’ performance by jointly

fitting data from all three tasks (explicit causal inference, implicit causal inference, and225

unisensory heading discrimination), thereby combining all available evidence to

characterize subjects’ decision making processes.

Given the large number of models and distinct datasets involved, we coded each

model using efficient computational techniques at each step (see Methods for details).

We fitted our models to the data first via maximum likelihood estimation (MLE),230

and then via Bayesian estimation of the posterior over parameters using Markov Chain

Monte Carlo (MCMC). Posteriors are an improvement over point estimates in that they

allow us to incorporate uncertainty over individual subjects’ model parameters in our

analysis, and afford computation of more accurate comparison metrics (see below).

We computed for each task, subject, and model the leave-one-out cross-validation235

score (LOO) directly estimated from the MCMC output (Vehtari, Gelman, & Gabry,

2015; reported in Appendix D). LOO has several advantages over other model selection

metrics in that it takes parameter uncertainty into account and provides a more

accurate measure of predictive performance (Vehtari, Gelman, & Gabry, 2016; see

Discussion). We combined model evidence (LOO scores) from different subjects and240

models using a hierarchical Bayesian approach for group studies (Stephan, Penny,

Daunizeau, Moran, & Friston, 2009). For each model component within the model
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factors of interest (noise, prior, and causal inference strategy), we reported as the main

summary statistic of the analysis the protected exceedence probability ϕ̃, that is the

(posterior) probability of a model component being the most likely component, above245

and beyond chance (Rigoux, Stephan, Friston, & Daunizeau, 2014). As a test of

robustness, we also computed additional model comparison metrics: the corrected

Akaike’s information criterion (AICc), the Bayesian information criterion (BIC), and an

estimate of the log marginal likelihood (LML). While we prefer LOO as the main metric

(see Discussion), we verified that the results of the model comparison were largely250

invariant of the choice of comparison metric.

Finally, for each model we estimated the absolute goodness of fit as the fraction of

information gain above chance (where 0% is chance and 100% is the estimated intrinsic

variability of the data, that is the entropy; Shen & Ma, 2016).

Explicit inference task255

We examined how subjects perceived the causal relationship of synchronous visual

and vestibular headings as a function of disparity (svest − svis, nine levels) and visual

reliability level (high, medium, low; Figure 3A). Common cause reports were more

frequent near zero disparities than for well-separated stimuli (Repeated-measures

ANOVA with Greenhouse-Geisser correction; F(1.82,18.17) = 76.0, ε = 0.23, p < 10−4,260

η2
p = 0.88). This means that observers neither performed complete integration (always

reporting a common cause) nor complete segregation (never reporting a common cause).

Common-cause reports were not affected by visual cue reliability alone

(F(1.23,12.33) = 1.84, ε = 0.62, p = .2, η2
p = 0.16), but were modulated by an interaction of

visual reliability and disparity (F(7.44,74.44) = 7.38, ε = 0.47, p < 10−4, η2
p = 0.42). Thus,265

observers’ performance was affected by both cue disparity as well as visual cue

reliability when explicitly reporting about the causal relationship between visual and

vestibular cues. However, this does not necessarily mean that the subjects’ causal

inference strategy took visual cue reliability into account. Changes in sensory noise may

affect measured behavior even if the observer’s decision rule ignores such changes (Ma,270
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2012); a quantitative model comparison is needed to probe this question.

B

A C
Bay-X-E Bay-C-I

Fix-C SFu

Figure 3 . Explicit inference. Results of the explicit inference (unity judgment) task.
A: Proportion of ‘unity’ responses, as a function of stimulus disparity (difference
between vestibular and visual heading direction), and for different levels of visual cue
reliability. Bars are ±1 SEM across subjects. Unity judgments are modulated by
stimulus disparity and visual cue reliability. B: Protected exceedance probability ϕ̃ and
estimated posterior frequency (mean ± SD) of distinct model components for each
model factor. Each factor also displays the Bayesian omnibus risk (BOR). C: Model fits
of several models of interest (see text for details). Shaded areas are ±1 SEM of model
predictions across subjects. Numbers on top right of each panel report the absolute
goodness of fit.

We compared a subset of models from the full factorial comparison (Figure 2A),

since some models are equivalent when restricted to the explicit inference task. In

particular, here fixed-criterion models are not influenced by the ‘prior’ factor, and the

(stochastic) fusion model is not affected by sensory noise or prior, thus reducing the list275

of models to seven: Bay-C-E, Bay-C-I, Bay-X-E, Bay-X-I, Fix-C, Fix-X, SFu.

To assess the evidence for distinct determinants of subjects’ behavior, we

combined LOO scores from individual subjects and models with a hierarchical Bayesian

approach (Stephan et al., 2009; Figure 3B). Since we are investigating model factors

that comprise of an unequal number of models, we reweighted the prior over models280

such that distinct components within each model factor had equal prior probability

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/150052doi: bioRxiv preprint 

https://doi.org/10.1101/150052
http://creativecommons.org/licenses/by-nc-nd/4.0/


BAYESIAN COMPARISON OF CAUSAL INFERENCE STRATEGIES 15

(Fixmodels had 2× weight, and SFu4×). In Figure 3B we report the protected

exceedance probabilities ϕ̃ and, for reference, the posterior model frequencies they are

based on, and the Bayesian omnibus risk (BOR), which is the estimated probability

that the observed differences in factor frequencies may be due to chance (Rigoux et al.,285

2014). We found that the most likely factor of causal inference was the Bayesian model

(ϕ̃ = 0.78), followed by fixed-criterion (ϕ̃ = 0.18) and probabilistic fusion (ϕ̃ = 0.04).

That is, fusion was ∼ 24 times less likely to be the most representative model than any

form of causal inference combined, which is strong evidence against fusion, and in

agreement with our model-free analysis. The Bayesian strategy was ∼ 3.5 times more290

likely than the others, which is positive but not strong evidence (Kass & Raftery, 1995).

Conversely, the explicit inference data do not allow us to draw conclusions about noise

models (constant vs. eccentric) or priors (empirical vs. independent), as we found that

all factor components are about equally likely (ϕ̃ ∼ 0.5).

At the level of specific models – as opposed to aggregate model factors –, we found295

that the probability of being the most likely model was almost equally divided between

fixed-criterion (C-I) and Bayesian (either X-E or C-I). All these models yielded

reasonable fits (Figure 3C), which captured a large fraction of the noise in the data

(absolute goodness of fit ≈ 76%± 3%; see Methods); a large improvement over a

constant-probability model, which had a goodness of fit of 14± 5%. For comparison, we300

also show in Figure 3C the stochastic fusion model, which had a goodness of fit of

17%± 5%. Visually, the Fixmodel in Figure 3C seems to fit better the group data, but

we found that this is an artifact of projecting the data on the disparity axis. Disparity

is the only relevant dimension for the Fixmodel; whereas Baymodels fits the data along

all dimensions. The visual superiority of the Fixmodel wanes when the data are305

visualized in their entirety (see Appendix E).

We verified robustness of our findings by performing the same hierarchical analysis

with different model comparison metrics. All metrics were in agreement with respect to

the Bayesian causal inference strategy as the most likely, and the same three models

being most probable (although possibly with different ranking). BIC and marginal310
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likelihood differed from LOO and AICc mainly in that they reported a larger

probability for the constant vs. eccentricity-dependent noise (probability ratio ∼ 4.6,

which is positive but not strong evidence).

These results combined provide strong evidence that subjects in the explicit

inference task took into account some elements of the statistical structure of the trial315

(disparity, and possibly cue reliability) to report unity judgments, consistent with

causal inference, potentially in a Bayesian manner. From these data, it is unclear

whether observers took into account the empirical distribution of stimuli, and whether

their behavior was affected by eccentricity-dependence in the sensory noise.

Implicit inference task320

We examined the bias in the reported direction of inertial heading computed as

(minus) the point of subjective equality for left/rightward heading choices (L/R PSE),

for each visual heading and visual cue reliability (Figure 4A). A shift in the vestibular

L/R PSE away from zero represents a bias of the estimated inertial heading in the

opposite direction. The bias was significantly affected by visual heading325

(Repeated-measures ANOVA; F(0.71,7.08) = 19.67, ε = 0.07, p = .004, η2
p = 0.66). We

found no main effect of visual cue reliability alone (F(0.85,8.54) = 0.51, ε = 0.43, p = .47,

η2
p = 0.05), but there was a significant interaction of visual cue reliability and heading

(F(2.93,29.26) = 7.36, ε = 0.15, p < 10−3, η2
p = 0.42). These data suggest that subjects’

perception of vestibular headings was modulated by visual cue reliability and visual330

stimulus, in agreement with previous work in visual-auditory localization (Rohe &

Noppeney, 2015b). However, quantitative model comparison is required to understand

the mechanism in detail since different processes could lead to similar patterns of

observed behavior.

We performed a factorial comparison with all models in Figure 2A. In this case,335

factorial model comparison via LOO was unable to uniquely identify the causal

inference strategy adopted by observers (Figure 4B). Forced fusion was slightly favored

(ϕ̃ ∼ 0.48), followed by Bayes (ϕ̃ ∼ 0.27) and fixed-criterion (ϕ̃ ∼ 0.25), suggesting that
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Bias = -PSE

B

A C
FFu-X-E Bay-X-E

Fix-C-E Bay-C-E

Figure 4 . Implicit inference. Results of the implicit inference (left/right inertial
discrimination) task. A: Vestibular bias as a function of co-presented visual heading
direction svis, at different levels of visual reliability. Bars are ±1 SEM across subjects.
The inset shows a cartoon of how the vestibular bias is computed as minus the point of
subjective equality of the psychometric curves of left/right responses (L/R PSE) for
vestibular stimuli svest, for a representative subject and for a fixed value of svis. The
vestibular bias is strongly modulated by svis and its reliability. B: Protected exceedance
probability ϕ̃ and estimated posterior frequency (mean ± SD) of distinct model
components for each model factor. Each factor also displays the Bayesian omnibus risk
(BOR). C: Model fits of several models of interests (see text for details). Shaded areas
are ±1 SEM of model predictions across subjects. Numbers on top right of each panel
report the absolute goodness of fit.

all strategies were similar to forced fusion. Conversely, eccentricity-dependent noise was

found to be more likely than constant noise (ratio ∼ 5.7), which is positive but not340

strong evidence, and empirical priors were marginally more likely than independent

priors (∼ 2.1). The estimated Bayesian omnibus risk was high (BOR ≥ 0.29), hinting at

a large degree of similarity within all model factors such that observed differences could

have arisen by chance.

All metrics generally agreed on the lack of evidence in favor of any specific345

inference strategy (with AICc and BIC tending to marginally favor fixed-criterion

instead of fusion), and on empirical priors being more likely. As a notable difference,

marginal likelihood and BIC reversed the result about noise models, favoring constant
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noise models over eccentricity-dependent ones.

In terms of individual models, the most likely models according to LOO were, in350

order, forced fusion (X-E), Bayesian (X-E), and fixed-criterion (C-E). However, other

metrics also favored other models; for example, Bayesian (C-E) was most likely

according to the marginal likelihood. All these models obtained similarly good fits to

individual data (Figure 4C; absolute goodness of fit ≈ 97%). For reference, a model

that responds ‘rightward motion’ with constant probability performed about at chance355

(goodness of fit ≈ 0.3± 0.1%).

In sum, our analysis shows that the implicit inference data alone are largely

inconclusive, possibly because almost all models behave similarly to forced fusion. To

further explore our results, we examined the posterior distribution of the prior

probability of common cause parameter pc across Bayesian models, and of the criterion360

κc for fixed-criterion models (Figure 5, bottom left panels). In both cases we found a

broad distribution of parameters, with only a mild accumulation towards ‘forced fusion’

values (pc = 1 or κc & 90◦), suggesting that subjects were not completely performing

forced fusion. Thus, it is possible that by constraining the inference with additional

data we would be able to draw more defined conclusions.365

Joint Model Fits

Data from the explicit and implicit causal inference tasks, when analyzed

separately, afforded only weak conclusions about subjects’ behavior. The natural next

step is to combine datasets from the two tasks along with the data from the unisensory

heading discrimination task in order to better constrain the model fits.370

Before performing such joint fit, we verified whether there was evidence that model

parameters changed substantially across tasks, in which case we might have had to

change the structure of the models (e.g., by introducing a subset of distinct parameters

for different tasks; Acerbi, Vijayakumar, & Wolpert, 2014). For each model parameter,

we computed the across-tasks compatibility probability Cp (Figure 5), which is the375

(posterior) probability that subjects were most likely to have the same parameter values
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Figure 5 . Posteriors over model parameters. Each panel shows the marginal
posterior distributions over a single parameter for each subject and task. Each line is an
individual subject’s posterior (thick line: interquartile range; light line: 95% credible
interval); different colors correspond to different tasks. For each subject and task,
posteriors are marginalized over models according to their posterior probability (see
Methods). For each parameter we report the across-tasks compatibility probability Cp,
that is the (posterior) probability that subjects were best described by the assumption
that parameter values were the same across separate tasks, above and beyond chance.
The first two rows of parameters compute compatibility across all three tasks, whereas
in the last row compatibility only includes the bisensory tasks (bisensory inertial
discrimination and unity judgment), as these parameters are irrelevant for the
unisensory task.

across tasks, as opposed to different parameters, above and beyond chance (see Methods

for details). We found at most mild evidence towards difference of parameters across the

three tasks, but no strong evidence (all Cp > .05). Therefore, we proceeded in jointly

fitting the data with the default assumption that parameters were shared across tasks.380

For the joint fits there are nine possible models for the CI strategy (three explicit

inference × three implicit inference strategies). However, we considered only a subset of

plausible combinations, to avoid ‘model overfitting’ (see Discussion). First, we

disregarded the stochastic fusion strategy for the explicit task, since this strategy was

strongly rejected by the explicit task data alone. Second, if subjects performed some385

form of CI (Bayesian or fixed-criterion) in both tasks, we forced it to be the same. This

reduces the model space for the causal inference strategy to four components: Bay/Bay,
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Fix/Fix, Bay/FFu, Fix/FFu(explicit/implicit task). Combined with the prior and

sensory noise factors as per Figure 2A, this leads to sixteen models.

Factorial model comparison via LOO found that the most likely causal inference390

strategy was fixed-criterion (ϕ̃ = 0.79), followed by Bayesian (ϕ̃ = 0.13), and then by

forced fusion in the implicit task (ϕ̃ = 0.05 paired with Bayesian explicit inference,

ϕ̃ = 0.03 paired with fixed-criterion explicit inference; Figure 6A). This is positive

evidence that subjects were performing some form of causal inference also in the

implicit task, as opposed to mere forced fusion (ratio ∼ 11.4). Moreover, we found395

strong evidence for eccentricity-dependent over constant noise (ϕ̃ > 0.99, ratio ∼ 132.7).

Instead, the joint data were still inconclusive about the prior adopted by the subjects,

with only marginal evidence for the empirical prior over the independent prior (∼ 2.9).

In terms of specific models, the most likely model was fixed-criterion (X-E),

followed by Bayesian (X-E), and explicit Bayesian / implicit forced fusion (both X-I and400

X-E). The best models gave a good description of the individual joint data, with an

absolute goodness of fit of ≈ 91%± 1% (Figure 6B).

Examination of the subjects’ posteriors over parameters for the joint fits (Table 1

and Figure 5, black lines) showed reasonable results. The base visual noise parameters

were generally monotonically increasing with decreasing visual cue reliability; the405

vestibular base noise was roughly of the same magnitude as the medium visual cue

noise (as per experiment design); both visual and vestibular noise increased mildly with

the distance from straight ahead; subjects had a small lapse probability. For Bayesian

models, pc was substantially larger than the true value, 0.20 (t-test t(10) = 10.8,

p < 10−4, d = 3.25), suggesting that observers generally thought that heading directions410

had a higher a priori chance to be the same. Nonetheless, for all but one subject pc was

far from 1, suggesting that subjects were not performing forced fusion either. An

analogous result holds for the fixed criterion κc, which was smaller than the largest

disparity between heading directions. We found that prior parameters σprior and ∆prior

had a lesser impact on the models, and their exact values were less crucial, with415

generally wide posteriors.
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BOR
= 0.01

B

A

C

Fix-X-E Bay-X-E Bay/FFu-X-E Bay/FFu-X-I

Figure 6 . Joint fits. Results of the joint fits across tasks. A: Protected exceedance
probability ϕ̃ and estimated posterior frequency (mean ± SD) of distinct model
components for each model factor. Each factor also displays the Bayesian omnibus risk
(BOR). B: Joint model fits of the explicit inference (unity judgment) task, for different
models of interest. Each panel shows the proportion of ‘unity’ responses, as a function
of stimulus disparity and for different levels of visual reliability. Bars are ±1 SEM of
data across subjects. Shaded areas are ±1 SEM of model predictions across subjects.
Numbers on top right of each panel report the absolute goodness of fit across all tasks.
C: Joint model fits of the implicit inference task, for the same models of panel B.
Panels show vestibular bias as a function of co-presented visual heading direction svis,
and for different levels of visual reliability. Bars are ±1 SEM of data across subjects.
Shaded areas are ±1 SEM of model predictions across subjects.

Finally, we verified that our results did not depend on the chosen comparison

metric. Remarkably, the findings regarding causal inference factors were quantitatively

the same for all metrics, demonstrating robustness of our main result. Marginal

likelihood and BIC differed from LOO and AICc in that they only marginally favored420

eccentricity-dependent noise models, showing that conclusions over the noise model may

depend on the specific choice of metric. All metrics agreed in marginally preferring the

empirical prior over the independent prior.

In conclusion, when combining evidence from all available data, our model

comparison shows that subjects were most likely performing some form of causal425

inference instead of forced fusion, for both the explicit and the implicit CI tasks. In
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Table 1
Joint fit parameters.

Parameter Description Posterior mean Allowed range

All tasks
σ0vest Vestibular base noise 6.49◦ ± 0.90◦ [0.5◦, 80◦]†
σ0vis(chigh) Visual base noise (high coherence) 4.08◦ ± 0.54◦ [0.5◦, 80◦]†
σ0vis(cmed) Visual base noise (medium coherence) 6.32◦ ± 1.00◦ [0.5◦, 80◦]†
σ0vis(clow) Visual base noise (low coherence) 11.57◦ ± 2.67◦ [0.5◦, 80◦]†
wvest Vestibular noise eccentricity 0.04± 0.01 [0, 1]
wvis Visual noise eccentricity 0.07± 0.02 [0, 1]
λ Lapse rate 0.01± 0.01 [0, 1]
Bisensory only
pc Prior of common cause (Baymodels) 0.56± 0.05 [0, 1]
κc Fixed criterion (Fixmodels) 26.50◦ ± 3.52◦ [0.25◦, 180◦]†
σprior Central prior width 49.77◦ ± 12.08◦ [1◦, 120◦]†
∆prior Disparity prior width 23.51◦ ± 6.39◦ [1◦, 120◦]†

Posterior means of parameters in the joint fit, marginalized over models according to
each subject’s posterior model probability, and averaged across subjects (± SEM). For
reference, we also report the parameter range used for the optimization and MCMC
sampling. † These parameters were transformed and fitted in log space.

particular, we find that a fixed-criterion, non-probabilistic decision rule (i.e., one that

does not take uncertainty into account) describes the joint data better than the

Bayesian strategy, although with some caveats (see Discussion).

Sensitivity analysis and model validation430

Performing a factorial comparison, like any other statistical analysis, requires a

number of somewhat arbitrary choices, loosely motivated by previous studies,

theoretical considerations, or a preliminary investigation of the data (being aware of the

‘garden of forking paths’; Gelman & Loken, 2013). As good practice, we want to check

that our main findings are robust to changes in the setup of the analysis, or be able to435

report discrepancies.

We take as our main result the protected exceedance probabilties ϕ̃ of the model

factors in the joint analysis (Figure 6A, reproduced in Figure 7, top row). In the

following, we examine whether this finding holds up to several manipulations of the

analysis framework.440

A first check consists of testing different model comparison metrics. In the
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CI strategy Sensory noise Prior

Bayesian probability matching
(replaced)

Bayesian probability matching
(subfactor)

Figure 7 . Sensitivity analysis of factorial model comparison. Protected
exceedance probability ϕ̃ of distinct model components for each model factor in the
joint fits. Each panel also shows the estimated posterior frequency (mean ± SD) of
distinct model components, and the Bayesian omnibus risk (BOR). Each row represents
a variant of the factorial comparison. 1st row: Main analysis (as per Figure 6A). 2nd
row: Uses marginal likelihood as model comparison metric. 3rd row: Uses hyperprior
α0 = 1 for the frequencies over models in the population (instead of a flat prior over
model factors). 4th row: Uses ‘probability matching’ strategy for the Bayesian CI
model (replacing model averaging). 5th row: Includes probability matching as a
sub-factor of the Bayesian CI family (in addition to model averaging).

previous sections, we have reported results for different metrics, finding in general only

minor differences from our results obtained with LOO. As an example, we show here

the model comparison using as metric an estimate of the marginal likelihood – the

probability of the data under the model (Figure 7, 2nd row). We see that the marginal445

likelihood results agree with our results with LOO except for the sensory noise factor

(see Discussion). Therefore, our conclusions about the CI strategy are not affected.

Second, the hierarchical Bayesian Model Selection method requires to specify a

prior over frequencies of models in the population (Stephan et al., 2009). This

(hyper)prior is specified via the concentration parameter vector α0 of a Dirichlet450

distribution over model frequencies. For our analysis, since we focused on the factorial

aspect, we chose an approximately ‘flat’ prior across model factors (see Methods for

details), instead of the default flat prior over individual models (α0 = 1). We found that
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performing the group analysis with α0 = 1 did not change our results (Figure 7, 3rd

row).455

Another potential source of variation is specific model choices, or inclusion of

model factors. For example, a common successful variant of the Bayesian CI strategy is

‘probability matching’, according to which the observer chooses the causal scenario

(C = 1 or C = 2) randomly, proportionally to its posterior probability (Wozny et al.,

2010). As a first check, we performed the model comparison again using a ‘probability460

matching’ Bayesian observer instead of our main ‘model averaging’ observer (Figure 7,

4th row). Results are similar to the main analysis. If anything, the fixed-criterion CI

strategy gains additional evidence here, suggesting that probability matching is a worse

description of the data than our original Bayesian CI model (as confirmed by looking at

differences in LOO scores of individual subjects, e.g. for the Bay-X-E model; mean ±465

SEM: ∆LOO = −17.3± 5.7). A recent study in audio-visual causal inference perception

has similarly found that probability matching provided a poor explanation of the data

(Rohe & Noppeney, 2015b).

In the factorial framework we could also have performed the previous analysis in a

different way, by considering ‘probability matching’ as a sub-factor of the Bayesian470

strategy, together with ‘model averaging’. As we have done before for the explicit

inference task, we reassign prior probabilities to the models so that they are constant

for each factor (in this case, the two Bayesian strategies get a ×1
2 multiplier). Results of

this alternative approach show an increase of evidence for the Bayesian CI family (7,

bottom row). The values of ϕ̃ for the fusion models are also slightly higher, which is475

due to an increase of the Bayesian omnibus risk (the probability that the observed

differences in factor frequencies are due to chance, a warning sign that there are too

many models for the available data). This result and other lines of reasoning suggest

caution when model factors contain an uneven number of models (see Discussion).

Nonetheless, the main conclusion does not qualitatively change, in that observers480

performed some form of CI as opposed to forced fusion.

Finally, we performed several sanity checks, including a model recovery analysis to
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ensure the integrity of our analysis pipeline and that models of interest were

meaningfully distinguishable (see Methods and Appendix B for details).

In conclusion, we have shown how the computational framework of Bayesian485

factorial model comparison, which is made possible by a combination of methods

described in the cookbook, allows to explore multiple questions about aspects of

subjects’ behavior in multisensory perception, and to account for uncertainty at

different levels of the analysis in a principled, robust manner.

Discussion490

We presented a ‘cookbook’ of algorithmic recipes for robust Bayesian evaluation of

observer models of causal inference that have widespread applications to multisensory

perception and modeling perceptual behavior in general. We applied these techniques to

investigate the decision strategies that characterize explicit and implicit causal inference

in multisensory heading perception. Examination of observers’ behavior in the explicit495

and implicit inference tasks provided evidence that observers did not simply fuse visual

and vestibular cues. Instead, observers integrated the multi-sensory cues based on their

relative disparity, a signature of causal inference. Importantly, our framework affords

investigation of whether humans adopt a statistically optimal Bayesian strategy or

instead implement a heuristic decision rule which does not fully consider the500

uncertainty associated with the stimuli.

Causal inference in multisensory heading perception

Our findings in the explicit inference task demonstrate that subjects used

information about the discrepancy between the visual and vestibular cues to infer the

causal relationship between them. Results in the implicit inference task alone were505

mixed, in that we could not clearly distinguish between alternative strategies, including

forced fusion – in agreement with a previous finding (de Winkel et al., 2015). However,

when we combined evidence from all tasks, we found that some form of causal inference

was more likely than mere forced fusion, in agreement with a more recent study (de

Winkel et al., 2017). Our findings suggest that multiple sources of evidence (e.g.,510
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different tasks) can help disambiguate causal inference strategies which might otherwise

produce similar patterns of behavioral responses.

Our Bayesian analysis allowed us to examine the distribution of model

parameters, in particular the causal inference parameters pc and κc, which govern the

tendency to bind or separate cues for, respectively, a Bayesian and a heuristic515

fixed-criterion strategy. Evidence from all tasks strongly constrained these parameters

for each subject. Interestingly, for the Bayesian models we found an average pc much

higher than the true experimental value (inferred pc ∼ 0.5 vs. experimental pc = 0.2).

This suggests that subjects had a tendency to integrate sensory cues substantially more

than what the statistics of the task would require. Note that, instead, a Bayesian520

observer would be able to learn the correct value of pc from noisy observations, provided

some knowledge of the structure of the task. Our finding is in agreement with previous

studies which demonstrated an increased tendency to combine discrepant visual and

vestibular cues (Butler et al., 2010; Campos, Siegle, Mohler, Bülthoff, & Loomis, 2009;

de Winkel et al., 2015; Kaliuzhna, Prsa, Gale, Lee, & Blanke, 2015; Prsa et al., 2012)525

and also a large inter-subject variability in pc, and not obviously related to the statistics

of the task (Odegaard & Shams, 2016; Odegaard, Wozny, & Shams, 2017). We note

that, in all studies so far, the ‘binding tendency’ (pc or κc) is a descriptive parameter of

causal inference models that lacks an independent empirical correlate (as opposed to,

for example, noise parameters, which can be independently measured). Understanding530

the origin of the binding tendency, and which experimental manipulations is sensitive

to, is venue for future work (Odegaard & Shams, 2016; Odegaard et al., 2017).

Previous work has performed a factorial comparison of only causal inference

strategies (Rohe & Noppeney, 2015b). Our analysis extends that work by including as

latent factors the shape of sensory noise (and, thus, likelihoods) and type of priors535

(Acerbi, Vijayakumar, & Wolpert, 2014; Acerbi et al., 2012). Models in our set include

a full computation of the observers’ posterior beliefs based on eccentricity-dependent

likelihoods, which was only approximated in previous studies that considered

eccentricity-dependence (de Winkel et al., 2015, 2017; Odegaard et al., 2015). Indeed, in
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agreement with a recent finding, we found an important role of eccentricity-dependent540

noise (Odegaard et al., 2015). Conversely, our analysis of priors was inconclusive, as our

datasets were unable to tell whether people learnt the empirical (correlated) prior, or

made an assumption of independence.

Our main finding, relative to the causal inference strategy, is that subjects

performed causal inference both in the explicit and implicit tasks. Interestingly, from545

our analyses the most likely causal inference strategy is a fixed-criterion strategy, which

crucially differs from the Bayesian strategy in that it does not take cue reliability into

account – let alone optimally. This finding is seemingly at odds with a long list of

results in multisensory perception, in which people are shown to take cue uncertainty

into account (Butler et al., 2010; Ernst & Bülthoff, 2004; Fetsch et al., 2009; Gu et al.,550

2008). We note that this is not necessarily in contrast with existing literature, for

several reasons. First, this result pertains specifically to the causal inference part of the

observer model, and not how cues are combined once a common cause has been inferred

(Rohe & Noppeney, 2015b). To our knowledge, no study has tested Bayesian models of

causal inference against heuristic models that take into account disparity but not555

reliability, as it has been done for example in visual search (Ma, Navalpakkam, Beck,

Van Den Berg, & Pouget, 2011; Shen & Ma, 2016) and visual categorization (Adler &

Ma, 2016; Qamar et al., 2013). A quantitative modeling approach is needed –

qualitatively analyzing the differences in behavior at different levels of reliability is not

sufficient to establish that observers take uncertainty into account; patterns of observed560

differences may be due to a change in sensory noise even if the observer’s decision rule

disregards cue reliability. Second, our results are not definitive – the evidence for

fixed-criterion vs. Bayesian is positive but not decisive. Our interpretation of this result

is that subjects are following some suboptimal decision rule which happens to be closer

to fixed-criterion than to the Bayesian strategy for the presented stimuli and range of565

tested reliability levels. It is possible that with a wider range of stimuli and reliabilities,

and possibly with different ways of reporting (e.g., estimation instead of discrimination),

we would be able to distinguish the Bayesian strategy from a fixed-criterion heuristic.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/150052doi: bioRxiv preprint 

https://doi.org/10.1101/150052
http://creativecommons.org/licenses/by-nc-nd/4.0/


BAYESIAN COMPARISON OF CAUSAL INFERENCE STRATEGIES 28

Finally, we note that model predictions of our Bayesian models are good but still

show systematic discrepancies from the data for the explicit inference task (Figs 3C and570

6B). Previous work has found similar discrepancies in model fits of unity judgments

data across multiple sensory reliabilities (e.g., see Figure 2A in Rohe & Noppeney,

2015b). This suggests that there is some element of model mismatch in current Bayesian

causal inference models, possibly due to difference in noise models or to other processes

that affect causal inference across cue reliabilities, which deserves further investigation.575

Bayesian factorial comparison

We performed our analysis within a factorial model comparison framework

(van den Berg et al., 2014). Even though we were mainly interested in a single factor

(causal inference strategy), previous work has shown that the inferred observer’s

decision strategy might depend on other aspects of the observer model, such as sensory580

noise or prior, due to nontrivial interactions of all these model components (Acerbi, Ma,

& Vijayakumar, 2014). Our method, therefore, consisted of performing inference across

a family of observer models that explicitly instantiated plausible model variants. We

then marginalized over details of specific observer models, looking at posterior

probabilities of model factors, according to a hierarchical Bayesian model selection585

(BMS) approach (Rigoux et al., 2014; Stephan et al., 2009). We applied a few tweaks to

the BMS method to account for our focus on factors as opposed to individual models

(see Methods).

Our approach was fully Bayesian in that we took into account parameter

uncertainty (by computing a metric, LOO, based on the full posterior distribution) and590

model uncertainty (by marginalizing over model components). A fully Bayesian

approach has the advantages of explicitly representing uncertainty in the results (e.g.,

credible intervals over parameters), and of reducing the risk of overfitting, although it is

not immune to it (Piironen & Vehtari, 2016).

In our case, we marginalized over models to reduce the risk of model overfitting,595

which is a complementary problem to parameter overfitting. Model overfitting is likely
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to happen when model selection is performed within a large number of discrete models.

In fact, some authors recommend to skip discrete model selection altogether, preferring

instead inference and Bayesian parameter estimation in a single overarching or

‘complete’ model (Gelman et al., 2013). We additionally tried to reduce the risk of600

model overfitting by balancing prior probabilities across factors, although we noted that

this may not be enough to counterbalance the additional flexibility that a model factor

gains by having more sub-models than a competitor. Our practical recommendation,

until more sophisticated comparison methods are available, is to ensure that all model

components within a factor have the same number of models, and to limit the overall605

number of models.

Our approach was also factorial in the treatment of different tasks, in that first we

analyzed each bisensory task in isolation, and then combined trials from all data in a

joint fit. The fully Bayesian approach allowed us to compute posterior distributions for

the parameters, marginalized over models (see Figure 5), which in turn made it possible610

to test whether model parameters were compatibile across tasks, via the ‘compatibility

probability’ metric. The compatibility probability is an approximation of a full model

comparison to test whether a given parameter is the same or should differ across

different datasets (in this case, tasks), where we consider ‘sameness’ to be the default

(simplyfing) hypothesis. We note that if the identity or not of a parameter across615

datasets is a main question of the study, its resolution should be addressed via a proper

model comparison.

With the joint fits, we found that almost all parameters were well constrained by

the data (except possibly for the parameters governing the observers’ priors, σprior and

∆prior). An alternative option to better constrain the inference for scarce data or poorly620

identified parameters is to use informative priors (as opposed to non-informative

priors), or a hierarchical approach that assumes a common (hyper)prior to model

parameters across subjects (Friston et al., 2016).
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Model comparison metrics

The general goal of a model comparison metric is to score a model for goodness of625

fit and somehow penalize for model flexibility. In our analysis we have used

Pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-LOO;

Vehtari et al., 2016) as the main metric to compare models (simply called LOO in the

other sections for simplicity). In fact, there is a large number of commonly used metrics,

such as (corrected) Akaike’s information criterion (AIC(c); see Burnham & Anderson,630

2003), Bayesian information criterion (BIC; see Burnham & Anderson, 2003), deviance

information criterion (DIC) (Spiegelhalter, Best, Carlin, & Van Der Linde, 2002), widely

applicable information criterion (WAIC; Watanabe, 2010, and marginal likelihood

(MacKay, 2003). The literature on model comparison is vast and with different schools

of thought – by necessity here we only summarize some remarks. The first broad635

distinction between these metrics is between predictive metrics (AIC(c), DIC, WAIC,

and PSIS-LOO; see Gelman, Hwang, & Vehtari, 2014), that try to approximate

out-of-sample predictive error (that is, model performance on unseen data), and BIC

and marginal likelihood, which try to establish the true model generating the data

(MacKay, 2003). Another orthogonal distinction is between metrics based on point640

estimates (AIC(c) and BIC) vs. metrics that use partial to full information about the

model’s uncertainty landscape (DIC, WAIC, PSIS-LOO, based on the posterior, and the

marginal likelihood, based on the likelihood integrated over the prior).

First, when computationally feasible we prefer uncertainty-based metrics to point

estimates, since the latter are only crude asymptotic approximations that do not take645

the model and the data into account, besides simple summary statistics (number of free

parameters and possibly number of data points). Due to their lack of knowledge of the

actual structure of the model, AIC(c) and BIC can grossly misestimate model

complexity (Gelman et al., 2014).

Second, we have a ordered preference among predictive metrics, that is PSIS-LOO650

� WAIC � DIC � AIC(c) (Gelman et al., 2014). The reason is that all of these metrics

more or less asymptotically approximate full leave-one-out cross validation, with
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increasing degree of accuracy from right to left (Gelman et al., 2014; Vehtari et al.,

2016). As mentioned before, AIC(c) works only in the regime of a large amount of data.

DIC, albeit commonly used, has several issues and requires the posterior to be655

multivariate normal, or at least symmetric and unimodal – gross failures can happen

when this is not the case, since DIC bases its estimate of model complexity on the mean

(or some other measure of central tendency) of the posterior (Gelman et al., 2014).

WAIC is a great improvement over DIC and does not require normality of the posterior,

but its approximation is generally superseded by PSIS-LOO (Vehtari et al., 2016).660

Moreover, PSIS-LOO has a natural diagnostic, the exponents of the tails of the fitted

Pareto distribution, which allows the user to know when the method may be in trouble

(Vehtari et al., 2016). Full leave-one-out cross validation is extremely expensive, but

PSIS-LOO only requires the user to compute the posterior via MCMC sampling, with

no additional cost with respect to DIC or WAIC. Similarly to WAIC, PSIS-LOO665

requires the user to store for each posterior sample the log likelihood per trial, which

with modern computers represent a negligible storage cost.

The marginal likelihood, or Bayes factor (of which BIC is a poor approximation),

is an alternative approach to quantify model evidence, related to computing the

posterior probability of the models (MacKay, 2003). While this is a principled670

approach, it entails several practical and theoretical issues. First, the marginal

likelihood is generally hard to compute, since it usually involves a complicated,

high-dimensional integral of the likelihood over the prior (although this computation

can be simplified for nested models; see

Verdinelli & Wasserman, 1995). Here, we have applied a novel approximation method675

for the marginal likelihood following ideas delineated in Caldwell and Liu (2014);

Robert, Wraith, Goggans, and Chan (2009), obtaining generally sensible values.

However, more work is needed to establish the precision and applicability of such

technique. Besides practical computational issues, the marginal likelihood, unlike other

metrics, is sensitive to the choice of prior over parameters, in particular its range680

(Gelman et al., 2013). Crucially, and against common intuition, this sensitivity does not
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reduce with increasing amounts of data. A badly chosen (e.g., excessively wide) prior

for a non-shared parameter might change the marginal likelihood of a model by several

points, thus affecting model ranking. The open issue of prior sensitivity has led some

authors to largely discard model selection based on the marginal likelihood (Gelman et685

al., 2013).

For these reasons, we chose (PSIS-)LOO as the main model comparison metric.

As a test of robustness, we also computed other metrics and verified that our results

were largely independent of the chosen metric, or investigated the reasons when it was

not the case.690

As a specific example, in our analysis we found that LOO and marginal likelihood

(or BIC) generally agreed on all comparisons, except for the sensory noise factor. Unlike

LOO, the marginal likelihood tended to prefer constant noise models as opposed to

eccentricity-dependent models. Our explanation of this discrepancy is that for our tasks

eccentricity-dependence provides a consistent but small improvement to the goodness of695

fit of the models, which can be overrided by a large penalty due to model complexity

(BIC), or to the chosen prior over the eccentricity-dependent parameters (wvis, wvest),

whose range was possibly wider than needed (see Figure 5). The issue of prior sensitivity

(specifically, dependence of results on an arbitrarily chosen range) can be attenuated by

adopting a Bayesian hierarchical approach over parameters (or a more computationally700

feasibile approximation, known as empirical Bayes), which is venue for future work.

Computational framework

Model evaluation, especially from a Bayesian perspective, is a time-consuming

business. For this reason, we have compiled several state-of-the-art methods for model

building, fitting and comparison, and made our code available.705

The main issue of many common observer models in perception is that the

expression for the (log) likelihood is not analytical, requiring numerical integration or

simulation. To date, this limits the applicability of modern model specification and

analysis tools, such as probabilistic programming languages, that exploit
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auto-differentiation and gradient-based sampling methods (e.g., Stan; Carpenter et al.,710

2016; or PyMC3; Salvatier, Wiecki, & Fonnesbeck, 2016). The goal of such

computational frameworks is to remove the burden and technical details of evaluating

the models from the shoulders of the modeler, who only needs to provide a model

specification.

In our case, we strive towards a more modest goal of providing black-box715

algorithms for optimization and MCMC sampling that exhibit a larger degree of

robustness than standard methods. In particular, for optimization (maximum likelihood

estimation) we recommend Bayesian adaptive direct search (BADS; Acerbi & Ma,

2017), a technique based on Bayesian optimization (Jones, Schonlau, & Welch, 1998;

Shahriari, Swersky, Wang, Adams, & de Freitas, 2016), which exhibits robustness to720

noise and jagged likelihood landscapes, unlike common optimization methods such as

fminsearch (Nelder-Mead) and fmincon in MATLAB. Similarly, for MCMC sampling

we propose a sampling method that combines the robustness and self-adaptation of slice

sampling (Neal, 2003) and ensemble-based methods (Gilks, Roberts, & George, 1994).

Crucially, our proposed method almost completely removes the need of expensive725

trial-and-error tuning on the part of the modeler, possibly one of the main reasons why

MCMC methods and full evaluation of the posterior are relatively uncommon in the

field (to our knowledge, this is the first study of causal inference in multisensory

perception to adopt a fully Bayesian approach).

Our framework is similar to the concept behind the VBA toolbox, a MATLAB730

toolbox for probabilistic treatment of nonlinear models for neurobiological and

behavioral data (Daunizeau, Adam, & Rigoux, 2014). The VBA toolbox tackles the

problem of model fitting via a variational approximation that assumes factorized,

Gaussian posteriors over the parameters (mean field/Laplace approximation), and

provides the variational free energy as an approximation (lower bound) of the marginal735

likelihood. Our approach, instead, does not make any strong assumption, using MCMC

to recover the full shape of the posterior, and state-of-the-art techniques to assess model

performance.
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Detailed, rigorous modeling of behavior is a necessary step to constrain the search

for neural mechanisms implementing decision strategies (Krakauer, Ghazanfar,740

Gomez-Marin, MacIver, & Poeppel, 2017). We have provided a set of computational

tools and demonstrated how they can be applied to answer specific questions about

internal representation and decision strategies of the observer in multisensory

perception, with the goal of increasing the set of models that can be investigated, and

the robustness of such analyses. Thus, our tools can be of profound use not only to the745

field of multisensory perception, but to biological modeling in general.

Methods

Human psychophysics

Subjects. Eleven healthy adults (4 female; age 26.4± 4.6 years, mean ± SD)

participated in the full study. Subjects had no previous history of neurological disorders750

and had normal or corrected-to-normal vision. Four other subjects completed only a

partial version of the experiment, and their data were not analyzed here. The

Institutional Review Board at the Baylor College of Medicine approved the

experimental procedures and all subjects gave written informed consent.

Apparatus. Details of the experimental apparatus have been previously755

published and are only described here briefly (Dokka et al., 2015; Dokka, MacNeilage,

DeAngelis, & Angelaki, 2011; Fetsch et al., 2009; MacNeilage, Zhang, DeAngelis, &

Angelaki, 2012). Subjects were seated comfortably in a cockpit-style chair and were

protectively restrained with a 5-point racing safety harness. Each subject wore a

custom-made thermoplastic mesh mask that was attached to the back of the chair for760

head stabilization. The chair, a three-chip DLP projector (Galaxy 6; Barco) and a large

projection screen (149× 127 cm) were all mounted on a motion platform (6DOF2000E;

Moog, Inc.). The projection screen was located ∼ 65 cm in front of the eyes, subtending

a visual angle of ∼ 94◦ × 84◦. Subjects wore LCD-based active 3D stereo shutter glasses

(Crystal Eyes 4, RealD, Beverly Hills) to provide stereoscopic depth cues and765

headphones for providing trial timing-related feedback (a tone to indicate when a trial
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was about the begin and another when a button press was registered). This apparatus

was capable of providing three self-motion conditions: vestibular (inertial motion

through the movement of the platform), visual (optic flow simulating movement of the

observer in a 3D virtual cloud of stars, platform stationary) and combined770

visual-vestibular heading (temporally-synchronized optic flow and platform motion) at

various spatial discrepancies.

Stimuli. We modified a previous multi-sensory heading discrimination task

(Fetsch et al., 2009). Here subjects experienced combined visual and vestibular

translation in the horizontal plane (Figure 1A). The visual scene and platform775

movement followed a Gaussian velocity profile (displacement = 13 cm, peak Gaussian

velocity = 26 cm/s and peak acceleration = 0.9m/s2, duration = 1 s). Visual and

vestibular headings were either in the same direction or their movement trajectories

were separated by a directional disparity, ∆, expressed in degrees (Figure 1A). The

directional disparity ∆ and visual cue reliability were varied on a trial-by-trial basis. ∆780

took one of five values, selected with equal probability: 0◦ (no conflict), 5◦, 10◦, 20◦ and

40◦. Thus, visual and vestibular stimuli were in conflict in 80% of the trials. In each

trial, ∆ was randomly assigned to be positive (Figure 1A right, vestibular heading to

the right of visual heading) or negative. Once a disparity value, ∆, was chosen, the

mean heading angle (s̄), which represents the average of vestibular and visual headings,785

was uniformly randomly drawn from the discrete set {−25◦,−20◦, . . ., 25◦}. Vestibular

heading (svest, red trace in Figure 1) and visual heading (svis, black trace in Figure 1A)

were generated by displacing the platform motion and optic flow on either side of the

mean heading by ∆/2. The vestibular and visual headings experienced by subjects were

defined as svest = s̄+ ∆/2 and svis = s̄−∆/2, respectively. This procedure entailed that790

visual and vestibular heading directions presented in experiment were correlated (Figure

1B). Three levels of visual cue reliability (high, medium, and low) were tested. Visual

reliability was manipulated by varying the percentage of stars in the optic flow that

coherently moved in the specified heading direction. For all subjects, visual motion

coherence at high reliability was set at 100%. For medium and low reliability, visual795

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/150052doi: bioRxiv preprint 

https://doi.org/10.1101/150052
http://creativecommons.org/licenses/by-nc-nd/4.0/


BAYESIAN COMPARISON OF CAUSAL INFERENCE STRATEGIES 36

motion coherences ranged from 40-70% and 25-50%. Overall, there were 297 stimulus

conditions (9 directional disparities × 11 mean heading directions × 3 visual cue

reliabilities) which were randomly interleaved.

Tasks. First, subjects (n = 11) performed in a session of a unisensory heading

discrimination task (left/right of straight ahead), in which visual or vestibular stimuli800

were presented in isolation. Vestibular stimuli had one fixed reliability level, whereas

visual stimuli were tested on three different reliability levels, randomly interleaved,

resulting in a total of 350− 750 trials.

Then, subjects performed the explicit inference task (unity judgment). Here,

subjects indicated if the visual and vestibular cues indicated heading in the same805

direction (“common” cause, C = 1) or in different directions (“different” causes, C = 2).

Each combination of disparity and reliability was presented 30 times. Since each

disparity was randomly assigned to be positive or negative on each trial, 0◦ disparity

was presented 60 times at each visual cue reliability resulting in a total of 900 trials.

Subjects did not receive feedback about the correctness of their responses.810

Finally, the same subjects also participated in the implicit inference task –

bisensory (inertial) discrimination. Here, subjects indicated the perceived direction of

their inertial self-motion (left or right of straight ahead). Note that although both

visual and vestibular stimuli were presented in each trial, subjects were asked to only

indicate their perceived direction of inertial heading, similar to the bisensory auditory815

localization procedure in (Rohe & Noppeney, 2015b). Each combination of disparity

and visual cue reliability was presented about 100 times. Since each disparity was

randomly assigned to be positive or negative on each trial, 0◦ disparity was presented

200 times resulting in a total of about 3000 trials divided across several sessions. No

feedback was given about the correctness of subjects’ responses.820

Data analysis. For the explicit inference task, we computed the proportion of

trials in which subjects perceived a common cause at each disparity and visual cue

reliability. For the implicit inference task, we calculated the bias in perceived inertial

heading. In order to compute the bias, we binned values of svis in the following

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/150052doi: bioRxiv preprint 

https://doi.org/10.1101/150052
http://creativecommons.org/licenses/by-nc-nd/4.0/


BAYESIAN COMPARISON OF CAUSAL INFERENCE STRATEGIES 37

intervals: {[−45◦,−30◦], [−27.5◦,−22.5◦], [−20◦,−15◦], [−12.5◦,−7.5◦], [−5◦,−2.5◦], 0◦,825

[2.5◦, 5◦], [7.5◦, 12.5◦], [15◦, 20◦], [22.5◦, 27.5◦], [30◦, 45◦]}. For each visual bin and level

of visual cue reliability, we constructed psychometric functions by fitting the proportion

of rightward responses as a function of svest with cumulative Gaussian functions (inset

in Figure 3A). We defined the bias in the perceived inertial heading as minus the point

of subjective equality (L/R PSE). A bias close to zero indicates that subjects accurately830

perceived their inertial (vestibular) heading. Substantial biases suggest that misleading

visual cues exerted a significant influence on the accuracy of inertial heading

discrimination. Repeated-measures ANOVA with disparity or visual bin and visual cue

reliability as within-subjects factors were performed separately on the proportion of

common cause reports and bias in perceived inertial heading. We applied835

Greenhouse-Geisser correction of the degrees of freedom in order to account for

deviations from sphericity (Greenhouse & Geisser, 1959), and report effect sizes as

partial eta squared, denoted with η2
p. For all analyses the criterion for statistical

significance was p < .05, and we report uncorrected p-values. Unless specified otherwise,

summary statistics are reported in the text as mean ± SE between subjects.840

Causal inference models

We build upon standard causal inference (CI) models of multisensory perception

(Körding et al., 2007). For concreteness, in the following description of CI models we

refer to the visuo-vestibular example with binary responses (‘left/right’ for

discrimination, and ‘yes/no’ for unity judgements). The basic component of any845

observer model is the trial response probability, that is the probability of observing a

given response for a given trial condition (e.g., stimulus pair, uncertainty level, task). In

the following we briefly review how these probabilities are computed.

All analysis code was written in MATLAB (Mathworks, Inc.), with core

computations in C for increased performance (via mex files in MATLAB). Code is850

available at https://github.com/lacerbi/visvest-causinf.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/150052doi: bioRxiv preprint 

https://github.com/lacerbi/visvest-causinf
https://doi.org/10.1101/150052
http://creativecommons.org/licenses/by-nc-nd/4.0/


BAYESIAN COMPARISON OF CAUSAL INFERENCE STRATEGIES 38

Unisensory heading discrimination. We used subjects’ binary (‘left or right

of straight forward’) heading choices, measured in the presence of visual-only and

vestibular-only stimuli, to estimate subjects’ measurement noise in the respective

sensory signals. Let us consider a trial with a vestibular-only stimulus (the computation855

for a visual-only stimulus is analogous). Subjects are asked whether the perceived

direction of motion svest is to the left or to the right of straight forward (0◦). We assume

that the observer has access to a noisy measurement xvest of stimulus svest (direction of

motion), with probability density

p(xvest|svest) = N
(
xvest|svest, σ2(svest)

)
, (1)

where N (x|µ, σ2) is a normal probability density with mean µ and variance σ2.860

Depending on the sensory noise model, the variance in Eq. 1 is either constant

(σ2(svest) ≡ σ2
0vest) or eccentricity-dependent with base magnitude σ2

0vest and noise that

increases with eccentricity (distance from 0◦) according to a parameter wvest ≥ 0 (see

Appendix A for details). For wvest = 0, the eccentricity-dependent model reduces to the

constant model. The observer’s posterior probability density over the vestibular865

stimulus is p (svest|xvest) ∝ p(xvest|svest)pprior(svest), and we will see that under some

assumptions the prior over heading directions is irrelevant for subsequent computations

in the left/right unisensory task (see Appendix A).

We assume that observers compute the posterior probability that the stimulus is

right of straight forward as Pr(svest > 0|xvest) =
∫ 90

0 p(svest|xvest)dsvest, and respond870

‘right’ if Pr(svest > 0|xvest) > 0.5; ‘left’ otherwise. Observers may also lapse and give a

completely random response with probability λ (lapse rate). This yields

Pr(choose right|xvest) = λ

2 + (1− λ) [[Pr(svest > 0|xvest) > 0.5]], (2)

where [[·]] is Iverson bracket, which is 1 if the argument is true, and 0 otherwise (Knuth,

1992).

An analogous derivation is applied to each unisensory visual stimulus condition for875
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respectively low, medium, and high visual reliability. We assume a distinct σ0vis for each

visual reliability condition, and, for the eccentricity-dependent models, a common wvis

for all visual reliability conditions, so as to reduce model complexity.

Unity judgment (explicit inference). In a unity judgment trial, the observer

explicitly evaluates whether there is a single cause (C = 1) underlying the noisy880

measurements xvis, xvest, or two separate causes (C = 2; see Figure 2B). All following

probability densities are conditioned on cvis, the level of visual cue reliability in the

trial, which is assumed to be known to the observer; we omit this dependence to reduce

clutter. We consider three families of explicit CI strategies.

The Bayesian CI strategy computes the posterior probability of common cause885

Pr(C = 1|xvis, xvest) = p(xvis, xvest|C = 1)pc
p(xvis, xvest|C = 1)pc + p(xvis, xvest|C = 2) (1− pc)

, (3)

where 0 ≤ pc ≡ Pr(C = 1) ≤ 1, the prior probability of a common cause, is a free

parameter of the model. The derivation of p(xvis, xvest|C = k), for k = 1, 2, is available

in Appendix A. The observer reports unity if the posterior probability of common cause

is greater than 0.5, with the added possibility of random lapse,

Pr(choose unity|xvis, xvest) =λ2 + (1− λ)[[Pr(C = 1|xvis, xvest) > 0.5]]. (4)

For a separate analysis we also considered a ‘probability matching’ variant that reports890

unity with probability equal to Pr(C = 1|xvis, xvest) (plus lapses).

As a non-Bayesian CI heuristic model, we consider a fixed criterion observer, who

reports a common cause whenever the two noisy measurements are within a distance

κc ≥ 0 from each other,

Pr(choose unity|xvis, xvest) =λ2 + (1− λ)[[|xvis − xvest| < κc]]. (5)

Crucially, the fixed criterion observer does not take into account stimulus reliability or895

other statistical information when inferring the causal structure.
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Finally, we consider a fusion observer that eschews CI altogether. A classical

‘forced fusion’ observer would always report ‘unity’ in the explicit CI task, which is

easily rejected by the data. Instead, we consider a stochastic fusion observer that

reports ‘unity’ with probability ηlow, ηmed, or ηhigh, depending only on the reliability of900

the visual cue, and discards any other information.

Bisensory inertial discrimination (implicit inference). In bisensory

inertial discrimination trials, the observer reports whether the perceived inertial

heading svest is to the left or right of straight forward (0◦). In this experiment, we do

not ask subjects to report svis, but the inference would be analogous. The inertial905

discrimination task requires an implicit evaluation of whether there is a single cause to

the noisy measurements xvis, xvest (C = 1), or two separate causes (C = 2), for a known

level of visual coherence cvis (omitted from the notation for clarity).

If the observer knew that C = k, for k = 1, 2, the posterior probability density

over the vestibular stimulus would be (see Appendix A)

p (svest|xvis, xvest, C = k) ∝
∫ 90◦

−90◦
p(xvest|svest)p(xvis|svis, cvis)p(svis, svest|C = k)dsvis,

where the likelihoods are defined as per the uni-sensory task, Eq. 1, and for the prior

over heading directions, p(svis, svest|C), see ‘Observers’ priors’ below.910

The posterior probability of rightward motion is computed for k = 1, 2 as

Pr(svest > 0|xvest, xvis, C = k) ∝
∫ 90◦

0◦
p (svest|xvis, xvest, C = k) dsvest,

and an analogous equation holds for the posterior probability of leftward motion.

In general, the causal structure is implicitly inferred by the observer. We assume

that observers combine cues according to

p (svest|xvis, xvest) =v1(xvis, xvest) · p(svest|xvis, xvest, C = 1)+

[1− v1(xvis, xvest)] · p(svest|xvis, xvest, C = 2)
(6)
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where 0 ≤ v1(xvis, xvest) ≤ 1 is the implicit causal weight associated by the observer to

the hypothesis of a single cause, C = 1. The form of the causal weight depends on the915

observer’s implicit CI strategy.

We consider three families of implicit CI. For the Bayesian CI observer, the causal

weight is equal to the posterior probability, v1(xvis, xvest) = Pr(C = 1|xvis, xvest), so that

Eq. 6 becomes the expression for Bayesian model averaging (Körding et al., 2007; see

Eq. 3 and Appendix A). As a variant of the Bayesian observer we consider a probability920

matching Bayesian strategy for which v1 = 1 with probability Pr(C = 1|xvis, xvest), and

v1 = 0 otherwise. For the fixed-criterion observer, v1 = [[|xvis − xvest| < κc]], with κc ≥ 0

as per Eq. 5. Finally, for the forced fusion observer v1 ≡ 1.

The posterior probability of rightward motion is then Pr(svest > 0|xvest, xvis) =∫ 90◦
0◦ p (svest|xvis, xvest) dsvest, and an analogous equation holds for the posterior925

probability of leftward motion. We assume the observer reports the direction with

highest posterior probability, with occasional lapses (see also Eq. 2),

Pr(choose right|xvis, xvest) = λ

2 + (1− λ) [[Pr(svest > 0|xvis, xvest) > 0.5]], (7)

where λ ≥ 0 is the lapse rate.

Observers’ prior. We assume subjects develop a symmetric, unimodal prior

over heading directions for unisensory trials. Due to the form of the decision rule (Eq.930

2), a symmetric prior has no effect on the unisensory trials, so we only focus on the

bisensory case.

For the bisensory prior over heading directions, p(svis, svest|C) we consider two

families of priors. The empirical prior approximately follows the correlated structure of

the discrete distribution of vestibular and visual headings presented in the experiment935

(Figure 1B). The independent prior assumes that observers learn a generic uncorrelated

Gaussian prior over heading directions, as per Körding et al. (2007). See Appendix A

for details.

Trial response probabilities. Eqs. 2, 4, 5, and 7 represent the probability that

an observer chooses a specific response r (‘rightward’ or ‘leftward’ for discrimination940
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trials, ‘same’ or ‘different’ for unity judgment trials), for given noisy measurements xvis

and xvest (or only one of the two for the unisensory task), and known visual reliability

cvis. Since as experimenters we do not have access to subjects’ internal measurements,

to compute the trial response probabilities we integrate (‘marginalize’) over the unseen

noisy measurements for given heading directions svis and svest presented in the trial.945

For the unisensory case, considering as example the vestibular case, we get

Pr(observed r|svest) =
∫ 90◦

−90◦
Pr (choose r|xvest) p(xvest|svest)dxvest. (8)

For the bisensory case, either unity judgment or inertial discrimination, we have

Pr(observed r|svis, svest, cvis) =
∫ 90◦

−90◦

∫ 90◦

−90◦
Pr (choose r|xvis, xvest, cvis)

× p(xvest|svest)p(xvis|svis, cvis)dxvestdxvis.
(9)

It is customary in the causal inference literature to approximate these integrals via

Monte Carlo sampling, by drawing a large number of noisy measurements from the

noise distributions (e.g., de Winkel et al., 2015; Körding et al., 2007; Rohe & Noppeney,950

2015a; Wozny et al., 2010). Instead, we computed the integrals via numerical

integration, which is more efficient than Monte Carlo techniques for low dimensional

problems (Press, Flannery, Teukolsky, & Vetterling, 2007).

We used the same numerical approach to evaluate Eqs. 2, 4, 5, and 7, including

an adaptive method for choice of integration grid. All numerical integrals were then955

coded in C (mex files in MATLAB) for additional speed. See Appendix B for

computational details.
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Model fitting

For a given model, we denote its set of parameters by a vector θ. For a given

model and dataset, we define the parameter log likelihood function as960

LL(θ,model) = log p (data|θ,model)

= log
Ntrials∏
i=1

p
(
r(i)|s(i)

vis, s
(i)
vest, c

(i)
vis,θ,model

)

=
Ntrials∑
i=1

log p
(
r(i)|s(i)

vis, s
(i)
vest, c

(i)
vis,θ,model

)
(10)

where we assumed conditional independence between trials; r(i) denotes the subject’s

response (‘right’ or ‘left’ for the discrimination trials; ‘common’ or ‘separate’ causes in

unity judgment trials); s(i)
vis and s

(i)
vest are, respectively, the direction of motion of the

visual (resp. vestibular) stimulus (if present), and c(i)
vis is the visual coherence level (that

is, reliability: low, medium, or high), in the i-th trial.965

Maximum likelihood estimation. First, we fitted our models to the data via

maximum likelihood estimation (MLE), by finding the parameter vector θ∗ that

maximizes the log likelihood in Eq. 10. For optimization of the log likelihood, we used

Bayesian Adaptive Direct Search (BADS; https://github.com/lacerbi/bads; Acerbi

& Ma, 2017). BADS is a black-box optimization algorithm that combines a970

mesh-adaptive direct search strategy (Audet & Dennis Jr, 2006) with a local Bayesian

optimization search step based on Gaussian process surrogates (see Brochu, Cora, &

De Freitas, 2010; Shahriari et al., 2016 for an introduction to Bayesian optimization).

Bayesian optimization is particularly useful when the target function is costly to

evaluate or the likelihood landscape is rough, as it is less likely to get stuck in local975

optima than other algorithms, and may reduce the number of function evaluations to

find the (possibly global) optimum. In our case, evaluation of the log likelihood function

for a single parameter vector θ could take up to ∼ 2-3 s for bisensory datasets, which

makes it a good target for BO. We demonstrated in a separate benchmark that BADS

is more effective than a large number of other MATLAB optimizers for our problem980

(‘causal inference’ problem set in Acerbi & Ma, 2017). See Appendix B for more details

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/150052doi: bioRxiv preprint 

https://github.com/lacerbi/bads
https://doi.org/10.1101/150052
http://creativecommons.org/licenses/by-nc-nd/4.0/


BAYESIAN COMPARISON OF CAUSAL INFERENCE STRATEGIES 44

about the algorithm and the optimization procedure.

For each subject we first fitted separately the datasets corresponding to three tasks

(unisensory and bisensory heading discrimination, unity judgment), and then performed

joint fits by combining datasets from all tasks (summing the respective log likelihoods).985

Posterior sampling. As a complementary approach to ML parameter

estimation, for each dataset and model we calculated the posterior distribution of the

parameters,

p(θ|data,model) ∝ p(data|θ,model)p(θ|model), (11)

where p(data|θ,model) is the likelihood (see Eq. 10) and p(θ|model) is the prior over

parameters. We assumed a factorized prior p(θ|model) = ∏k
i=1 p(θi) and a990

non-informative uniform prior over a bounded interval for each model parameter

(uniform in log space for scale parameters such as all noise base magnitudes, fixed

criterion κc, and prior parameters σprior and ∆prior); see Table 1.

We approximated Eq. 11 via Markov Chain Monte Carlo (MCMC) sampling. We

used a custom-written sampling algorithm that combines slice sampling (Neal, 2003)995

with adaptive direction sampling (ADS; Gilks et al., 1994) and a number of other tricks

(https://github.com/lacerbi/eissample). Slice sampling is a flexible MCMC

method that, in contrast with the common Metropolis-Hastings transition operator,

requires very little tuning in the choice of length scale. ADS is an ensemble MCMC

method that shares information between several dependent chains (also called ‘walkers’;1000

Foreman-Mackey, Hogg, Lang, & Goodman, 2013) in order to speed up mixing and

exploration of the state space. For details about the MCMC algorithm and the

sampling procedure, see Appendix B.

Factorial model comparison

We built different observer models by factorially combining three factors: CI1005

strategy (Bayesian, fixed-criterion, or fusion); shape of sensory noise (constant or

eccentricity-dependent); and type of prior over heading directions (empirical or

independent); see Figure 2A and ‘Causal inference models’ section of the Methods for a
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description of the different factors.

For each subject, we fitted the different observer models, first separately to1010

different tasks (unity judgment and bisensory inertial discrimination), and then

performed a joint fit by combining datasets from all tasks (including the unisensory

discrimination task). We evaluated the fits with a number of model comparison metrics

and via an objective goodness of fit metric. Finally, we combined evidence for different

model factors across subjects with a hierarchical Bayesian approach.1015

We verified our ability to distinguish different models with a model recovery

analysis, described in Appendix B.

Model comparison metrics. For each dataset and model we computed a

number of different model comparison metrics, all of which take into account quality of

fit and penalize model flexibility, but with different underlying assumptions.1020

Based on the maximum likelihood solution, we computed Akaike information

criterion with a correction for sample size (AICc) and Schwarz’s ‘Bayesian’ Information

criterion (BIC),

AICc =− 2LL(θ∗) + 2k + 2k (k + 1)
Ntrials − k − 1

BIC =− 2LL(θ∗) + k logNtrials

(12)

where Ntrials is the number of trials in the dataset and k is the number of parameters of

the model. The factor of −2 that appears in both definitions is due to historical1025

reasons, so that both metrics have the same scale of the deviance.

To assess model performance on unseen data, we performed Bayesian

leave-one-out (LOO) cross-validation. Bayesian LOO cross-validation computes the

posterior of the parameters given Ntrials − 1 trials (training), and evaluates the (log)

expected likelihood of the left-out trial (test); the procedure is repeated for each trial,1030

yielding the leave-one-out score

LOO =
Ntrials∑
i=1

log
∫
p (ri|θ) p(θ|D−i)dθ, (13)
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where p (ri|θ) is the likelihood associated to the i-th trial alone, and p(θ|D−i) is the

posterior over θ given all trials except the i-th one. Eq. 13 can be estimated at

prohibitive computational cost by separately sampling from the leave-one-out posteriors

via Ntrials distinct MCMC runs. A more feasible approach comes from noting that all1035

posteriors differ from the full posterior by only one data point. Therefore, the

leave-one-out posteriors can be approximated via importance sampling, reweighting the

full posterior obtained via MCMC. However, a direct approach of importance sampling

can be unstable, since the full posterior is typically narrower than the leave-one-out

posteriors. Pareto-smoothed importance sampling (PSIS) is a recent technique to1040

stabilize the importance weights (Vehtari et al., 2015), implemented in the psisloo

package (https://github.com/avehtari/PSIS). Thus, Eq. 13 is approximated as

LOO ≈
Ntrials∑
i=1

log
∑S
s=1 w

(s)
i p

(
ri|θ(s)

)
∑S
s=1 w

(s)
i

, (14)

where θ(s) is the s-th parameter sample from the posterior, and w(s)
i are the

Pareto-smoothed importance weights associated to the i-th trial and s-th sample (out of

S); see Vehtari et al. (2016) for details. PSIS also returns for each trial the exponent ki1045

of the fitted Pareto distribution; if ki is greater than 1 the moments of the importance

ratios distribution do not exist and the variance of the PSIS estimate is finite but may

be large; this provides a natural diagnostic for the method (Vehtari et al., 2016; see

Appendix B). LOO is our comparison metric of choice (see Discussion). LOO scores for

all models and subjects are reported in Appendix D.1050

Finally, we approximated the marginal likelihood of the model,

p(data|model) =
∫
p(data|θ,model)p(θ|model)dθ. (15)

The marginal likelihood is a common metric of model evidence that naturally

incorporates a penalty for model complexity due to Bayesian Occam razor (MacKay,

2003). However, the integral in Eq. 15 is notoriously hard to evaluate. Here we

computed an approximation of the log marginal likelihood (LML) based on MCMC1055
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samples from the posterior, by using a weighted harmonic mean estimator (Robert et

al., 2009). The formula for the approximation is

LML = − log
 1
S

S∑
s=1

ϕ
(
θ(s)

)
p
(
θ(s)

)
L
(
θ(s)

)
 (16)

where the sum is over S samples from the posterior, θ(s) is the s-th sample, p(θ) the

prior, L(θ) the likelihood, and ϕ(θ) is an arbitrary weight probability density. The

behavior of the approximation depends crucially on the choice of ϕ; it is important that1060

ϕ has thinner tails than the posterior, lest the variance of the estimator grows

unboundedly. We followed the suggestion of Robert et al. (2009) and adopted a finite

support distribution over a high posterior density (HPD) region. We fitted a variational

Gaussian mixture model to the posterior samples (Bishop, 2006;

https://github.com/lacerbi/vbgmm), and then we replaced each Gaussian1065

component with a uniform distribution over an ellipsoid region proportional to the

covariance matrix of the component. The proportionality constant, common to all

components, was picked by minimizing the empirical variance of the sum in Eq. 16

(Caldwell & Liu, 2014).

Hierarchical Bayesian model selection. We performed Bayesian model

selection (BMS) at the group level via a hierarchical approach that treats subjects and

models as random variables (Stephan et al., 2009). BMS infers the posterior over model

frequencies in the population, expressed as Dirichlet distributions parametrized by the

concentration parameter vector α. As a summary statistic we consider the protected

exceedance probability ϕ̃, that is the probabilty that a given model or model factor is

the most likely model or model factor, above and beyond chance (Rigoux et al., 2014).

For the i-th model or model factor,

ϕ̃i = (1− BOR)ϕi + 1
K

BOR,

where K is the number of models (or model factors), ϕi is the unprotected exceedance1070

probability for the i-th model or model factor (Stephan et al., 2009), and BOR is the
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Bayesian omnibus risk – the posterior probability that the data may be explained by

the null hypothesis according to which all models (or model factors) have equal

probability (Rigoux et al., 2014). For completeness, we report posterior model

frequencies and BOR in the figures, but we do not focus on model frequencies per se1075

since our sample size does not afford a more detailed population analysis.

To compute the posterior over model factors in the population we exploit the

agglomerative propery of the Dirichlet distribution, and sum the concentration

parameters of models that belong to the same factor component (Stephan et al., 2009).

While the agglomerative property allows to easily compute the posterior frequencies1080

and the unprotected exceedance probabilities for each model factor, calculation of the

protected exceedance probabilities required us to compute the BOR for the model

factor setup (the probability that the observed differences in factor frequencies may

have arisen due to chance).

Additionally, the BMS method requires to specify a Dirichlet prior over model1085

frequencies, represented by a concentration parameter vector α0 ·w, with wk = 1 for

any model k and α0 > 0. The common choice is α0 = 1 (flat prior over model

frequencies), but given the nature of our factorial analysis we prefer a flat prior over

model factors (α0 = average number factors / number of models), where the average

number of factors is ≈ 2.33 for the bisensory tasks and ≈ 2.67 for the joint fits. This1090

choice entails that the concentration parameter of the agglomerate Dirichlet

distributions, obtained by grouping models that belong to the same factor component,

is of order ∼ 1 (it cannot be exactly one since different factors have different number of

components). When factor components within the same factor had unequal numbers of

models, we modified the prior weight vector w such that every component had equal1095

prior weight. We verified that our main results did not depend on the specific choice of

Dirichlet prior (Figure 7, third row).

Parameter compatibility metric. Before performing the joint fits, we tested

whether model parameters differed across the three tasks (unisensory and bisensory

discrimination, unity judgment). On one end of the spectrum, the fully Bayesian1100
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approach would consist of comparing all combinations of models in which parameters

are shared vs. distinct across tasks, and check which combination best explains the

data. However, this approach is intractable in practice due to the combinatorial

explosion of models, and undesirable in theory due to the risk model overfitting. On the

simplest end of the spectrum, we could look at the credible intervals of the parameter1105

posteriors for each subject and visually check whether they are mostly overlapping for

different tasks.

As a middle ground, we computed separately for each parameter what we defined

as the compatibility probability Cp, that is the probability that for most subjects the

parameter is exactly the same across tasks (H0), as opposed to being different (H1),1110

above and beyond chance.

For a given subject, let y1, y2, and y3 be the datasets of the three tasks. For a

given parameter θ (e.g., lapse rate), we computed the compatibility likelihoods

p(y1, y2, y3|H0) =
∫ [ 3∏

i=1
gi(θ|yi)

]
f(θ)dθ,

p(y1, y2, y3|H1) =
3∏
i=1

[∫
gi(θ|yi)f(θ)dθ

]
,

(17)

where gi(θ|yi) is the marginal posterior over θ for the dataset yi, and f(θ) is the prior

over θ. Having computed the compatibility likelihoods for all subjects, we defined Cp as1115

the protected exceedance probability of model H0 vs. model H1 for the entire group.

For each subject and task, the marginal posteriors gi(θ|yi) were obtained as a

weighted average over models, with weight equal to each model’s posterior probability

for that subject according to the group BMS method via LOO, and considering only the

subset of models that include the parameter of interest (see Figure 5).1120

For the prior f(θ) over a given parameter θ, for the purposes of this analysis only,

we followed an empirical Bayes approach informed by the data and use a truncated

Cauchy prior fitted to the average marginal posterior of θ across subjects, defined over

the range of the MCMC samples for θ.
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Absolute goodness of fit. Model comparison yields only a relative measure of1125

goodness of fit, but does not convey any information of whether a model is a good

description of the data in an absolute sense. A standard metric such as the coefficient of

variation R2 is not appropriate for binary data. Instead, we extended the approach of

Shen and Ma (2016) and defined absolute goodness of fit as

g (model) ≡ 1− ĤG(data) + LOO(model)
ĤG(data)−Ntrials log 2

, (18)

where ĤG(data) is an estimate of the entropy of the data obtained via Grassberger’s1130

estimator (Grassberger, 2003) and LOO(model) is the LOO score of the model of

interest.

The numerator in Eq. 18 represents the Kullback-Leibler (KL) divergence

between the distribution of the data and the distribution predicted by the model (that

is, how well the model captures the data), which is compared as a reference to the KL1135

divergence between the data and a chance model (at the denominator). See Appendix C

for a derivation of Eq. 18, and code is available at

https://github.com/lacerbi/gofit.

The cookbook

The Bayesian cookbook for causal inference (CI) in multisensory perception, or1140

simply ‘the cookbook’, consists of a number of algorithms and computational techniques

to perform efficient and robust Bayesian comparison of CI models. We applied and

demonstrated these methods at different point in the main text; further details can be

found here in the Methods and Appendices. For reference, we summarize the main

techniques of interest in Table 2.1145
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Table 2
List of algorithms and computational procedures.

Description Code References
Model fitting
Efficient computation of log likelihood https://github.com/lacerbi/visvest-causinf This work
Maximum-likelihood estimation (optimization) https://github.com/lacerbi/bads Acerbi and Ma (2017)
Posterior estimation (MCMC sampling) https://github.com/lacerbi/eissample In preparation
Model evaluation and comparison
Leave-one-out cross validation (LOO) https://github.com/avehtari/PSIS Vehtari et al. (2015, 2016)
Estimate of the marginal likelihood https://github.com/lacerbi/marglike Robert et al. (2009), in preparation
Parameter compatibility test https://github.com/lacerbi/comprob This work
Objective goodness of fit https://github.com/lacerbi/gofit Shen and Ma (2016), this work
Group Bayesian Model Selection (BMS) spm_BMS function in the SPM12 package Stephan et al. (2009),

http://www.fil.ion.ucl.ac.uk/spm/ Rigoux et al. (2014)

List of useful algorithms and computational procedures.
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Appendix A

Observer model factors

In this appendix we describe details of the factors used to build observer models.

Sensory noise

For a given modality mod ∈ {vis, vest}, the measurement noise distribution has

the shape

p(xmod|smod) = N
(
xmod|smod, σ

2(smod)
)
, (A1)

where N (x|µ, σ2) is a normal distribution with mean µ and variance σ2. Note that for1350

a visual stimulus the measurement distribution and the variance in Eq. A1 also depend

on the visual coherence level cvis in the trial, such that σ2(svis) ≡ σ2(svis, cvis), but in the

following we omit this dependence to simplify the notation.

For the variance we consider two possible models,

σ2(smod) =


σ2

0mod (constant)

σ2
0mod

{
1 + 2w2

mod

(
90◦
π

)2 [
1− cos

(
smod
90◦ π

)]}
(eccentricity-dependent)

(A2)

where σ2
0modality is the base variance and wmod is related to the Weber fraction near 0◦.1355

In fact, for small values of smod, Eq. A2 reduces to σ2(smod) ≈ σ2
0mod (1 + w2

mods
2
mod),

which is a generalized Weber’s law.

The broad shape of the chosen periodic formula for the eccentriticy-dependent

noise model, which peaks at ±90◦, derives from empirical results in a visuo-vestibular

task with the same apparatus with human and monkey subjects (see Figure 2 in Gu,1360

Fetsch, Adeyemo, DeAngelis, & Angelaki, 2010; see also Crane, 2012). We note that our

noise shape differs from that adopted in other works (with different setups), which used

a sinusoidal with twice the frequency that peaks at ±45◦,±135◦ (de Winkel et al., 2015,

2017). Since in our setup the heading directions were restricted to the ±45◦ range (with

most directions in the ±25◦ range), the exact shape of periodicity is largely irrelevant,1365

but understanding differences in noise models may be important for experiments with
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wider heading direction ranges. Moreover, due to the limited range of directions in our

experiment, we can afford to use Gaussian distributions, which allow for faster and

simpler computations, as opposed to von Mises (circular normal) distributions which

would be otherwise more appropriate for a fully circular domain.1370

All constant noise models have four parameters (σ0vest, and a separate σ0vis for

each visual coherence level, low, medium and high). Eccentricity-dependent models

have two additional parameters, wvest and wvis (the latter is common to all visual

stimuli, to prevent overfitting).

Prior1375

For unisensory trials, we assume that observers have a unimodal symmetric prior

over heading directions, peaked at 0◦ (the exact shape is irrelevant). Due to the form of

the decision rule, such prior has no influence over the unisensory left/right

discrimination task.

For bisensory trials (both unity judgment and inertial discrimination tasks), we1380

consider two alternative models for priors. The empirical prior consists of an

approximation of the actual prior used in the experiment, that is

p(svis, svest|C = 1) ∝
∑

(s,s)∈S
N
(
s|0, σ2

prior

)
δ(svis − s)δ(svest − s)

p(svis, svest|C = 2) ∝
∑

(si,sj )∈S
si 6=sj

N
(
svis + svest

2 |0, σ2
prior

)
N
(
svest − svis|0,∆2

prior

)
δ(svis − si)δ(svest − sj)

(A3)

where S is the discrete set of pairs of visual and vestibular headings in the experiment.

The two equations consider respectively only diagonal elements (equal heading

directions, C = 1) or off-diagonal elements (different directions, C = 2) of Figure 1B in1385

the main text. The approximation here is given by the two Gaussian distributions

(defined on the discrete set), which impose additional shrinkage for the mean of the

stimuli (governed by σ2
prior) and for the disparity (governed by ∆2

prior). For

σ2
prior,∆2

prior →∞, Eq. A3 converges to the distributions of directions used in the
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experiment for C = 1 and C = 2.1390

Alternatively, we consider an independent prior, that is

p(svis, svest|C = 1) =
∫
N
(
s|0, σ2

prior

)
δ(svis − s)δ(svest − s)ds

p(svis, svest|C = 2) =N
(
svis|0, σ2

prior

)
N
(
svest|0, σ2

prior

) (A4)

which assumes observers build a single prior over heading directions which is applied

independently to both modalities (Körding et al., 2007). The first integral is a formal

way to impose s ≡ svis = svest.

We note that a continuous approximation of Eq. A3 may seem more realistic than1395

the adopted discrete distribution of directions. However, an observer model with a

correlated, continuous prior is computationally intractable since evaluation of the log

likelihood involves a non-analytical four-dimensional integral, which increases the

computational burden by an order of magnitude. As a sanity check, we implemented

observers that use a continuous approximation of Eq. A3 and verified on a subset of1400

observers and models that results of model fits and model predictions were indeed

nearly identical to the discrete case.

Independent prior models have one parameter σprior for the width of the prior over

headings. Empirical prior models have an additional parameter ∆prior for the width of

the prior over disparities.1405

Causal inference strategy

The basic causal inference strategies: Bayesian, fixed-criterion and fusion are

described in the main text. We report here some additional definitions and derivations.

All integrals in this section are in the [−90◦, 90◦] range, unless noted otherwise.

Posterior probability of causal structure. For a Bayesian observer, the

posterior probability of common cause is

Pr(C = 1|xvest, xvis, cvis) ∝ p(xvis, xvest, cvis|C = 1) Pr(C = 1)

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/150052doi: bioRxiv preprint 

https://doi.org/10.1101/150052
http://creativecommons.org/licenses/by-nc-nd/4.0/


BAYESIAN COMPARISON OF CAUSAL INFERENCE STRATEGIES 62

where Pr(C = 1) ≡ pc, the prior probability of a common cause, is a free parameter of1410

the model. Then

p(xvis, xvest, cvis|C = 1) =

= Pr(cvis)
∫ ∫

p(xvis|svis, cvis)p(xvest|svest)p(svis, svest|C = 1)dsvisdsvest,
(A5)

where the likelihoods are defined by Eq. A1, the prior is defined by Eqs. A3 and A4,

and Pr(cvis) = 1
3 . For the independent prior case we can further simplify

p(xvis, xvest, cvis|C = 1) ∝
∫
p(xvis|svis = svest, cvis)p(xvest|svest)N

(
svest|0, σ2

prior

)
dsvest,

whereas the solution for the empirical prior is similar, but with a sum over the discrete

stimuli such that svis = svest.

Conversely, the posterior probability of separate causes is

Pr(C = 2|xvis, xvest, cvis) ∝ p(xvis, xvest, cvis|C = 2) (1− pc) ,

where

p(xvis, xvest, cvis|C = 2) = Pr(cvis)
∫ ∫

p(xvis|svis, cvis)p(xvest|svest)p(svis, svest|C = 2)dsvisdsvest,

(A6)

which for the independent prior becomes

p(xvis, xvest, cvis|C = 2) ∝
(∫

p(xvis|svis, cvis)pprior(svis)dsvis
)
·
(∫

p(xvest|svest)pprior(svest)dsvest
)
,

that is the product of two one-dimensional integrals. For the empirical prior Eq. A61415

does not simplify, but becomes a discrete sum over S (see Eq. A3).

Posterior probability of left/right discrimination (C = 1). In bisensory

inertial discrimination trials the observer may implicitly contemplate two scenarios:

that there is only one common cause (C = 1), or that there are two distinct causes

(C = 2). We consider inference in the two separate scenarios, and then see how the1420
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observer can combine them.

For C = 1, the observer’s posterior probability density over over the inertial

heading direction is

p (svest|xvis, xvest, cvis, C = 1) =

=
∫ p(svis, svest, xvis, xvest, cvis, C = 1)

p(xvis, xvest, cvis, C = 1) dsvis

=
∫ p(svis, svest, xvis, xvest, cvis|C = 1) Pr(C = 1)

p(xvis, xvest, cvis|C = 1) Pr(C = 1) dsvis

∝
∫
p(xvest|svest)p(xvis|svis, cvis)p(svis, svest|C = 1)dsvis

(A7)

which for the independent prior becomes

p (svest|xvis, xvest, cvis, C = 1) ∝ p(xvest|svest)p(xvis|svis = svest, cvis)N
(
svest|0, σ2

prior

)

and the solution is similar for the empirical prior, constraining svest to take only the

discrete values used in the experiment for C = 1.1425

Posterior probability of left/right discrimination (C = 2). For C = 2, the

observer’s posterior over inertial heading is

p (svest|xvis, xvest, cvis, C = 2) =

=
∫ p(svis, svest, xvis, xvest, cvis, C = 2)

p(xvis, xvest, cvis, C = 2) dsvis

∝
∫
p(xvest|svest)p(xvis|svis)p(svis, svest|C = 2)dsvis

(A8)

which for the independent prior can be further simplified as

p (svest|xvis, xvest, cvis, C = 2) ∝ p(xvest|svest)N
(
svest|0, σ2

prior

)
,

whereas for the empirical prior the integral in Eq. A8 becomes a sum over discrete pairs

of heading directions used in the experiment.

Posterior probability of left/right discrimination (C unknown). If the1430

causal structure is unknown, a Bayesian observer that follows a ‘model averaging’
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strategy marginalizes over possible causal structures (here, C = 1 and C = 2; Körding

et al., 2007. The observer’s posterior probability density over the inertial heading

direction is

p (svest|xvis, xvest, cvis) =

=
∑
C=1,2

∫ p(svis, svest, xvis, xvest, cvis, C)
p(xvis, xvest, cvis)

dsvis

= 1
p(xvis, xvest, cvis)

[∫
p(svis, svest, xvis, xvest, cvis, C = 1)dsvis+∫

p(svis, svest, xvis, xvest, cvis, C = 2)dsvis
]

= p(xvis, xvest, cvis, C = 1)
p(xvis, xvest, cvis)

p(svest|xvis, xvest, cvis, C = 1)+

p(xvis, xvest, cvis, C = 2)
p(xvis, xvest, cvis)

p(svest|xvis, xvest, cvis, C = 2)

= Pr(C = 1|xvis, xvest, cvis) · p(svest|xvis, xvest, cvis, C = 1)+

Pr(C = 2|xvis, xvest, cvis) · p(svest|xvis, xvest, cvis, C = 2)

(A9)

where p(svest|xvis, xvest, cvis, C) has been defined in the previous subsections and1435

Pr(C|xvis, xvest, cvis) is the posterior over causal structures.

We generalize Eq. A9 as

p (svest|xvis, xvest, cvis) =v1(xvis, xvest, cvis) · p(svest|xvis, xvest, cvis, C = 1)+

v2(xvis, xvest, cvis) · p(svest|xvis, xvest, cvis, C = 2)

where vk(xvis, xvest, cvis), for k = 1, 2, are the posterior causal weights assigned by the

observer to the two causal structures, with v2(xvis, xvest, cvis) = 1− v1(xvis, xvest) and

0 ≤ v1(xvis, xvest, cvis) ≤ 1. For a Bayesian observer, the causal weights are equal to the

posterior probabilities (Eq. A9); in the main text we describe other models.1440

Model parameters

All models except stochastic fusion have five parameters θdefault by default: three

visual base noise parameters σ0vis(chigh), σ0vis(cmed), and σ0vis(clow); a vestibular base

noise parameter σ0vest; and a lapse rate λ.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/150052doi: bioRxiv preprint 

https://doi.org/10.1101/150052
http://creativecommons.org/licenses/by-nc-nd/4.0/


BAYESIAN COMPARISON OF CAUSAL INFERENCE STRATEGIES 65

Observer model Parameters #

Bayesian (unisensory only) θdefault 5

Bayesian CI θdefault, σprior, pc 7

Fixed-criterion CI θdefault, κc 6

Fusion CI θdefault 5

Stochastic fusion (unity judgment only) ηhigh, ηmed, ηlow 3

Add-ons

with eccentricity-dependent noise + {wvis, wvest} +2

with empirical priors (Bayesian) + {∆prior} +1

with empirical priors (non-Bayesian) + {σprior,∆prior} +2

1445
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Appendix B

Computational details

We describe in this appendix a number of computational and algorithmic details.

Integrals

Due to lack of analytical solutions, we computed all one-dimensional and

two-dimensional integrals numerically, via either Simpson’s or trapezoidal rule with a

equi-spaced grid on the integration domain (Press et al., 2007). We had two types of1450

integrals: integrals over xvis, xvest for marginalization over the noisy stimuli, and

integrals over svis and/or svest for computation of the observer’s decision rule (Eqs. A5,

A6, A7 and A8).

For marginalization over noisy measurement xvis and xvest, we used a regular

401× 401 grid for which we adjusted the range of integration in each modality to up to1455

5 SD from the mean of the noisy measurement distribution (or ±180◦, whichever was

smaller). For large noise, we used wrapped normal distributions.

For computation of the decision rule, we assumed that observers believed, due to

the experimental setup and task instructions, that the movement direction would be

forward, so limited to the ±90◦ range. We adjusted the integration grid spacing ∆s

(hence the number of grid points) adaptively for each parameter vector θ, defining

σmin(θ, cvis) = min {σ0vis(cvis), σ0vest, σprior}

∆s ≡ σmin(θ, cvis)
4 with 1

8 ≤ ∆s ≤ 1

and we rounded ∆s to the lowest exact fraction of the form 1
m
, with m ∈ N and

1 ≤ m ≤ 8. The above heuristic afforded fast and accurate evaluation of the integrals,

since the grid spacing was calibrated to be smaller than the length scale of the involved1460

distributions (measurement noise and prior).

Finally, we note that we tried other standard numerical integration methods

which were ineffective. Gauss-Hermite quadrature (Press et al., 2007) led to large

numerical errors because the integrand is discontinuous and bounded, a very bad fit for
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a polynomial. Global adaptive quadrature methods (such as quad in MATLAB, and1465

other custom-made implementations) were simply too slow, even when reducing the

requested precision. We coded all two-dimensional numerical integrals in C (via mex

files in MATLAB) for maximal performance.

Optimization

For optimization of the log likelihood (maximum-likelihood estimation, or MLE),1470

we used Bayesian Adaptive Direct Search (BADS;

https://github.com/lacerbi/bads; Acerbi & Ma, 2017). BADS follows a mesh

adaptive direct search (MADS) procedure that alternates poll steps and search

steps. In the poll step, points are evaluated on a (random) mesh by taking one step in

one coordinate direction at a time, until an improvement is found or all directions have1475

been tried. The step size is doubled in case of success, halved otherwise. In the search

step, a Gaussian process (GP) is fit to a (local) subset of the points evaluated so far.

Points to evaluate during the search are iteratively chosen by maximizing the predicted

improvement (with respect to the current optimum) over a set of candidate points.

Adherence to the MADS framework guarrantees convergence to a (local) stationary1480

point of a noiseless function under general conditions (Audet & Dennis Jr, 2006). The

basic scheme is enhanced with heuristics to accelerate the poll step, to update the GP

hyper-parameters, to generate a good set of candidate points in the search step, and to

deal robustly with noisy functions. See Acerbi and Ma (2017) for details.

For each optimization run, we initialized our algorithm by randomly choosing a1485

point inside a hypercube of plausible parameter values in parameter space. We refined

the output of each BADS run with a run of patternsearch (MATLAB). To avoid local

optima, for each optimization problem we performed 150 independent restarts of the

whole procedure and picked the highest log likelihood value.

As a heuristic diagnostic of global convergence, we computed by bootstrap the1490

value of the global optimum we would have found had we only used nr restarts, with

1 ≤ nr ≤ 150. We define the ‘estimated regret’ as the difference between the actual best
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value of the log likelihood found and the bootstrapped optimum. For each optimization

problem, we computed the minimum value n∗r for which the probability of having an

estimated regret less than 1 was 99% (n∗r ≡ ∞ if such nr does not exist). The rationale1495

is that if the optimization landscape presents a large number of local optima, and new

substantially improved optima keep being found with increasing nr, the bootstrapped

estimated regret would keep changing with nr, and n∗r would be 150 or ∞. For almost

all optimization problems, we found n∗r � 150. This suggests that the number of

restarts was large enough; although no optimization procedure in a non-convex setting1500

can guarantee convergence to a global optimum in a finite time without further

assumptions.

Markov Chain Monte Carlo (MCMC) sampling

As a complementary approach to MLE model fitting, for each dataset and model

we calculated the posterior distribution of the parameters via MCMC (see main text).1505

We used a custom-written sampling algorithm that combines slice sampling (Neal,

2003) with adaptive direction sampling (ADS; Gilks et al., 1994).1 Slice sampling is a

flexible MCMC method that, in contrast with the common Metropolis-Hastings

transition operator, requires very little tuning in the choice of length scale. ADS is an

ensemble MCMC method that shares information between several dependent chains1510

(also called ‘walkers’; Foreman-Mackey et al., 2013) in order to speed up mixing and

exploration of the state space. For each ensemble we used 2(p+ 1) walkers, where p is

the number of parameters of the model. Walkers were initialized to a neighborhood of

the best local optima found by the optimization algorithm. Each ensamble was run for

104 to 2.5 · 104 burn-in steps that were discarded, after which we collected 5 · 103 to 104
1515

samples per ensemble.

At each step, our method iteratively selects one walker in the ensemble and first

attempts an independent Metropolis update. The proposal distribution for the

independent Metropolis is a variational mixture of Gaussians (Bishop, 2006) fitted to a

1URL: https://github.com/lacerbi/eissample.
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fraction of the samples obtained during burn-in via the vbgmm toolbox for MATLAB.21520

Note that the proposal distribution is fixed at the end of burn-in and does not change

thereafter, ensuring that the Markov property is not affected (although non-Markovian

adaptive MCMC methods could be applied; see Andrieu & Thoms, 2008). After the

Metropolis step, the method randomly applies with probability 1/3 one of three Markov

transition operators to the active walker: coordinate-wise slice sampling (Neal, 2003),1525

parallel-direction slice sampling (MacKay, 2003), and adaptive-direction slice sampling

(Gilks et al., 1994; Neal, 2003). We also fit a variational Gaussian mixture model to the

last third of the samples at the end of the burnin period, and we used the variational

mixture as a proposal distribution for an independent Metropolis step which was

attempted at every step.1530

For each dataset and model, we ran three independent ensembles. We visually

checked for convergence the marginal pdfs and distribution of log likelihoods of the

three sampled chains. For all parameters, we computed Gelman and Rubin’s potential

scale reduction statistic R and effective sample size neff (Gelman et al., 2013) using

Simo Särkkä and Aki Vehtari’s psrf function for MATLAB.3 For each dataset and1535

model, we looked at the largest R (Rmax) and smallest neff (neffmin) across parameters.

Large values of R indicate convergence problems whereas values close to 1 suggest

convergence. neff is an estimate of the actual number of independent samples in the

chains; a few hundred independent samples are sufficient for a coarse approximation of

the posterior (Gelman et al., 2013). Longer chains were run when suspicion of a1540

convergence problem arose from any of these methods. Samples from independent

ensembles were then combined (thinned, if necessary), yielding 1.5 · 104 posterior

samples per dataset and model. In the end, average Rmax (across datasets and models)

was ∼ 1.002 (range: [1.000− 1.035]), suggesting good convergence. Average neffmin was

∼ 8881 (range: [483− 15059]), suggesting that we had obtained a reasonable1545

approximation of the posteriors.

2URL: https://github.com/lacerbi/vbgmm.
3URL: http://becs.aalto.fi/en/research/bayes/mcmcdiag/.
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Pareto smoothed importance sampling diagnostics

As our main metric of model comparison we computed the Bayesian leave-one-out

cross-validation score (LOO) via Pareto-smoothed importance sampling (PSIS; Vehtari

et al., 2015, 2016); see Methods in the main text.1550

For a given trial 1 ≤ i ≤ Ntrials, with Ntrials the total number of trials, the PSIS

approximation may fail if the leave-one-out posterior differs too much from the full

posterior. As a natural diagnostic, PSIS also returns for each trial the exponent ki of

the fitted Pareto distribution. If ki > 0.5 the variance of the raw importance ratios

distribution does not exist, and for ki > 1 also the mean does not exist. In the latter1555

case, the variance of the PSIS estimate is still finite but may be large. In practice,

Vehtari et al. suggest to double-check trials with ki > 0.7 (Vehtari et al., 2016).

Across all our models and datasets, we found 2382 trials out of 1137100 with

ki > 0.7 (0.21%). We examined the problematic trials, finding that the issue was in

almost all cases the discontinuity of the observer’s decision rule. For all problematic1560

trials the LOOi scores were compatible with the values found for non-problematic trials,

suggesting that the variance of the PSIS estimate was still within an acceptable range.

We verified on a subset of subjects that the introduction a softmax with small spatial

constant on the decision rule would remove the discontinuity and the problems with

Pareto fitting, without significantly affecting the LOOi itself.1565

Visualization of model fits

Let O(D) be a summary statistic of interest, that is an arbitrary function of a

dataset D (e.g., the vestibular bias for a given bin of svis and visual reliability level, as

per Figure 4 in the main text). For a given model, we generated the posterior predictive

distribution of the group mean of O by following this bootstrap procedure:1570

• For m = 1, . . . ,M = 100 iterations:

– Generate a synthetic group of n = 11 subjects by taking n samples from the

individual posterior distributions of the model parameters.
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– For each synthetic subject, generate a dataset Di of simulated responses to

the same trials experienced by the subject.1575

– Compute the group mean of the summary statistic across synthetic subjects,

om = 1
n

∑n
i=1O (Di).

• Compute mean and standard deviation of om, which correspond to group mean

and SEM of the summary statistic.

The shaded areas shown in the model fits figures in the main text are the posterior1580

predictive distributions (mean ± SEM) of the summary statistics of interest.

Model validation and recovery

We performed sanity checks and unit tests to verify the integrity of our code.

To test the implementation of our models, for a given observer (given model and

parameter vector θ) we tested the data simulation code (functions that simulate1585

responses; used e.g. to generate figures) against the log likelihood code (functions that

compute the log likelihood of the data). For a number of subjects and models we

verified that, at the MLE solution, the log likelihood of the data approximated via

simulation (by computing the probability of the responses via simple Monte Carlo) was

∼ equal to the log likelihood of the data computed numerically. This ensured that our1590

simulation code matched the log likelihood code, being a sanity check for both.

We performed a model recovery analysis to validate the correctness of our analysis

pipeline, and assess our ability to distinguish models of interest using all tasks (‘joint

fits’); see e.g. Acerbi, Ma, and Vijayakumar (2014); van den Berg et al. (2014). For

computational tractability, we restricted our analysis to six observer models: the most1595

likely four models for each different causal inference strategy (to verify our ability to

distinguish between strategies), and, for the most likely model, its variants along the

prior and noise factors (to verify whether we can distinguish models along those axes).

Thus, we consider the following models: Fix-X-E, Bay-X-E, Bay/FFu-X-I, Fix/FFu-C-I,

Fix-X-I, Fix-C-E (see main text for a description). We generated synthetic datasets1600

from each of these six models, for all three tasks jointly, using the same sets of stimuli
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that were originally displayed to the 11 subjects. For each subject, we took four

randomly chosen posterior parameter vectors obtained via MCMC sampling (as

described in Section B), so as to ensure that the statistics of the simulated responses

were similar to those of the subjects. Following this procedure, we generated 2641605

datasets in total (6 generating models × 11 subjects × 4 posterior samples). We then

fit all 6 models to each synthetic dataset, yielding 1584 fitting problems. For

computational tractability, we only performed maximum likelihood estimation (see

Section B, with 50 restarts), as opposed to MCMC sampling, whose cost would be

prohibitive for this number of fits. The analysis was otherwise exactly the same as that1610

used for fitting the subject data. We then computed the fraction of times that a model

was the ‘best fitting’ model for a given generating model, according to AICc

(considering that AICc approximates LOO in the limit of large data).
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Model recovery analysis. Each square represents the fraction of datasets that were1615

‘best’ fitted from a model (columns), for a given generating model (rows), according to

the AICc score. Bright shades of gray correspond to larger fractions. The bright

diagonal indicates that the true generating model was, on average, the best-fitting

model in all cases, leading to a successful model recovery.

We found that the true generating model was recovered correctly in 89.4% of the1620

datasets on average (see above). This finding means that our models are distinguishable
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in a realistic setting, and at the same time validates the model fitting pipeline (as it

would be unlikely to obtain a successful recovery in the presence of a substantial coding

error). Since our model recovery method differs from the procedure used on subject

data in the comparison metric (AICc via MLE, rather than LOO via MCMC), we1625

verified on subject data that AICc and LOO scores were highly correlated across

subjects (Adler & Ma, 2016). The Spearman’s rank correlation coefficient between the

two metrics was larger than 0.99 for each of the sixteen models in the joint fits,

providing strong evidence that results of our model recovery analysis would also transfer

to the framework used for the subject data.1630
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Appendix C

Absolute goodness of fit

In this appendix we describe a general method to compute absolute goodness of fit,

largely based on the approach of Shen and Ma (2016).4

Computing the absolute goodness of fit

Let X be a dataset of discrete categorical data grouped in M independent batches

with K classes each, such that Xjk is the number of observations for the j-th batch and1635

the k-th class. We define Nj = ∑
kXjk the number of observations for the j-th batch.

We assume that observations are ordered and independent, such that the

distribution of observations in each batch j is the product of Nj categorical

distributions with parameters pj = (pj1, . . . , pjK) (frequencies), such that the

probability of the data is

p(X) =
M∏
j=1

K∏
k=1

p
Xjk

jk

with unknown vectors of frequencies pj.

We assume that we have a model of interest q that predicts frequencies qjk for the

observations, with ∑k qjk = 1 for 1 ≤ j ≤M . As a reference, we consider the chance

model q0 with frequencies q0
jk = 1/K.1640

We define the absolute goodness of fit of q as

g (q) = 1− KL (p||q)
KL (p||q0) . (C1)

where KL (p||q) is the Kullback-Leibler divergence (also known as relative entropy)

between a ‘true’ distribution p and an ‘approximating’ distribution q.

Importantly, g (q) = 0 when a model performs at chance, and g (q) ≤ 1, with

g (q) = 1 only when the model matches the true distribution of the data. In other1645

words, g (q) represents the fractional information gain over chance. Note that g (q) can

be negative, in the unfortunate case that a model performs worse than chance.

4URL: https://github.com/lacerbi/gofit.
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As another important reference, we recommend to also compute the absolute

goodness of fit g (q̄) of the histogram model q̄, with frequencies defined from the

empirical frequencies across batches as q̄jk = ∑M
l=1 Xlk/N , for 1 ≤ j ≤M and1650

N = ∑
j Nj. A comparison between g (q) and g (q̄) is informative of how better the

current model is than a simple histogram of categorical observations collapsed across

batches. In some circumstances, the chance model can be a straw model, whereas the

histogram model may represent a more sensible reference point.

In order to estimate Eq. C1, we need to compute the relative entropy KL (p||q)1655

between the data and a given distribution q,

KL (p||q) =Ep [log p]− Ep [log q]

=−H(p) +H(p, q)
(C2)

where the first term is the (negative) entropy of the data, and the second term is called

the cross-entropy between p and q. We will show in the following sections that the

negative cross-entropy is approximated by the cross-validated log likelihood of the data,

LLCV(q).1660

Combining Eq. C1 with our estimates of Eq. C2, we obtain

g (q) ≡ 1− H(p) + LLCV(q)
H(p) + LLchance(q)

. (C3)

We show next how to estimate the entropy of the data, and prove that the negative

cross-entropy between p and q is approximated by the cross-validated log likelihood.

Entropy of the data

As noted in Shen and Ma (2016), the naïve plug-in estimator of the entropy of the1665

data leads to a biased estimate of the entropy, and this bias can be substantial when the

data are sparse (a few observations per batch). Instead, we use the Grassberger
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estimator of the entropy (Grassberger, 2003),

H(p) =
M∑
j=1

H(pj) ≈
M∑
j=1

NjĤG(Xj) (C4)

where the Grassberger estimator of the entropy per trial is defined as

ĤG(Xj) = G (Nj)−
1
Nj

K∑
k=1

XjkG (Xjk) (C5)

and G (h) for h ∈ N are Grassberger’s numbers defined as1670

G(0) = 0, G(h) = ψ (h) + 1
2 (−1)h

[
ψ

(
h+ 1

2

)
− ψ

(
h

2

)]
for h > 0, (C6)

where ψ is the digamma function.

That is, our estimate of the negative entropy is

−H(p) ≈ −
M∑
j=1

Nj

[
G (Nj)−

1
Nj

K∑
k=1

XjkG(Xjk)
]
, (C7)

which is the same as Eq. 21 in Shen and Ma (2016), when restricted to the binomial

case (K = 2), and after correcting for a typo (N in the denominator of their equation

should read as Nj).1675

Cross-entropy

The estimated cross-entropy is

Ĥ(p, q) = −Ep [log q] = −
M∑
j=1

NjEpj
[log qj] = −

M∑
j=1

NjEp̂j
[log qj] (C8)

where in a slight abuse of notation we denoted with pj (resp., qj) the categorical

distributions associated to the data (resp., model) for the j-th batch. Crucially, since

the expectations only involve q, p̂jk ≡ Xjk/Nj is an unbiased estimator of pjk.1680
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Eq. C8 becomes

−
M∑
j=1

NjEp̂j
[log qj] =−

M∑
j=1

NjEp̂j

[
log qx1

j1 · · · q
xK
jK

]

=−
M∑
j=1

Nj

K∑
k=1

Ep̂j
[xk] log qjk

=−
M∑
j=1

K∑
k=1

Nj p̂jk log qjk

=−
M∑
j=1

K∑
k=1

Xjk log qjk,

(C9)

which is the negative log likelihood of the model, −LL(q).

Note that typically we also need to estimate the model parameters, and

computing Eq. C9 on the same dataset used to estimate parameters will yield a biased

estimate of the log likelihood (see e.g., Burnham & Anderson, 2003). Shen and Ma1685

suggest to obtain an independent estimate of the log likelihood of the model via

cross-validation, LLCV (Shen & Ma, 2016). According to their method, model

parameters are estimated on half of the data, and the log likelihood of the model (and

also the entropy of the data) is evaluated with the other half of the data. As an

improvement over their method, we advocate to estimate the expected log likelihood via1690

leave-one-out (LOO) cross-validation score obtained via MCMC Vehtari et al. (2016).

This will produce an unbiased estimator of the expected log likelihood, and allows to

use all the available data to obtain a more robust estimate of the relative entropy.

In conclusion, our estimate for the cross-entropy is

Ĥ(p, q) = −LLCV(q), (C10)

with LLCV(q) computed as the LOO score of the model, and it corresponds to Eq. 19 in1695

Shen and Ma (2016).

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/150052doi: bioRxiv preprint 

https://doi.org/10.1101/150052
http://creativecommons.org/licenses/by-nc-nd/4.0/


BAYESIAN COMPARISON OF CAUSAL INFERENCE STRATEGIES 78

Appendix D

LOO scores for all models

In this appendix we report tables of LOO scores for all models and subjects, which were

used to perform group Bayesian Model Selection (BMS), the model comparison

technique adopted in the main text. For each subject, LOO scores are shown relative to

the LOO of the model with highest mean LOO across subject, which is printed in1700

boldface. Models are ranked according to average LOO.

Summing (equivalently, averaging) LOO scores across subjects is a simple

‘fixed-effect’ model comparison analysis, in which all subjects are believed to belong to

the same model. Results of the fixed-effect analysis differ in details from the group

BMS, but the overall qualitative findings are analogous.1705

Unity judgment task

Model S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Mean ± SE

Bay-X-I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.0

Bay-X-E −22.1 4.5 −12.7 −29.7 22.2 −24.7 −1.8 −2.6 1.7 35.9 −0.4 −2.7± 5.9

Fix −31.6 12.5 −12.9 0.7 −12.4 −18.8 1.8 12.3 −2.8 10.2 −4.8 −4.2± 4.2

Bay-C-I −0.3 4.6 0.4 −11.7 −11.9 2.2 −0.4 −0.8 −2.8 −25.6 −1.8 −4.4± 2.6

Fix-C −30.6 13.2 −10.5 2.3 −21.1 −18.0 1.1 14.4 −2.6 −29.0 −7.6 −8.0± 4.7

Bay-C-E −26.4 −18.7 −14.2 −29.8 16.0 −41.9 −1.6 −17.0 −1.9 12.5 −2.9 −11.4± 5.4

SFu −272.4 −119.9 −245.8 −122.5 −112.1 −154.5 −272.4 −120.9 −250.2 −122.0 −117.5 −173.7± 21.1
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Bimodal inertial discrimination task

1710

Model S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Mean ± SE

Bay-X-E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.0

Fix-X-E −0.9 0.5 −2.2 −13.0 −0.8 0.8 −0.6 0.4 0.3 3.4 1.5 −1.0± 1.3

FFu-X-I −0.7 0.9 −3.5 −11.3 0.4 1.3 1.2 1.6 1.5 −12.3 1.1 −1.8± 1.6

Fix-X-I −0.9 2.0 −3.2 −11.5 0.6 1.3 0.6 0.0 0.7 −12.5 1.1 −2.0± 1.6

FFu-X-E −0.2 0.9 −3.6 −10.2 0.6 1.5 0.9 1.5 1.4 −18.8 1.2 −2.3± 2.0

Fix-C-E −9.8 −3.7 0.1 −18.7 −0.9 −2.5 −7.1 1.1 −2.3 3.9 0.4 −3.6± 1.9

Bay-C-E −10.5 0.3 −0.6 −5.7 0.6 −1.9 −11.8 0.1 −1.8 −5.4 −3.2 −3.6± 1.3

Bay-X-I −3.1 −2.6 −5.7 −13.0 −1.6 −1.5 0.2 −0.8 0.2 −15.5 1.4 −3.8± 1.7

FFu-C-E −20.1 −22.1 −9.9 −34.7 −14.8 −21.9 −31.9 −6.0 −2.4 −57.7 −2.1 −20.3± 5.0

FFu-C-I −20.2 −22.1 −9.9 −34.8 −14.8 −21.8 −31.9 −6.0 −2.6 −57.7 −2.2 −20.3± 5.0

Fix-C-I −20.2 −22.1 −9.9 −34.8 −14.8 −21.9 −30.6 −6.8 −3.1 −57.8 −2.3 −20.4± 4.9

Bay-C-I −19.6 −21.6 −10.4 −34.7 −15.9 −22.7 −32.3 −6.2 −2.8 −58.2 −2.8 −20.6± 5.0

Joint fits

Model S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Mean ± SE

Fix-X-E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.0

Fix-X-I 7.3 −7.2 −4.4 31.9 −16.1 23.7 −40.6 −26.6 −38.6 −20.4 2.4 −8.0± 7.1

Fix/FFu-X-E −14.8 −19.7 −15.4 4.8 −3.4 0.5 −42.6 −4.3 −14.8 −8.9 2.4 −10.6± 4.0

Fix-C-E 0.4 −9.2 −1.9 −14.3 −41.9 −7.9 −3.5 0.9 −6.5 −46.7 −10.7 −12.8± 4.9

Fix/FFu-X-I −26.6 −19.7 −22.5 4.8 −2.4 0.5 −52.4 −4.2 −59.7 −2.9 2.3 −16.6± 6.7

Bay-X-E 17.1 −34.2 −6.2 −31.3 −25.8 −20.6 −9.5 −128.6 12.7 12.3 −6.2 −20.0± 12.1

Bay/FFu-X-E −20.8 −39.0 −25.3 0.5 10.8 −14.9 −42.9 −127.0 −40.8 3.7 1.2 −26.8± 11.6

Fix/FFu-C-E −14.2 −21.0 −17.9 −20.5 −47.6 −6.0 −44.5 −3.3 −19.0 −103.6 −8.5 −27.8± 8.7

Fix-C-I −3.6 −32.0 −15.8 −14.1 −59.5 2.1 −85.5 −25.2 −59.0 −94.9 −9.4 −36.1± 10.1

Fix/FFu-C-I −25.6 −21.1 −22.0 −20.6 −47.7 −6.1 −86.0 −3.4 −59.1 −103.7 −8.6 −36.7± 10.1

Bay-C-E 2.7 −73.1 −29.5 −44.2 −33.6 −74.9 −16.1 −191.4 −6.7 −12.3 −26.4 −45.9± 16.4

Bay/FFu-C-E −36.4 −77.3 −47.1 −31.0 −15.4 −45.3 −90.7 −206.7 −72.9 −74.3 −11.8 −64.4± 16.2

Bay-X-I −356.3 −128.2 −193.6 −204.0 −91.3 −35.6 −177.3 −235.6 −298.7 −105.2 −6.3 −166.6± 32.2

Bay-C-I −462.0 −222.2 −318.1 −231.3 −158.8 −77.6 −319.6 −338.0 −488.1 −259.2 −51.2 −266.0± 42.1

Bay/FFu-X-I −872.8 −416.4 −544.9 −589.5 −304.5 −424.8 −555.4 −397.0 −593.0 −272.0 −53.7 −456.7± 64.2

Bay/FFu-C-I −888.7 −445.3 −556.3 −611.2 −340.1 −441.8 −551.3 −396.2 −625.7 −351.2 −69.8 −479.8± 62.6
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Appendix E

Model fits of full data for explicit inference task
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Explicit inference task, full data. Results of the explicit inference (unity judgment)

task, for two models of interest. Proportion of ‘unity’ responses for a given (svis, svest)

heading direction pair (indexed from 1 to 99), and for different levels of visual cue

reliability. Points are data, lines are model fits (average fit across subjects). Error bars

are omitted for clarity. A: Best Bayesian model (Bay-X-E). B: Best fixed-criterion1720

model (Fix-C). Neither model appears clearly superior across all noise levels (see main

text).
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