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The drug design data resource (D3R) consortium organises blinded challenges

to address the latest advances in computational methods for ligand pose prediction,

affinity ranking, and free energy calculations. Within the context of the second

D3R Grand Challenge several blinded binding free energies predictions were made

for two congeneric series of FXR inhibitors with a semi-automated alchemical free

energy calculations workflow featuring the FESetup and SOMD tools. Reasonable

performance was observed in retrospective analyses of literature datasets. Never-

theless blinded predictions on the full D3R datasets were poor due to difficulties

encountered with the ranking of compounds that vary in their net-charge. Per-

formance increased for predictions that were restricted to subsets of compounds

carrying the same net-charge. Disclosure of X-ray crystallography derived binding

modes maintained or improved the correlation with experiment in a subsequent

rounds of predictions. The best performing protocols on D3R set1 and set2 were

comparable or superior to predictions made on the basis of analysis of literature
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SARs only, and comparable or slightly inferior, to the best submissions from other

groups.

1 Introduction

There is growing interest in the routine use of alchemical free energy (AFE)

calculations for predictions of protein-ligand binding energies in structure-based

drug discovery programs [1–7]. In particular building on pioneering work over

three decades ago [8,9], some modern alchemical relative free energy calculation

protocols achieve in several diverse protein binding sites sufficiently accurate

predictions of binding energies (root mean square deviations (RMSD) under

1.5 kcal·mol−1; Pearson Correlation coefficient’s (R) of around 0.7 or better)

to speed up hit-to-lead and lead optimisation efforts [10]. In favourable cases,

AFE calculations can even reproduce subtle non-additivity of structure-activity

relationships [11]. However, for a given set of protein-ligand complexes it remains

difficult to anticipate the predictive power of AFE calculations. Uncertainties in

binding modes [12–14] protonation/tautomeric states [15,16], binding site water

content [17–19], and choice of potential energy functions [20,21], can profoundly

influence the outcome of such calculations. Accordingly, there is much inter-

est in defining as much as possible a domain of applicability for the technology [22].

Blinded prediction competitions, whereby participants submit physical

properties computed by a model in the absence of knowledge of the actual

experimental data, have been instrumental in driving methodological progress in

a wide range of scientific fields [23–26]. Blinded predictions reduce the impact of

unconscious biases on the design of protocols, and allow evaluation of molecular

modelling methods in a context closer to their intended use in drug discovery.

This is advantageous for academic groups that have expertise in computational

methodologies, but lack resources to carry out prospective studies. It is also

beneficial for the field to evaluate different methodologies applied to the same
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dataset with identical analysis protocols.

This report focuses on the predictions submitted by our group within the con-

text of the second Drug Design Data Resource (D3R) Grand Challenge, that ran

between September 2016-February 2017. The D3R Grand challenge 2 was the sec-

ond blinded prediction challenge organised by the D3R consortium in this case

looking at predicting binding poses, binding affinity ranking, and free energies for

a series of 102 ligands of the Frasenoid X Receptor (FXR). This complements

previous reports from our group on blinded predictions of protein-ligand poses,

rankings, binding free energies [27], distribution coefficients [28], and host-guest

binding free energies [29], within the frame work of the first D3R challenge in

2015 and the SAMPL5 challenges [30,31]. The dataset of 102 inhibitors of FXR,

both crystal structures and affinity data, were provided by Roche. The competi-

tion featured pose predictions, dataset rankings, and relative binding free energy

predictions for two subsets of 15 and 18 compounds referred to as set1 and set2

respectively. Our group only submitted predictions of the relative binding free

energies for the set1 and set2 subsets. Submissions were made before (stage1)

and after (stage2) information about binding poses of representative set1 or set2

compounds were made available. This enabled an analysis of the impact of the

available experimental data on the performance of the protocols. All input data

download and submissions upload were conducted via the website of the D3R

consortium [32].

2 Theory and Methods

2.1 Datasets

2.1.1 Blinded datasets

At the start of the challenge (stage1), the organisers released the pseudo apo-

protein structure of ligand 10 as provided by Roche, as well as 36 ligands in SDF
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format to be used for the prediction of crystallographic poses, and an additional

set of 66 ligands that should be used in affinity rankings. There were two subsets

identified among these 102 ligands, set1 with 15 compounds and set2 with 18

compounds, for which relative binding free energies could be calculated. Ligand

subsets set1 and set2 are depicted in Figure SI2. For the second stage of the

challenge, 36 X-ray structures were released, meaning that they could be used to

prepare input files for alchemical free energy calculations. Once the competition

was over a set of IC50 data for the entire dataset was released. The data stems

from a scintillation proximity assay using only the FXR binding domain and a

radioactive tracer. More information on the experimental binding assay as well as

a study on other FXR inhibitors can be found in a series of publications [33–36].

Experimental relative binding free energies were estimated by eq. 1

∆∆GL1→L2 = kBT ln
IC50(L2)

IC50(L1)
, (1)

where L1 and L2 represent two ligands for which a relative energy difference is

computed and kB and T are the Boltzmann constant and temperature respectively.

2.1.2 Literature datasets

In order to test the computational protocols before submission of blinded predic-

tions, retrospective studies were carried out using available literature data. A set

of inhibition and structural data for 3-aryl isoxazole analogs of the non-steroid

agonist GW4064 had been previously published [34,36]. The data consists of two

different ligand series, where the first series contains 8 compounds (LitSet1) and

the second series 17 (LitSet2). The same experimental IC50 assay as described

for the blinded dataset was used. Relative binding free energies were computed

from the reported IC50s with equation 1. A summary of the compounds present

in LitSet1 and LitSet2 can be found in the Figure SI1.
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Fig. 1 Semi-automated workflow for predicting relative free energies of binding. Workflow
operations are depicted by blue boxes. Green boxes denote software available for automated
execution of the workflow step. Red boxes denote operations that require human intervention.

2.2 Methods

The methodology used for the calculations of relative binding free energies of FXR

ligands was a single topology molecular dynamics alchemical free energy approach.

Several operations are necessary to produce, from an input set of protein atom

coordinates and 2D descriptions of ligands, a set of output relative free energies of

binding. Currently this is implemented by a semi-automated workflow as depicted

in figure 1.

2.2.1 Initial protein and ligand structure setup

For the two sets of literature data, the crystal structure with PDB ID 3FXV (FXR

in complex with compound 7a) was used for the ligands taken from Feng et al. [34],

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 10, 2017. ; https://doi.org/10.1101/150474doi: bioRxiv preprint 

https://doi.org/10.1101/150474
http://creativecommons.org/licenses/by-nd/4.0/


6 Antonia S J S Mey et al.

and the crystal structure with PDB ID 3OKI (FXR in complex with compound

1a) was used for data taken from Richter et al. [36].

Due to the plasticity of the binding site of FXR and the differences in shape

between compounds in set1 and set2, two different protein structures were needed

to build complexes between FXR and compounds of set1 and set2. Each structure

required a different preparation protocol. For set1 the FXR structure provided by

the organizers was chosen as an initial template. For the docking calculations, that

mainly consider residues delineating the binding site, the standard protein prepa-

ration workflow in Maestro 11 (beta) and conversion to the appropriate format

with the utility fconv was sufficient. To use the resulting structure in alchemical

free energy simulations, however, it was necessary to model the missing region

comprised between residues A459 and K464. Visual analysis of crystallographic

structures available in the PDB revealed that fragments of the region comprised

between M450 and N472 are missing in several structures (i.e: 3FXV), or are

arranged in at least two slightly different conformations. The first conformation

displays a slightly kinked alpha helix spanning from residue N432 to residue N461

with a loop connecting residues D462 to T466 (as in structure 3OKH). In the sec-

ond conformation the kinked alpha helix is shorter (N432 to S457) and the loop is

longer (W458 to T466) and adopts a different orientation (as in structure 3OKI).

After superimposing the structure provided by the organizers with representative

structures of each conformation, 3OKH was deemed as a suitable template to build

the missing fragment of the structure. Subsequently appropriate capping groups

were added to residue M247 of the main chain and to residues D743 and D755

of the co-activator fragment. For set2, the 3OKI structure was used as an initial

template and the preparation process was significantly simpler. The standard pro-

tein structure preparation workflow of Maestro 11 (beta) with addition of capping

groups was sufficient to generate structures suitable for both docking and FEP

calculations.
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Ligand 3D structures compatible with the assay conditions were generated

from 2D sdf files provided by the organizers using MarvinTools scripts available in

Marvin Sketch 15.3.30 software package. The pKa predictor available in the same

package was used to evaluate the major protomer/tautomer for these compounds

bearing ionizable substituents. No crystallographic water molecules were retained

for the docking calculations.

2.2.2 Generation of ligand binding modes

Binding modes for the literature data were manually build in Maestro 11 (beta) by

means of an overlay with the binding mode of compounds 7a and 1a as observed

in the X-ray crystal structures 3FXV and 3OKI respectively.

For set 1 of the blind datasets, a putative binding mode for the series was ob-

tained by docking the compounds bearing the smallest (hydrogen, 91) the bulkiest

(morpholino amide, 102) substituent, as well as compound 101 to probe the ef-

fect of a ioniozed carboxylic acid on the binding mode. Consistent binding modes

were obtained for the three molecules in the crystallographic structure provided

by the organizers. To minimize the differences between binding modes within the

set1 series, the binding modes for all compounds were manually created from the

binding mode of the largest compound 102. A similar protocol was followed for

compounds in set2, using compounds 12, 74, 76, 79 and 83 to explore the in-

fluence of different substituents in the sulfonamide. A consistent binding mode

was found for these compounds in the protein conformation displayed in PDB

ID 3OKI, and putative binding modes for the entire series were manually created

from the binding mode of compound 83.

All docking calculations were performed with rDock, generating the cavity

using the two-sphere method available in the program, centering a 15 Å cavity

within residues M294, I356, S336 and Y373 using 1.5 and 4.0 Å for the radius of

the small and large spheres respectively. Manual building of the compounds was

performed with Maestro 11 (beta) and the minimizer available in the suite was used
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to avoid steric clashes. After poses were obtained, water molecules resolved in the

X-ray structure provided by the organizers were superimposed with the coordinates

of the poses. Clashing water molecules were displaced to nearby positions. For the

second stage of the challenge, the additional knowledge gained from the crystal

structures was leveraged to prepare new input files for the alchemical free energy

calculations.

2.2.3 Alchemical calculations input preparation

Once a set of satisfactory 3D poses for both set1 and set2 was obtained, a relative

free energy perturbation network was manually designed for both set1 and set2

ligands. The network was assigned in such a way that resulting perturbations be-

tween structure would be minimal and as many as possible simple cycles would be

contained in the network in order to allow for cross validation using cycle closure as

a measure. Set1 included one ambiguous binding mode for compound 47. For set2

only three of the 18 compounds had a clearly preferred binding mode. Typically

there was uncertainty in the position of ortho or meta substituents of a benzyl

ring. Whenever there was ambiguity, the different binding modes were included in

the perturbation map. The perturbation networks can be found in figures 3-7 of

the SI. With the perturbation networks defined, the software FESetup [37] release

1.3dev, was used to parametrise set1 and set2 ligands, setup ligands in a water

box as well as protein environment and create the needed input for the alchemical

free energy simulations.

Ligands

Ligands were parametrised using the generalised amber force field 2 (GAFF2) [38],

followed by solvation in a rectangular box of 12 Å length using TIP3P water [39,

40]. An energy minimization using a steepest decent algorithm with 500 steps was

carried out on the water box, followed by an NVT simulation with the ligand

restrained, during which the system was heated to 300 K over 1000 steps. Next

an NPT equilibration at 1 atm was run for 5000 steps, followed by the release
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of the restraint on the ligand over 500 steps. FESetup used the software pmemd

for this equilibration. For each perturbation a SOMD compatible perturbation file

was then created from the perturbation map produced by FESetup.

Protein ligand complex

For the protein and ligand complex the protein and previously parametrised lig-

ands were combined and solvated in a rectangular box of 10 Å. The protein force-

field was the amber 14 SB forcefield [38]. An equivalent solvation and equilibration

protocol was used as described for the solvated ligand only.

2.2.4 Alchemical free energy simulations

The alchemical free energy protocol used here is based on the SOMD software as

available in the Sire 2016.1.0 release [41]. This version of SOMD is linked with

OpenMM 7.0.1 [42] that provides a CUDA compatible integrator enabling simu-

lations to be run on a cluster of GPUs.

Details about the theoretical background are available elsewhere [6,43,7,4,44–

46,10]. The main idea behind alchemical free energy calculations is to avoid direct

computation of the free energy change associated with the reversible binding of a

ligand to a protein. Instead one computes the free energy change for artificially

morphing a ligand (L1) into another ligand (L2). By introducing a parameter λ,

which defined the change from L1 to L2. Practically, either a replica exchange

algorithm is used to simulate at different λ windows, or a set of discrete λ sim-

ulations is carried out. Repeating this process for L1 and L2 in aqueous solution

or bound to the protein of interest enables construction of a thermodynamic cycle

that yields the relative binding free energy of the two ligands.

Each alchemical free energy calculation for a pair of ligands L1 and L2 con-

sisted minimally of one forward (L1 to L2) and one backward (L2 to L1) compu-

tation. Ligand pairs that showed poor agreement between forward and backwards

simulation were repeated up to three times. Mean free energies and standard er-

ror were estimated from the resulting distributions of computed relative binding
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free energies. Further details are provided in the SI [47]. All simulations shared

the following common set of parameters. Each simulation box was treated with

periodic boundary conditions and simulations were run for 4 ns each using a 2

fs integration timestep with a Leap-Frog-Verlet integrator. Bonds involving hy-

drogens were constrained, except if the hydrogen atom was morphed to a heavy

atom in the perturbation. The temperature was maintained at 298 K using an

Andersen thermostat and a collision frequency of 10 ps−1 with velocities initially

drawn from a Maxwell-Boltzmann distribution of that temperature. Pressure was

kept at 1 atm using the Monte Carlo Barostat implemented in OpenMM with

an update frequency of 25 MD steps. For non-bonded interactions an atom-based

shifted Barker-Watts reaction field scheme was used with a cutoff of 10 Å and

the reaction field dielectric constant ε = 82.0. The number of λ windows for each

simulation varied for different perturbations and a summary, as well as complete

simulation parameters can be found in the SI. All input files are available on a

github repository [48].

2.2.5 Free energy analysis and convergence

Free energy changes were estimated both with thermodynamic integration and the

multi state Bennett’s acceptance ratio (MBAR) estimator, as implemented in pym-

bar (v 3.0.0 beta 2) [49], which was integrated into the Sire app analyse freenrg.

The TI analysis served mainly two purposes; first, to ensure that the MBAR and

TI free energy estimates for a particular perturbation are consistent to within ap-

proximately 0.5 kcal·mol−1 and second, to test the convergence of the gradient

∂U
∂λ time series. Stationarity of the timeseries was assessed by means of the aug-

mented Dicky-Fuller test. Non-stationary gradient timeseries in the pool of over

10,000 timeseries trajectories generated in this study were identified. This served

as a basic test for convergence, and all non-stationary trajectories were repeated.

Convergence was also assessed by checking whether binding free energies from for-

ward and backward simulations were consistent, as well as with cycle closures in
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the perturbation network. Simulations with poor cycle closures or poorly agreeing

forward and backward transformations were repeated multiple times. The actual

process of the free energy analysis for estimating cycle closure and overall affini-

ties based on MBAR is described in the following. The first 5% of the trajectories

were discarded to allow for equilibration before MBAR analysis. Perturbation for

morphing L1 to L2 and L2 to L1 were both simulated and resulting binding free en-

ergies were averaged for the forward and (reversed) backward perturbations. When

available, averages were calculated across multiple independent repeats. The indi-

vidually estimated free energy differences were then read into a networkx (v 1.11)

digraph [50]. The error estimated between repeated runs of backwards/forwards

simulations served as the estimated error for each averaged network edge. Bind-

ing free energies relative of a ligand Li to a reference compound L0 were then

estimated by enumerating all possible simple paths connecting Li to L0 in the

network. The relative binding free energy and its uncertainty along a given path

was obtained by summing relative binding free energies along each edge of the path

and propagating errors. A simple path in a network is defined as the path between

two vertices vp and vq, with no vertex repeating along the path. Therefore a path

between ligand Lq and Lp can be written as Pp,q = (v1=p, v2, . . . , vn=q). This path

is only valid if every pair of vertices has an entry in the weighted adjacency matrix

(wij), which in this cases holds the free energy difference of each perturbation.

Therefore, the relative free energy along a single simple path with n vertices, is

be given by: ∆gp,q = wp,2,+ . . .+, wn−1,q. The associated error of the path can

be obtained from the error matrix εij , which similarly to the weighted adjacency

matrix will hold the error associated with each edge in the network. The error for

a given simple path is therefore given by: ep,q =
√

(ε2p,2+, . . .+, ε2n−1,q). Based on

the error associated with each simple path a weight of the path can be defined as

ωp,q =
∑

all paths
1
ep,q

. Therefore the relative free energy between ligand Lp and Lq
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can be defined as the weighted average of all paths, using ωp,q as the path weight.

∆∆Gpq =
∑

all paths

ωp,q∆gp,q
εp,q

. (2)

The corresponding error Ep,q to the estimated free energy is give by:

Ep,q =

√ ∑
all paths

ωp,qep,q. (3)

Thus paths that have smaller statistical errors contribute more than paths that

show larger statistical errors.

If multiple binding modes for one compound were used in the network, they

were combined into a free energy for a single compound using exponential averag-

ing in the following way:

∆∆G = −(kBT ) ln[

N∑
k

exp(−∆∆G(BMk)/kBT )], (4)

where kB is the Boltzmann constant, N the total number of binding modes, and

BMk denotes the k-th binding mode.

2.2.6 Charge scaling correction

Initial analysis of literature datasets (see results) suggested that polarisation effects

may play a significant role in FXR ligand binding energetics. While no polarisable

force-field was readily available to test this hypothesis, there has been some success

in capturing polarisation effects in protein-ligand binding by QM/MM reweighting

of trajectories computed with a classical potential energy function [51]. Given the

time constraints posed by the competition, no such methodologies were used here.

Rather, an ad hoc protocol based on empirical scaling of ligand partial charges

was implemented.

Thus the corrected free energies were given by:

∆∆Gbind,scale(L1, L2) = ∆∆Gbind(L1, L2) +∆∆Gscaled(L1, L2), (5)
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where ∆∆Gscaled is given by:

∆∆Gscaled(L1, L2) = ∆Gscaled(L1, free) +∆Gscaled(L2,bound)−

∆Gscaled(L1,bound) −∆Gscaled(L2, free),

(6)

where the ∆Gscaled values are the free energy changes for scaling the partial

charges of a ligand L1 or L2 in water, or bound to FXR. Such quantities were

evaluated via MBAR analysis of trajectories for 5 evenly spaced λ windows sam-

pled for 1 ns each. Scaling factors ranged from 1 (no scaling) to 0.5 (50% decrease

in magnitude of partial charges).

2.3 Errors analysis

For the comparison of computed binding free energies and experimental binding

free energies two measures are mainly used in the analysis, Pearson R and mean

unsigned error (MUE). To obtain an error estimate for both these measures a

bootstrapping approach is used in which the mean and standard error of each

of the computed free energy estimates serve as the mean and standard deviation

of a Gaussian distribution. For each estimate a new value from this Gaussian

distribution is drawn until a new artificial distribution of computed free energies

is sampled. This resampled distribution is then correlated to the experimental

data. Repeating the process 10,000 times gives rise to a distribution of MUE and

R, for which a mean and 1σ confidence interval can be computed. This was the

default protocol used to estimate metric errors. The organisers, however, chose a

different way of estimating errors in the data sets to facilitate comparison between

different submissions. This approach uses bootstrapping of the dataset, for which

data points (both experimental and computed) are resampled with replacement

until an artificial dataset of the same size is created. This is repeated 1,000 times,

leading to a distribution for Pearson R with 1σ confidence intervals. All error bars

in figure 6 have been generated in this fashion.

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 10, 2017. ; https://doi.org/10.1101/150474doi: bioRxiv preprint 

https://doi.org/10.1101/150474
http://creativecommons.org/licenses/by-nd/4.0/


14 Antonia S J S Mey et al.

3 Results

3.1 Literature datasets

The robustness of the computational protocol was first tested with the two lit-

erature datasets LitSet1 and LitSet2. Supplementary figures 3 and 4 depict the

perturbation network used for LitSet1 and LitSet2 respectively [47]. A summary

of the results, comparing the calculated and measured binding free energies is

given in table 1. While the correlation between LitSet1 computational and ex-

perimental data with R=0.84±0.05 was deemed satisfactory, the mean unsigned

error (MUE) at 3.0±0.2 kcal·mol−1 was judged unexpectedly large. For the second

dataset LitSet2 the overall correlation R=0.56±0.03 is lower, however the MUE is

significantly lower at 1.7±0.1 kcal·mol−1.

Analysis of the pairwise alchemical free energy calculations in the two datasets

suggested that calculated binding free energy changes for perturbations that in-

volve substitution of a non polar group by a polar group were overly exaggerated

with respect to experimental data. Also, LitSet2 contained one negatively charged

compound (1R, carboxylic acid) which was predicted to be ca. 30 kcal·mol−1

less potent than its -H counterpart, whereas experimental data suggests weaker

binding of the acid by ca. +2.6 kcal·mol−1.

The binding site of FXR is rather apolar (see figure 2A), and it was hypoth-

esized that changes in ligand polarisation upon transfer from bulk to the FXR

binding site may play a significant role. This prompted the development of an

ad hoc protocol in an attempt to capture polarisation effects as described in the

methods section via introduction of a set of charge scaling factors. The result-

ing correlation coefficient and MUE for scaling factors between 1 to 0.5 are also

displayed in table 1. Figure 8A in the SI displays the correlation between the

computed and experimental results, and figure 8B of the SI summarises the effect

of changing the scaling corrections from 0.9 to 0.5 of the original charge. It was

found that a scaling factor of 0.7 was the best tradeoff to minimize MUE whilst
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Dataset scaling factor R MUE / kcal◦mol−1

LitSet1

1.0 0.84± 0.05 3.0 ± 0.2
0.9 0.83± 0.04 2.45± 0.18
0.8 0.81 ± 0.04 2.24± 0.23
0.7 0.78 ± 0.08 1.8± 0.15
0.6 0.56 ± 0.09 2.2 ± 0.2
0.5 0.51 ± 0.1 1.4 ± 0.2

LitSet2*

1.0 0.56 ± 0.05 1.77 ± 0.08
0.9 0.54 ± 0.05 1.54 ± 0.09
0.8 0.51 ± 0.05 1.46 ± 0.08
0.7 0.44 ± 0.06 1.47 ± 0.09
0.6 0.37 ± 0.06 1.61 ± 1.7
0.5 0.23 ± 0.07 1.75 ± 0.08

Table 1 Summary of test dataset based on GW4064 compounds. *Charged compound 1R
has been omitted from the analysis.

maintaing a reasonable Pearson correlation coefficient. The effects are more pro-

nounced for LitSet1. The one exception is the charged compound 1R in LitSet2,

for which reasonable agreement with experimental data required a scaling factor

of 0.5.

Given time-constraints no further efforts were devoted to the literature

datasets, and subsequent blinded submissions were made for protocols without

charge scaling correction, or with a charge scaling correction of 0.7 for free energy

perturbations that maintain net-charge, and 0.5 if the net-charge varies in the

perturbation.

3.2 Blinded dataset

For the first stage of the competition binding modes for the FXR ligands in set1

and set2 had to be predicted by analysis of available crystal structures, or docking

calculations as described in the methods section. Figure 2B top panel shows the

structure of set1 ligand 17, and the bottom panel depicts predicted and later

disclosed binding modes. The RMSD is 0.9 Å only, and the binding mode prediction

can be considered successful. For set2 the X-ray crystal structure of 10 was later

disclosed. The predicted binding mode deviates more, whereas at 2.5 Å the RMSD
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17 10

Fig. 2 A: Depiction of the FXR binding site, with hydrophilic residues shown in red and
hydrophobic residues shown in blue. B: Compound 17 from set1, and predicted (orange sticks)
versus observed (grey sticks) binding modes. C: Compound 10 from set2, and predicted (orange
sticks) versus observed (grey sticks) binding modes.

is not exceptionally high, the thiophene ring has been positioned differently to the

X-ray pose. This was of concern as many of the set2 compounds feature variations

in aryl sulfonamide groups.

Table 2 shows results for the protocols submitted at stage 1 of the compe-

tition. The expert opinion full protocol was a submission where binding energies
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Dataset Protocol ID R MUE / kcal·mol−1

Set1

expert opinion full pbjwu 0.16±0.04 1.71±0.08
expert opinion same charge N/A 0.17±0.04 1.76±0.09
full a3c8k 0.16±0.1 2.6±0.1
full guided bolbu 0.14±0.03 1.9±0.04
same charge 0psyy 0.29±0.04 1.9±0.1

Set 2

expert opinion full fxtpq 0.23±0.05 1.79±0.09
expert opinion same charge N/A 0.03±0.05 1.72±0.1
full qvnq5 -0.57±0.04 3.18±0.22
same charge f6een 0.2±0.1 1.35±0.12

Table 2 Performance of the protocols submitted at stage 1 of the D3R competition.

were predicted by one of the authors (JM) by analysis of literature structure-

activity relationships and visualisation of predicted binding modes for the LitD1

and LitD2 datasets. The expert opinion same charge protocol was not submitted

but is presented to facilitate comparison with other protocols. The full protocol

was a submission on the full dataset analysed as described in methods. The full

guided protocol was a submission where only a small number of pathways in the

perturbations network were hand-picked by one of us (JM) to evaluate binding

free energies for the dataset. This was only done for set1. Finally the same charge

protocol was a submission of alchemical free energy predictions restricted to the

largest subset of compounds with the same net-charge.

For the second stage of the competition, calculations were repeated from a new

set of poses for set2 compounds. set1 poses were the same as in stage 1. Addition-

ally individual perturbations were categorised as ’easy’, ’medium’ or ’difficult’ on

the basis of the precision of the calculated relative binding free energies obtained

at stage 1, and this led to lambda schedule protocols with less, the same amount

of, or more, windows as in stage 1 (see SI for details). The time left in the com-

petition was used to carry out multiple repeats of the perturbations that showed

higher statistical errors. Additionally, the optimisation of charge scaling factors on

the literature datasets had been completed by then, and scaling factor corrections

were also applied to set1 and set2 datasets. Table 3 shows the results for protocols
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Dataset Protocol ID R MUE / kcal· mol−1

Set1

full 07tpe 0.13 ± 0.02 2.20 ± 0.08
same charge olv52 0.3 ±0.02 1.41 ± 0.08
full scaled inspj 0.12 ±0.02 2.32 ± 0.09
same charge scaled 4botu 0.13 ± 0.02 2.4 ± 0.1

Set2

full qt771 -0.44 ± 0.02 3.79 ± 0.1
same charge 0jz8u 0.54 ± 0.03 1.67 ± 0.08
full scaled jzrt5 0.41 ± 0.06 1.65 ±0.09
same charge scaled c1nbt 0.41 ± 0.05 1.56±0.1

Table 3 Performance of the protocols submitted at stage 2 of the D3R competition.

submitted at stage 2 of the competition. Only full and same charge protocols, and

their scaled variants, were submitted.

At stage 1 the expert opinion protocol shows R values for both set1 and set2 of

ca. 0.2, and MUE values ca. 1.7 kcal· mol−1. The performance is similar or worse for

the expert opinion same charge protocol. Alchemical free energy based protocols

on the full dataset fare poorly with similar or lower R values, and higher MUE

values. Submissions that only considered compounds with the same net charge

show better performance (R ca. 0.2-0.3, MUE ca. 1.4-1.9 kcal· mol−1). Overall

none of the protocols show satisfactory correlation with experiment.

At stage 2 of the competition, the full and same charge submissions show

lower statistical errors because the additional repeats calculations on the noisier

perturbations have improved convergence. For set1 the MUE decreases, but the

R metric is no different from stage 1 submissions. The scaled submissions for the

full dataset and the same charge dataset achieve similar R values, but the MUE

has worsened. For set2 lower statistical errors are also observed with respect to

stage 1. The full submission produces similarly low R values and high MUE values.

However the full scaled submission significantly increases R from ca. -0.4 to +0.4,

while decreasing MUE from ca. 3.8 to 1.6 kcal· mol−1. The same charge submission

shows a significant increase in R with respect to stage 1 (from ca. 0.2 to ca. 0.5),

but the MUE increases from 1.3 to 1.7 kcal· mol−1. Finally, the same charge scaled

protocol achieves a poorer R value (ca. 0.4) and similar MUE value.
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Overall the most significant improvement at stage 2 is observed for the set2

same charge dataset. This could be because the predicted binding modes at stage

1 were not in agreement with the subsequently disclosed X-ray structures. The

scaling protocol appears to yield large improvements on set2, but this actually

comes at the expense of decreased predictive power for the subset of compounds

that carry the same net-charge (see below).

Figure 3 depicts detailed results for the full dataset of set1 compounds at

different stages of the competition. Figure 3A shows at stage 1 the relative binding

free energy of charged compound 101 is significantly overestimated with respect to

all other neutral compounds . Compound 45 is also a significant outlier. Figure 3B

shows that at stage 2 there is a trend towards better agreement with experiment,

apart from 101 and 45 that remain significantly off. Figure 3C shows that the full

scaled submission considerably improves free energy estimates for compound 101,

but also drastically decreases the accuracy of estimates for neutral compounds

102, 48, 95, 96. It is not clear why predictions for 45 consistently perform so

poorly.

Some highlights for the binding free energy estimations of set2 are shown in

figure 4. The stage 1 full submission is depicted in figure 4A. The poor estimation

of the relative binding free energy of neutral compounds (38, 41, 73, 75) with

respect to other compounds in the dataset that carry one negative charge is very

apparent. Figure 4B, shows the full submission at stage 2 of the competition.

Estimates for the charged compounds improve, however the binding free energies

of the neutral compounds are still poorly estimated. This is more apparent by

inspection of figure 5, which shows the same charge submission where only charged

compounds were considered. This is the best performing protocol overall in terms

of correlation coefficient of R = 0.54 ± 0.03 and MUE = 1.67 ± 0.08 kcal· mol−1.
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Stage 1

Stage 2

Stage 2

A

B

C

Fig. 3 A: Stage1 full submission for set1(ID a3c8k) showing clear overestimation of the relative
binding free energy of charged compound 101. B: Stage 2 full submission (ID 07tpe). C: Stage
2 full scaled submission (ID inspj).

3.3 Comparison to other submissions

The organisers released data for all binding free energy prediction submissions

shortly after the end of stage2, and a summary of the correlation coefficients can

be seen in figure 6. Figure 6A and B are stage 1 submissions for set1 and set2

respectively. Results for stage 2 set1 and set2 are shown in figure 5 C and D.

The authors submissions are shown in green and can also be identified by their

submission ID listed in table 2 and table 3. It should be noted that the shown
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A

B

Fig. 4 A: Stage 1 full submission for set2 compounds (ID qvnq5). B: Stage 2 full submission
for set2 compounds (ID qt771).

Fig. 5 Stage 2 same charge submission (ID 0jz8u).

correlation coefficients are slightly different to the ones reported in the tables 2

and 3. This is down to the use of different error analysis methods between the

authors and the organisers, as discussed in the methods section 2.2. What becomes

apparent however, from figure 6 is that for set1 both at stage 1 and stage 2 there

is no protocol that obviously outperforms another protocol and no statistically
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A B

C D

Fig. 6 Summary of all submitted protocols. A: Stage 1 for set1. B: Stage 1 for set2. C: Stage
2 for set1. D: Stage 2 for set2. Green colours denote the authors submissions and protocol IDs
can be identified in table 2 and table 3. Red colours denote other alchemical methods, blue
colours denote MMPBSA based methods, the light blue colour denote quantum mechanical
based methods and grey denotes any other methods. The ceiling entry is discussed in the text
and shown in purple. All method descriptions are made available by the organisers and can be
found on the www.drugdesigndata.org website.

significant ranking is possible. For set2 and particularly stage 2 there are four

protocols that perform better than the rest, which are a mix of alchemical free

energy and other protocols. Submission 81n55 is an alchemical method based on

FEP+, submission xk67c uses a non-equilibrium pulling approach using Gromacs

as the simulation framework, submission 67a3e uses the software MIX to perform

energy minimisation of protein-ligand complexes, and submission x2j7p also used

FEP+.

Figure 6 suggests, that there is no clear trend indicating a method that consis-

tently outperforms others. Furthermore, the overall correlation between predicted

free energies and experimental values is poor and unreliable for set1.
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4 Conclusions

The blinded predictions on FXR ligands highlighted difficulties in reliably estimat-

ing relative binding energies between compounds that differ in their net-charge

with the current workflow. This was anticipated in light of past experience and

until methodological advances lift this limitation, alternative ad-hoc protocols may

prove more reliable. For instance, other groups submitted in this competition al-

chemical binding energy predictions for ligands modelled as protonated acids in

order to maintain the same net-charge across the full D3R datasets. While this

is an unlikely chemical state for the unbound or bound ligands given the assay

conditions, this setup did lead to superior predictions for the full D3R datasets.

The relatively reasonable correlations obtained retrospectively on LitSet1 and Lit-

Set2 ligand series were encouraging, but the high mean-unsigned error on the

LitSet1 dataset prompted the development of an approximate charge scaling pro-

tocol to account for potential neglect of polarisation effects. This had no beneficial

effect on the accuracy of the blinded predictions and this protocol is not recom-

mended for further use. Overall this indicates difficulties in reliably anticipating

the robustness and transferability of the protocol across different ligand series,

let alone different binding sites. In spite of the difficulties encountered it is useful

to note that expert opinion based on analysis of literature SARs proved no more

predictive on set1 and worse on set2 (excluding charged compounds). While this

observation lacks statistical relevance – presumably there would also be variabil-

ity in different expert opinions – it does highlight the difficulty of the problem.

By contrast, expert opinion often fares well for poses prediction when compared

against automated software workflows [27,52]. It was also encouraging that the

correlation for set2 same-charge subset increased once experimental data about

the binding mode of a representative set2 ligand could be taken into account. By

contrast no significant variation was observed for set1 upon repeating the calcula-

tions, presumably because the binding modes had been well predicted at stage 1

of the competition.
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The D3R Grand Challenge 2016 free energy datasets were markedly larger than

those used in the 2015 competition. This enabled a more reliable comparison of the

performance of different methodologies. Nevertheless, it is apparent that both set1

and set2 are still too small to reliably rank a large number of submissions made

by different groups. A general trend for alchemical free energy protocols can be

observed, establishing them typically in the top 33% of submission, in particular in

set2, for both correlation coefficient and root mean square error (RMSE), as shown

in the SI. It is noteworthy that the features of the distribution of experimental

binding energies for set1 (shorter span and uneven density) contribute to making

predictions intrinsically more difficult than for set2. In addition, the precision of

the experimental data was not determined. Assuming a ca. 0.4 kcal·mol−1 uncer-

tainty in experimental measurements [53] together with bootstrapping suggests

ceiling values for R of ca. 0.82±0.06 and 0.97±0.01 for set1 and set2 respectively.

Thus the best performing methods are far from achieving high accuracy R val-

ues on set1, but show respectable correlation on set2. While it may be difficult

to source significantly larger datasets amenable to alchemical free energy calcula-

tions, it may be useful to assess their intrinsic difficulty for the design of future

competitions.
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