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Abstract

Fitness landscapes map genotypes to organismal fitness. Their topography de-

pends on how mutational effects interact–epistasis–and is important for under-

standing evolutionary processes such as speciation, the rate of adaptation, the

advantage of recombination, and predictability versus stochasticity of evolution.

The growing amount of empirical data has made it possible to better test land-

scape models empirically. We argue that this endeavor will benefit from the

development and use of meaningful null models against which to compare more

complex models. Here we develop statistical and computational methods for fit-

ting fitness data from mutation combinatorial networks to three simple models:

additive, multiplicative and stickbreaking. We employ a Bayesian framework

for doing model selection. Using simulations, we demonstrate that our methods

work and we explore their statistical performance: bias, error, and the power

to discriminate among models. We then illustrate our approach and its flex-

ibility by analyzing several previously published datasets. An R-package that

implements our methods is available in the CRAN repository under the name

Stickbreaker.
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1. Introduction

The fitness landscape is a modeling framework that maps DNA or protein

sequence variants to fitness ([1], [2], [3], [4]). Adjacent locations on a plane rep-

resent genomes that differ by one mutational event. The fitness of each genotype

is envisioned as forming a surface above the plane. Fisher’s Geometric model5

is closely related. There, the plane represents phenotype space (rather than

sequence space) and again the surface above is fitness ([5], [3], [6], [7], [8]). In

reality, of course, the genotype (or phenotype) plane is often highly dimensional;

a two dimensional plane with a fitness surface above is used mainly because it

begets the landscape metaphor and makes the model easier to conceptualize.10

Understanding the topography of the fitness landscape is important. It de-

termines the extent to which recombination confers benefits, which bears on

the potential advantages of sex ([9], [10], [11]); it has consequences for repro-

ductive isolation as a mechanism for speciation ([12], [13], [14]); it dictates how15

stochastic vs predictable evolution is ([15], [16], [17], [18]); it plays a major role

in how likely and at what speed adaptation is to find a highly optimal solution

([19], [20], [21]). But developing an understanding of real fitness landscapes is a

serious challenge. First, the space is staggeringly vast and estimating its shape

from a small sample of the space can be misleading ([22]). Even in a tiny viral20

genome of 5000 bases, there are 5000 x 3 = 15,000 possible first step DNA sub-

stitutions and the number of different genotypes with, say, just five mutations is

on the order of
(
5000
5

)
35 ≈ 6× 1018. The number of unique pathways to each of

these adds severals more orders of magnitude:
∏5

k=1

(
5
k

)
= 2500. Second, fitness

on the landscape in real populations is rarely fixed; it shifts over time due to25

biotic and abiotic changes in the environment ([23], [24], [25], [26]). Third, the
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underlying biology of this space is complex and this makes developing models

based on the biology difficult.

In the face of these challenges, researchers have pursued two major strategies30

to studying fitness landscapes: theoretical and empirical. An extensive body of

theory has been developed that is based on various assumptions about relevant

features such as the number and distribution of mutational effects on fitness,

how mutations interact (epistasis), and the mutation-selection dynamics at work

in the population (e.g. [27], [2], [23], [28], [29], [30], [6], [31], [20], [32], [33] are35

good examples among a large body of literature). In the second approach, em-

pirical data about the fitness landscape are collected ([4]). Given the vast scope

of sequence space, these studies have necessarily focused data collection on small

regions of the landscape. One way to obtained an especially detailed view of

the landscape is to begin with a small set of mutations, construct all combi-40

nations of them and then measure their phenotypes and/or fitnesses (e.g. [34],

[35], [36], [16], [37], [38], [39], [40], [41], [42], [43], [44], [8]). In the landscape

metaphor, this maps out all possible mutational pathways between the wild type

and the genotype with all mutations included. One common variation of this

approach is to use pairs of mutations and engineer the two single mutants and45

double mutant genotypes (e.g. [45], [7], [46]); this amounts to creating many

two-step, 4-genotype networks. As tools for genetic engineering improve, these

experimental approaches are becoming increasingly feasible for greater numbers

of mutations and larger mutational networks (e.g., [47], [48], [49]).

50

There is growing momentum in the field to bridge the theoretical and em-

pirical ([4]). Much of mutational combination data has been fit or compared

to models–either in the original work, in later analysis papers, or both. One
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common approach has been to assume a null model (usually the additive or mul-

tiplicative model) and characterize epistasis as deviations from this (e.g. [45],55

[38], [40], [46]). Another approach has been to characterize the extent of sign

epistasis in the data (the case where mutations switch from being individually

deleterious to being beneficial in combination, or vice versa) and, using a model

of population dynamics, examine the probabilities of different pathways in the

network (e.g. [34], [16], [50], [42], [44]). Other studies have fit the data to land-60

scape models. Among explicitly fitted models, one group is based on mapping

genotypes to fitness and includes the Rough Mt. Fuji model, the NK model,

the uncorrelated model (also known as the House of Cards) as well as models

more tailored to the biology of the study system (e.g. [35], [51], [41], [39], [52],

[53], [54]). The other family of fitted models is based on Fisher’s geometric65

model where mutations are assumed to have additive effects on phenotype and

phenotypes map to fitness (e.g. [36], [55], [7], [56], [26], [8]).

We believe that this endeavor of fitting data to landscape models can be

strengthened by more carefully considering and developing null models. More70

specifically, it has been generally overlooked that there are actually several

equally simple fitness landscape models, any one of which can be taken as a

null against which to compare more complex models: additive, multiplicative

and stickbreaking ([57]). These models are similarly simple in that they all as-

sume that fitness depends on the intrinsic effects of the constituent mutations.75

In the additive model, mutations have an absolute effect on the background fit-

ness; in the multiplicative model their effect is proportional to the background

fitness; in the stickbreaking model their effect is proportional to the distance

between the background and the fitness optimum (generating diminishing re-

turns). One advantage of these models is that because they lack higher order80
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interactions ([58]) or phenotypic dimensions, they have few parameters to esti-

mate. This benefit it not trivial because the amount of data available for model

fitting is severely constrained: the full combinatoric network of k mutations

contains 2k − 1 observable effects.

85

We argue that modeling always benefits from the existence and use of mean-

ingful null models. When null models are rejected in favor of a more complex

one, the rejection is more than a straw man; rather, the way the complex model

differs from the null(s) offers insights into the underlying biology. In other cases,

we may find that the simple model provides a good enough approximation to90

be useful. The purpose of this work is to develop the methods for fitting and

comparing the three basic landscape fitness models to data. Using simulations

and empirical data, we then illustrate how to use these methods.

2. Methods95

2.1. Overview

We begin by assuming that the data represent the complete set of 2k geno-

types created from k mutations (wild type included). Later we return to the

topic of other dataset structures. Our approach here is to fit the data to each

of three models where the models have the same structure: the observed fit-100

ness (or phenotype) of each genotype is the expected fitness (or phenotype)

under the specified model plus Gaussian error. The reader may notice that

the Rough Mt Fuji model is analogous to the additive model used here ([35],

[52]). Furthermore, the process of log-transforming data and then fitting it to

the additive model (e.g. [52]) is analogous to assuming a multiplicative model105

(except a question remains about how to model the error; see below). Fitting
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the stickbreaking model in the same framework has not been done before. In

order to do this, we must estimate the fitness boundary as well as the coeffi-

cients. After establishing how to fit the three models, we develop methods to

compare them and identify the one(s) that best explain the data. We will use110

a Bayesian approach to assign posterior probabilities to the three models.

2.2. Notation

We begin by establishing some notation, much of which is standard. We will

use capital letters to denote sets of mutations or random variables, it should115

be clear from the context whether we are referring to a set of mutation or a

quantity which is observed with error (random variable). Let K = {1, 2, · · · , k}

be the set of all mutations under study. Let the set of mutations comprising a

genotype be denoted by G, where G is a subset of K (G ⊂ K). We will use

small letters to represent elements with in a set, or parameters of the model.120

For example we may refer to mutation i ∈ G as a single mutation among those

in the set of mutations denoted by G.

2.3. Basic models

If there were no errors or noise in the model, then under the additive model,125

the fitness of genotype G, wG, would be

wG = wwt +
∑
i∈G

∆wi, (1)

where ∆wi is the intrinsic effect of mutation i and wwt is the fitness of the

wildtype. Fitness under the multiplicative model would be,

wG = wwt

∏
i∈G

(1 + si) (2)

6
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where si is the intrinsic selection coefficient of mutation i.

130

In the stickbreaking model, the effect of a mutation is to close the distance

to the fitness optimum by a proportion specified by its coefficient ([57]). Thus

when a mutation has a stickbreaking coefficient of 0.25, it moves fitness 25% of

the way to the fitness optimum. If the same mutation occurs on backgrounds of

increasing fitness, the absolute effect of the mutation will diminish. Formally,135

the expected fitness under the stickbreaking model is given by

wG = wwt + d

(
1−

∏
i∈G

(1− ui)

)
(3)

where ui is the intrinsic stickbreaking coefficient of mutation i and d is the

fitness difference between the fitness boundary and the wildtype (see [57] for

derivation of the stickbreaking model).

140

Even when one of these models is a valid, we expect real data deviate from

the expected values for two reasons. First, the models are, at best, approxi-

mations of reality and deviations due to the underlying biological processes will

exist. Second, there is experimental error in real data. We accommodate both of

these sources of noise by combining them into one term such that the observed145

fitness of any genotype is given by its predicted fitness under the model plus a

normally distributed error: WG = wG + ε where ε ∼ N(0, σ2) and wG is given

by equations 1, 2, and 3. We assume that the errors are independent across

genotypes. Note that the stickbreaking and multiplicative models involve prod-

ucts instead of sums. This means they reside naturally on the log-scale while150

the additive model is on the non-log scale. It might seem appropriate, therefore,

to model errors for stickbreaking and multiplicative as log-normal (normal on

the log scale). Although we explored this possibility, we could not resolve the
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problem of how to compare models on different scales. A second reason to use

a common error structure is that the experimental error will typically have a155

normal structure and this will not depend on the underlying model. Finally,

using normal, and not log-normal, error allows us to use a maximum likelihood

estimate of d.

2.4. Estimating distance to the fitness boundary, d, under stickbreaking160

The first step in fitting the stickbreaking model to real data (which we do

in the next subsection) is to estimate d. We develop three different methods of

estimation.

Method 1: Maximum likelihood. Because we are assuming error is normally165

distributed, the maximum likelihood estimate (MLE) will be that value of d that

minimizes the squared differences between observed fitness and the predicted

fitness (right side of 3):

d̂MLE = min
G

[
wG − wwt − d

(
1−

∏
i∈G

(1− ui)

)]2
(4)

In practice, we find the MLE using the optimize function in R. All of the com-

putational work in this paper is done the R environment ([59]).170

Method 2: Relative Distance to Boundary (RDB) estimator. Equation(3)

can be rewritten as

d =
wG − wwt

1−
∏

i∈G(1− ui)
. (5)

Notice that every genotype G the right-hand side of (5) gives a different way to

represent d. The strategy is to begin by estimating
∏

i∈G(1− ui) and then use

8
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that estimate in (5) to estimate d. The expression
∏

i∈G(1− ui) represents the175

relative distance to the boundary (RDB) for genotypeG. If genotypeG produces

a fitness gain of wG−wwt then distance to the boundary would be d−(wG−wwt)

and the relative distance to the boundary would be rG = d−(wG−wwt)
d . So it

follows from (3) that

rG =
d− (wG − wwt)

d
=
∏
i∈G

(1− ui). (6)

It would appear from equation (6) that in order to calculate the relative distance

to the boundary rG using observable fitness effects, one would need to know d

a priori. However, in the APPENDIX we obtain an expression for rG based on

observable fitness effects independent of d. Equation (18) in the APPENDIX

shows that

rG =
wK − wG

wGc − wwt
=
∏
i∈G

(1− ui).

This leads to the following estimate r̂G for the RDB of G180

r̂G =
WK −WG

WGc −Wwt
(7)

which leads to a set of estimates for the boundary d given by

d̂G =
WG −Wwt

1− r̂G
. (8)

We now define the set of all estimates of d given by (8) to be

D = {d̂G : G ⊂ K}. (9)

D can be viewed as a transformation of the fitness effect data. D contains

2k − 1 estimates of d. A measure of the center of the transformed data D will

9
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form our final estimate of d. Both the average and median of D produce valid

estimates of the distance to the boundary d. We did extensive simulations on

the properties of the mean versus the median and have concluded that for the185

noise levels explored here, the median estimator is the better alternative. Thus,

this RDB estimator, which uses all genotypes, is

d̂RDBall = median(D). (10)

Notice that for data without error, rG can only fall between 0 and 1. With noise,

however, genotypes can generate values outside this range. In particular, geno-

types where wG < wwt or wG > wk cause problems. This led us to considered190

a modification to the RDB estimator where we use only the subset of D that

come from genotypes where 0 < rG < 1, denoted D01. In the results section

we will show that this modified estimator outperforms d̂RDBall . For notational

simplicity we hereafter denote it as just d̂RDB. Formally then, the estimator is,

d̂RDB = median(D01). (11)

Method 3: Hybrid estimator. In order to do model selection (below), it is195

invaluable if we can fit the the stickbreaking model to every dataset, even if

the fit is very poor. The two estimators just described do not always produce

valid estimates of d and this prohibits fitting the stickbreaking model to every

dataset. We define a valid estimate to be d > 0 and d < 10(wmax − wwt)

where wmax is the maximum observed fitness. An estimate < 0 implies a fitness200

boundary lower than the observed fitness values. The reason for not accepting

values more than ten times the largest fitness difference from wild type (i.e.

10(wmax − wwt)), is because we want the stickbreaking model to be distinct

from the additive model, yet the stickbreaking model approaches the additive

10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 16, 2017. ; https://doi.org/10.1101/150763doi: bioRxiv preprint 

https://doi.org/10.1101/150763
http://creativecommons.org/licenses/by-nc/4.0/


model as d gets large and the coefficients get small ([57]).205

What can be done when the MLE and RDB estimators both fail? One

guaranteed way to always obtain an estimate of d is simply to use a value slightly

larger (say 10%) than the largest observed fitness: d̂Max = (max(wi)−wwt)(1.1))

for all i ⊂ G. Note that defining d this way results in maximal coefficient

estimates and generally a poor fit to the data. Our view is that if the data is210

so noisy and problematic that we cannot obtain a good estimate of d, then it is

appropriate to disfavor the stickbrekaing model by using a small estimate of d.

We suggest, then, the following rule as a way to estimate d across all datasets:

use d̂MLE unless it fails to produce a meaningful estimate; use d̂RDB unless it

fails; then use d̂Max. We justify this order in the results section below. We refer215

to this procedure for estimating d as d̂hybrid.

2.5. Estimating coefficients

When mutation i is added to background B (where i is not in B), denote

this genotype Bi. Under the additive model, the expected value E(WBi) =

wB + ∆wi, and hence a natural way to estimate the coefficient for mutation220

i is just ∆̂wi = WBi −WB and average over all B and i. We make a small

adjustment to this by weighting the observations on the wild type background

twice as heavily as the other genotypes. This is because we assume wild type

will generally serve as a control in fitness estimation with the consequence that

it is observed more times and thus estimated much more precisely than the other225

genotypes. The consequence is that the variance of the difference WBi −WB

will be σ2 when B is wild type, and 2σ2 when B is not wild type. Weighting

11
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by the inverse of the variance, we get,

∆̂wi =
WBi

j
−Wwt

2(m+ 1)
+

∑
j∈Bi B 6=wt

WBi
j
−WB

m+ 1
(12)

where j ∈ Bi indicates sum over all genotypes containing i, B 6= wt means

exclude the case where B is wild type, and m is the number of backgrounds on230

which i appears (m = 2k−1 or half the genotypes in the dataset).

Because the multiplicative model involves a product, it is simplest on the

log-scale. Taking the log of both sides of equation (2) and defining yG as the

transformed fitness, we have

yG = log(wG)− log(wwt) =
∑
i∈G

log(1 + si) (13)

If we let yi = log(1 + si), then equation 13 implies that E(YBi) = yB + yi.235

YBi−YB therefore provides an estimate of yi. We weight the estimates according

to whether one or both backgrounds are observed with error and then transform

back to the non-log scale:

ŝi = exp

YBi
j
− Ywt

m+ 1
+

∑
j∈Bi B 6=wt

YBi
j
− YB

2(m+ 1)

− 1 (14)

For stickbreaking, we also transform to the log-scale by taking the log of

equation (3), rearranging, and defining zG as the transformed fitness,240

zG = log(1− wG − wwt

d
) =

∑
i∈G

log(1− ui) (15)

Letting zi = log(1 − ui) and replacing d with d̂ in equation (15), we see that

E(ZBi) = zB + zi so that ZBi − ZB provides an estimate of zi. Again, we

estimate i over all genotypes it appears in, weight by the inverse of the variance

12
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and then transform the estimate back to the non-log scale,

ûi = 1− exp

ZBi
j
− Zwt

m+ 1
+

∑
j∈Bi B 6=wt

ZBi
j
− ZB

2(m+ 1)

 . (16)

2.6. Estimating σ2
245

Recall that we assume all genotypes in the dataset except wild type depart

from their predicted value as independent random normal deviates with mean

0 and variance σ2. We thus estimate σ2 by,

σ̂2 =
T∑

G=2

(WG(obs)
−WG(pred)

)2

T − 2
(17)

where WG(pred)
comes from substituting the estimated coefficients (and d̂ in the

case of stickbreaking) into the appropriate equation (equation 1, 2 or 3).250

2.7. Assessing fit and model selection

We are ultimately interested in determining which of the models (stickbreak-

ing, multiplicative, or additive) are consistent with a set of data. Because it is

straightforward to calculate the likelihood of the data under the three models,

we first pursued using AIC to do model selection. To our surprise, this approach255

was unsuccessful. When we analyzed simulated data, we observed that under

parametric conditions with low signal to noise ratios, the true model was falsely

rejected an unacceptably high fraction of the time (i.e. ≥ 5%). We believe this

owes to the nonstandard nature of the data as a network where each observa-

tion involves a different subset of parameters. We eventually abandoned AIC.260

Instead, we developed a Bayesian approach that creates a predictive model of

13
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posterior probability by training it on simulated data. The method has fours

steps: (i) simulate data from priors, (ii) fit data to each model, estimate pa-

rameters and generate summary statistics, (iii) feed the summary statistics into

a multinomial regression to train it, and (iv) use the multionomial regression265

model on other data (e.g. real data) to calculate the probability it comes from

each of the three models.

We now cover these four steps (denoted i-iv) in greater detail. In step (i),

we do simulations. We conducted separate simulations for networks with 3, 4,270

and 5 mutations. For each number of mutations, we simulate 10,000 datasets by

drawing parameters from uniform prior distributions: each model (stickbreak-

ing, multipliactive, additive) has equal (1/3) probability, a coefficient value (u,

s or ∆w depending on the model) is sampled from a uniform (0.05, 0.5) and

then assigned to all mutations in the dataset, and σ is sampled from a uniform275

(0.01, 0.1). For stickbreaking datasets, d = 1 throughout. We then simulate

datasets according to the assumptions described in the ‘Basic Models’ section

above.

In step (ii), we fit the data to each model. For stickbreaking, this requires280

first estimating d. For all three models, we then estimate the coefficients for

each mutation. (Note, while we use the same coefficient value across mutations

when simulating data, we estimate each one individually during the analysis.)

We then summarize the fit using two statistics for each model: R2 and a P-

score. R2 gives an overall measure of how close the predicted fitnesses are to285

the observed values under each model. It is obtained by calculating the mean

fitness over the network (excluding wild type), taking the squared deviations

from this mean, and summing to get the total sum of squares (TSS). We then

14
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estimate the coefficients (and d in the case of stickbreaking) and plug these

estimates into equations 1, 2 and 3 to get predicted fitness values for every290

genotype in the network. We next take the differences between the predicted

values and observed values, square them, and sum to get the residual sum of

squares (RSS). Then, R2 = 1−RSS/TSS. Note that this is not regression and

there is no guarantee that the predicted values will be closer to the observed

values on average than the overall mean is. Thus it is possible for poorly fitting295

models to generate R2 values < 0.

While R2 examines the nearness of observed and predicted values, the P-

score assesses whether the pattern of deviations is consistent with a model. In

short, if the data arose under the model being considered, then the observed300

fitness effects (as defined under that model) should not show a trend with in-

creasing background fitness. If the data arose under a different model, they

should should show a non-zero trend. To make this more precise, consider first

the additive model. Let Bi and B be a background with and without mutation

i. By equation 1, WBi −WB has expected value ∆wi regardless of what back-305

ground is considered. Thus if the data arose under the additive model and we

regressWBi−WB againstWB for all B, we expect a line with intercept ∆wi and

slope zero. If the data instead arose under the multiplicative or stickbreaking

models, we expect positive and negative slopes respectively when we do this

regression ([57]). The analogous argument for the multiplicative model leads to310

the conclusion that if the data arose under it, regressing YBi − YB against WB

should yields zero slope. If the data arose under the stickbreaking model, it is

the regression of ZBi − ZB against WB that should show no slope. Note that

this is the same approach pursued by [40], except that they only considered the

additive model.315
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Our linear regression test to generate a P-score is therefore to take each

mutation i = 1, 2, · · · , k, consider each background upon which it appears, cal-

culate the observed effect under each of the three models (WBi−WB for additive,

YBi − YB for multiplicative, and ZBi −ZB for stickbreaking), and regress these320

against WB . We then fit these data points to a simple linear model using least-

squares and obtain a p-value. The information in the p-values (p1, p2, · · · , pN )

are then summarized by taking the sum of the logs of the p-values to yield a

P-score: P =
∑N

i=1 ln(pi). The smaller the p-values across mutations, the more

negative the P-score becomes. Notice that the pattern of departure from zero325

under the incorrect model is is not actually linear ([57]). By assuming it is lin-

ear, we forego some power but benefit in terms of simplicity and computational

speed.

Upon completing step (ii), the results are summarized as a matrix of 10,000330

rows (one for each datset) by seven columns, one for the true model and six for

the fit statistics: R2
stick, R

2
mult, R

2
add, Pstick, Pmult, and Padd. In step (iii), we

use the matrix of results to do multinomial regression using the neural networks

package in R, nnet. The multinomial regression uses six predictor variables

(R2
stick, R

2
mult, R

2
add, Pstick, Pmult, and Padd) to to calculate the probability the335

dataset arose under each of the three models (stickbreaking, multiplicative, and

additive). This is done separately for 3, 4, and 5. Once the model has been

trained, it is ready to use on other datasets (step iv). To do so, a dataset is fit

and summarized (step ii) and the summary statistics are passed into the pre-

viously trained multinomial regression model from step (iii) to yield posterior340

probabilities.
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2.8. Incomplete networks

Not all datasets contain the entire network with all 2k genotypes formed

from k mutations. One instance of this is simply when individual genotypes are345

missing from the network. Another case (which we refer to as a double-mutant

set) is when the network contains just four genotypes: wild type, two individual

mutations, and their combination double mutant. Suppose there are multiple

such double-mutant sets. One possibility is that the mutations in each set are

different (i.e. no mutations are shared). This generates an identifiabiltiy prob-350

lem for stickbreaking (four datapoints yields three observed effects and there

are three stickbreaking parameters to estimate) and we do not attempt to fit

such data. Alterantively, it is possible that the same mutations appear across

multiple double-mutant sets. In this case, we can view the data as a sample

of the first and second steps of the much larger network. For example, in a355

bacteriophage dataset that we will analyze later, nine single mutations were

engineered in various combinations to generate 18 double mutants. We think

of this as 28 genotypes (including wild type) of the full 512 genotype network

(29 = 512).

360

Whenever the network is incomplete, a few minor adjustments to our ap-

proach are necessary. First, recall that the RDB estimator of d requires pairing

a genotype with its complement (i.e. genotypes with and without a set of muta-

tions). With incomplete sets, the necessary genotypes are often absent. When

we cannot get RDB estimates of d for each mutation, we cannot employ this365

estimator. In this case, our approach is to use the MLE method if it exists, and

largest observed fitness if it does not. Second, recall our method of model se-

lection entails P scores that are based regressing effect size against background

fitness. Regression requires three datapoints. If we do not have a mutation on
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three backgrounds, we cannot perform the regression. Thus sometimes one or370

more mutations will fail to yield p-values. Our approach is to base the P score

on the mutations we do get p-values from. If we cannot get any p-values, we do

model selection using R2 values alone. This approach is justified by the next

adjustment. Third, we must rerun the model training simulations where we

sample 10,000 datasets from our priors, but instead of using the full network as375

before, we use whatever data structure is observed in the real data. As before,

we then fit each dataset to each model and then use multinomial regression to

train a model for assigning posterior probabilities to the three models.

One word of caution about incomplete datasets is warranted. If a genotype380

is absent because it is inviable, then omitting it will bias the analysis. While one

could assign such samples a fitness of zero, this will also introduce bias because,

in reality, inviable genotypes represent a boundary condition that the models

fail to incorporate.

385

3. Results & Discussion

The goal of this work is to compare the additive, multiplicative and stickbreak-

ing models of epistasis. To do this, we first need to fit each of the three models

to the data and second do model selection. For the additive and multipicative

models, fitting is straightforward but for stickbreaking the distance parameter,390

d, must first be estimated. We therefore open with a subsection on estimating d

and proceed to one on fitting data (i.e. estimating coefficients), then to model

selection and finally to several subsections that deal with the analysis of differ-

ent types of real data.

395
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3.1. Estimation of d

To determine the best method of estimation, we simulated data under the

stickbreaking model, setting d = 1, considering effect sizes that ranged from

u = 0.1 to 0.5 in 0.1 increments, noise levels that ranged from σ = 0.02 to

0.1 in 0.02 increments, and complete genotype networks comprised of 3, 4, or400

5 mutations. The results for a subset of illustrative cases with three or four

mutations are presented in Figure 1. The MLE estimator fails most often, but

when it does work, it is generally the least biased and has error at or below the

others. Thus it is the estimator of first choice in the hybrid method. Between

the two RDB (relative distance to boundary) estimators, the one that uses the405

subset of genotypes with an estimated boundary in the interval 0 to 1 (d̂RDB;

in black) outperforms the one that uses all genotypes (d̂RDBall ; in grey). It fails

far less frequently, tends to be less biased, and has similar rMSE; thus it is the

second choice. The estimator based on the observed maximum fitness, d̂Max,

by definition never fails, but it is chronically biased low. It is the estimator of410

last resort. All estimators become good as signal to noise improves. The inset

pie charts show that the hybrid estimator is dominated by the MLE and RDB

estimators with the Max estimator only appearing when signal to noise ratio if

very poor.
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Figure 1 Failure rate (left column), bias (central) and root mean squared error (rMSE;
right) for several estimators of the stickbreaking boundary, d (inset legend). Number
of mutations and σ indicated to left of panels; coefficient size, u, on x-axis. Inset pie-
charts show proportion of hybrid estimates based on MLE, RDB and Max estimators.
Results based on 100 simulations per condition.
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3.2. Coefficient estimation415

Each of the three model has coefficients associated with each mutation that

we estimate from the data. For stickbreaking, d is estimated first and then

the coefficients are estimated based on d̂. Figure 2 shows the
√
MSE and bias

for the stickbreaking coefficients based estimates of d from the hybrid method.

The figure demonstrates three things. First, error and bias in estimates of d420

leads to substantial error and some bias in estimating u. Second, small effect

sizes are associated with large proportional error: at u = 0.1 the
√
MSE is also

around 0.1. The errors as a proportion of the effect size are much smaller for

= 0.3 and u = 0.5 where relative errors are more on the order of one-thrid and

one-fifth respectively. Third, reducing noise (i.e. decreasing σ) has a greater425

effect than increasing the number of mutations. For example, when we hold

u at 0.3 and compare 3 mutations and σ = 0.02 (small network, low noise)

with 5 mutations and σ = 0.08 (large network, high noise) we see respective
√
MSE values of 0.037 and 0.063. Said another way, if there is a choice between

generating a larger networks vs. reducing noise, reducing noise is the more430

effective way of getting good parameter estimates. Of course, if the noise is not

experimental but biological, then it cannot be reduced. In comparing models,

coefficient estimates under the additive and multipicative models have much

smaller errors (Figure 3). Our simulations also confirmed that estimates under

the multiplicative and additive models are unbiased (results not shown). This435

disparity between sickbreaking and the other models comes from the fact that

the stickbreaking coefficients depend on estimating another parameter first while

multiplicative and additive coefficients do not.

21

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 16, 2017. ; https://doi.org/10.1101/150763doi: bioRxiv preprint 

https://doi.org/10.1101/150763
http://creativecommons.org/licenses/by-nc/4.0/


3 Mutations 4 Mutations 5 Mutations

0.
00

0.
05

0.
10

0.
15

rM
SE

u=0.1 u=0.3 u=0.5

Effect size

0.
00

0.
05

0.
10

0.
15

rM
SE

u=0.1 u=0.3 u=0.5

Effect size

0.
00

0.
05

0.
10

0.
15

rM
SE

u=0.1 u=0.3 u=0.5

Effect size

−0
.1
0

−0
.0
5

0.
00

0.
05

0.
10

Bi
as

u=0.1 u=0.3 u=0.5

Effect size

−0
.1
0

−0
.0
5

0.
00

0.
05

0.
10

Bi
as

u=0.1 u=0.3 u=0.5

Effect size

−0
.1
0

−0
.0
5

0.
00

0.
05

0.
10

Bi
as

u=0.1 u=0.3 u=0.5

Effect size

σ

0.02 0.04 0.06 0.08

Figure 2 Root mean squared error (rMSE; top row of panels) and bias (bottom) of esti-
mates of stickbreaking coefficients (u) as a function of number of mutations (columns
of panels), effect size (x-axis) and σ (shaded bars, see legend at bottom). All estimates
are based on the hybrid method of estimating d. Based on d = 1 and 1000 simulations
per condition.

3.3. Model selection

We are ultimately interested in identifying which of the three models best440

explains a given dataset. We took a Bayesian strategy for doing model selection

in which we simulated a large number of datasets by sampling from prior distri-

butions. Each dataset was then fit to each of the three models and summarized

using R2 and a linear regression generated P-score (see Methods). We then

passed these six measures of fit and the true model’s identity to a multinomial445

regression and allowed it to build a model that predicts the true model from the
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measures of fit. We did this for networks involving 3, 4 and 5 mutations seper-

ately. The coefficients from this multinomial regression are presented in Table

1. We next generated test data. To do this we gridded parameter space: 3 true

models (stickbreaking, multiplicative, additive) x 3 network sizes (3, 4, 5 muta-450

tions) x 5 coefficient values (0.1, 0.2, 0.3, 0.4, 0.5), and 4 σ values (0.02, 0.04,

0.06, 0.08). We then simulated 100 datasets per parameter combination. The

performance of model selection was summarized as the mean posterior proba-

bility assigned to the true model and the proportion of replicates where the true

model was rejected by having < 5% posterior probability.455

Mutations Model Intercept R2
stick R2

mult R2
add Pstick Pmult Padd

3 stick -0.16 1.96 -4.96 3.01 0.21 0.32 -0.56
mult -0.05 -0.08 12.51 -12.61 -0.03 0.54 -0.60

4 stick -0.83 3.10 -4.03 1.51 0.21 0.31 -0.61
mult -1.09 -0.24 18.84 -17.32 0.00 0.45 -0.57

5 stick -1.29 3.79 -3.18 0.10 0.20 0.22 -0.48
mult -1.54 0.65 26.48 -24.54 -0.019 0.36 -0.43

Table 1 Coefficients for the multiple regression that produces posterior probabilities given six
measures of fit: R2

stick, R
2
mult, R

2
add, Pstick, Pmult, and Padd.

This model selection method did a good job of limiting false rejections of

the true model (type 1 errors). Of the 180 conditions tested, 175 of them had

five or fewer false rejections in the 100 replicates. The remaining instances were

scattered in parameters space and even here, error rates were not beyond what460

we would expect given a sample size of 100: two instances of 8 false rejections,

two of 7 false rejections and one of 6 false rejections. The other critical part of

model selection is how often it hones in on the true model and rejects others.

Figure 4 shows the mean posterior probability of the true model under all 180

parameter conditions we studied. Surface regions in white highlight parame-465

ter space where the true model has posterior probability ≥ 95% while darker

grey regions are those with lower posterior probability. White regions with high
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posterior probability correlate very closely with regions where the true model is

uniquely identified a high frequency of the time. Two main trends jump out of

these results. First, model selection is hard with only three mutation, better at470

four, and a lot better with five mutations. Stated more precisely, model selec-

tion leads to uniquely identifying the true model over a much greater range of

parameter space as the number of mutations increases.

The second major pattern in the results is that the multiplicative model is475

the easiest to identify when true followed by stickbreaking and then additive.

The multiplicative model ranks first because it produces the most distinct data:

effect sizes for each beneficial mutation increase as background mutations accu-

mulate even though (under our model) the error associated with them stays on

the same scale. The stickbreaking model is opposite in that effect sizes shrink480

with accumulating mutations. While this leads to a distinct expected pattern in

the data, two features of stickbreaking complicate things. One is the fact that

the distance to the boundary, d, must be estimated from the data (unlike the

other models). Two is the fact that while effects are shrinking with accumulated

mutations, the error around them is not. The additive model ranks third simply485

because it produces patterns intermediate between the other two models. While

data from the stickbreaking model is very rarely confused with the multipicative

model and vice versa, data from the additive model can, by chance, resemble

either stickbreaking or multiplicative.

490
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Figure 4Mean posterior probability of the true model (z-axis in each plot) as a function
of model (panel rows), number of mutations (panel columns), σ (x-axis) and effect size
(u, s and ∆w; y-axis). Shaded white are regions with mean posterior probability
≥ 0.95.

3.4. Analysis of Real Data

To illustrate how our method may be implemented we selected several datasets

from the literature. The first is from a study on fitness recovery in a Methy-

lobacterium engineered with a foreign metabolic pathway that it must employ

to grow on the sole carbon source of methanol. Nine mutations were identified495
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over the course of adaptation. Four of these mutations were engineered in all

combinations to form the complete 16 genotype network. The data fitted to

each of the three models is shown in Figure 5A. When passed to the multi-

nomial regression model, 99.1% of the posterior probability is assigned to the

additive model. In their paper, Chou et al. developed an elegant cost-benefit500

model of the underlying metabolic processes, measured relevant phenotypes,

and obtained a very good fit to the data. While their model provides more

biological insight, the additive gives a very good approximation of the fitness

effects observed among their mutations.

505

The second dataset we analyzed was an experiment by Kahn et al. (2011).

Here the first five beneficial mutations in a long-term adaptation of Escherichia

coli were engineered on the ancestral background in all 32 possible combina-

tions. In their analysis, Kahn et al. examined additive fitness effects for each

mutation as a function of background fitness. They showed that three of the five510

mutations in their dataset showed decreasing effects, one was not significantly

different from zero, while one showed an increasing trend. These patterns corre-

spond to our expectations under stickbreaking, additive, and the multiplicative

models respectively. Not surprisingly, when we analyze the full 32 genotype

network, we get ambiguous results with posterior probabilities for stickbreak-515

ing, multiplicative, and additive being 0.22, 0.40, and 0.38. We then removed

the one strongly multiplicative mutation (+pykF) and reanalyze the 16 geno-

type network. When we do this we find that the data favors the strickbreaking

model with 0.86 posterior probability compared to 0.10 for additive, and 0.04

for multiplicative. The fit of the data to the three models is illustrated in Fig-520

ure 5B. Kahn et al. close their paper by stating that their results suggest a

relatively simple epistasis function might be incorporated into models seeking
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to predict adaptation, though mutation +phkF demonstrates that there will be

exceptions. Our results suggest that the stickbreaking model could provide ex-

actly this type of simple function for approximating a common type of epistasis525

during adaptation.
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Figure 5 Observed vs model predicted fitness for two empirical datasets. In both cases,
the inset legend indicates the model, R2 and posterior probability of model (Ppost).
Each genotype in a dataset corresponds to a trio of vertically aligned circles (one per
model) with the binary string indicating absence (0) and presence (1) of the individual
mutations. (A) In the dataset from Chou et al. (2011) from Methylobacterium, the
additive model fits very well and receives virtually all the posterior probability. The
binary strings correspond to mutations fghA, pntAB, gshA, and GB in that order. In
addition to the R2 values shown in legend, the P-scores strongly favored the additive
model: Pstick = −24.7, Pmult = −20.3, and Padd = −4.9. (B) In the Khan et al. (2011)
data from E coli, the stickbreaking model fits best and receives 86% of the posterior
probability, although the additive model cannot be rejected. As discussed in text, one
outlier mutation (pykF ) mutation was removed from the data before analysis. The
binary strings correspond to mutations ∆rbs, topA, spoT and glmUS in that order.
The P-scores also contribute support to the stickbreaking model: Pstick = −0.59,
Pmult = −15.2, and Padd = −12.2.
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Figure 6 Observed vs model predicted fitness for subnetwork datasets. In both cases,
the inset legend indicates the model, R2 and posterior probability of model (Ppost). (A)
In the dataset from Caudle et al. ([26]) from the bacteriophage ID11, the stickbreaking
model fits the data much better than the other two, although several of the single
mutations to to the left have large errors. The P scores for the three models strongly
contributed to the high posterior probabiltiy associated with stickbreaking: Pstick =
−11.5, Pmult = −29.8, and Padd = −29.9. (B) Combing synonymously recoded blocks
of the poliovirus by Burns et al. ([60]) follows the additive model better than the
other two. Each genotype in a dataset corresponds to a trio of vertically aligned
circles (one per model) with the binary string indicating absence (0) and presence (1)
of the individual mutations. The P scores also contributed to the additive posterior
probability: Pstick = −12.3, Pmult = −3.3, and Padd = −2.5

3.5. Analysis of partial network data

Up to this point we have assumed the data covers all possible combinations

of the studied mutations. However, this will not always be the case. In some in-530

stances there will be missing genotypes in the network. Another common type

of dataset involves single mutants examined alone and in combination as the

double mutant. If the same mutations are used across multiple double-mutant

sets, then such data can be fit to the three models. A good example of this

comes from work by Caudle et al. ([26]) on the bacteriophage ID11. Here,535

nine first-step beneficial mutations that arose during replicate adaptations at

37 C were engineered into 18 of the possible 72 double mutants; none of the
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higher order genotypes (eg. triples, quadruples, etc.) were created. Fitness was

estimated at 33, 37 and 41 C. The datasets at 33 and 37 show such extensive

sign epistasis that they do not fit any of the models considered here at all well540

(i.e. R2 values are <0). At 41C, however, sign epistasis was more moderate

appearing in 7 of the 18 doubles, but being reciprocal (where both first steps

are deleterious on the background of the other) in only two cases. When we fit

the 41C data to the three model, we find that the stickbreaking model does a

much better job than the others (Figure 6A). When the R2 and P-scores are545

passed to the multinomial regression model, 99.8% of the posterior probability

is assigned to the stickbreaking model. This is not to argue that stickbreaking

the best possible model here. Caudle et al. were able to achieve a considerably

better fit to this data (R2 = 0.55 and 0.82) using more complex models that, in

this cased, involved gamma-shaped phenotype-fitness functions. Nonetheless,550

this analysis illustrates that our approach can be used on this type of dataset

that features only single and double mutants so long as sign-epistasis is rare.

3.6. Analysis of deleterious data

Perhaps non-intuitively, our methods can also be used to analyze deleterious555

mutations, or even combinations of beneficial and deleterious mutations. We il-

lustrate this by analyzing attenuation data from poliovirus. Burns et al. ([60]))

recoded four contiguous capsid coding regions of 171-262 residues in length with

synonymous mutations representing less preferred codons. They then created

10 of the possible 16 combinations of the recoded blocks and measured viral560

yield (plaque forming units or PFUs) over a 12 h growth period. We fit their

data to the three models after log-transforming PFUs (since when growth is

exponential, growth rate is proportional to the log of population size). The

results, presented in Figure 6B, indicate that the additive model best describes
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the data, receiving over 99% of the posterior probability. This result is consis-565

tent with a result from the original paper where they found a strong, negative

linear relationship between number of sites modified and PFUs.

4. Conclusion

We close with a few words about limitations and potential extensions of the570

framework advanced here. In terms of limitations, we have combined biological

variance and experimental noise into a single variance term; in reality variance

may differ among genotypes and there is generally information about how much

of the noise is experimental (vs. biological) based on variance observed across

replicates. This complexity could be added to our model in the future. Another575

limitation is that the interactions among all mutations are governed by the same

model. Depending on the genes and mutations involved, this assumption may

be violated (e.g. [40]). We experimented with developing a block version of our

model motivated by Orr ([61]) where mutations are grouped into blocks of like-

type and blocks interact. We ultimately ran into an overfitting problem, but if580

there were external information about how to group mutations or if networks

were much larger than considered here, than strategy could be fruitful. A third

limitation is that the model currently treats missing genotypes as simply absent.

But if the genotypes are missing because they not not viable–something that

will be especially common when mutations are deleterious– then the current585

approach is biased. To be done correctly, we need to treat inviable genotypes

as having fitness censured by a lower boundary. This feature could be added to

our model.

The methods and code presented here provide a framework for selecting

among three basic landscape models. Sometimes, simple models are more use-590
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ful than complex models when, for example, computational efficiency or mathe-

matical simplicity are paramount. But the simplicity comes at a cost of course.

These models cannot explain patterns like sign epistasis (except in treating it

as noise) and when they do fit data well, they fail to provide a mechanistic

explanation of it. We know that in reality mutations manifest their effects on595

fitness through their phenotypic effects. We are enthusiastic about modeling ef-

forts that delve into phenotypic dimensions, including, for example, extensions

of Fisher’s Geometric model (e.g. [6], [8]), models built on metabolic principles

(e.g. [39], [46]), and models linked to protein stability (e.g. [62], [63]). We

argue that the value and insight from these more complex models is far more600

compelling when the models they aim to improve upon are not straw men. We

see one of the main extension of this work, therefore, as addressing how how the

basic models fit here should be compared to more complex models. The tools

provided here, we hope, make this and related uses of these basic landscape

models readily accessible.605
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Appendix790

Relative Distance to the Boundary (RDB)

Recall that rG defined by equation (6) has the following form for the stickbreak-

ing model

rG =
d− (wG − wwt)

d
=
∏
i∈G

(1− ui).

We obtain an expression for rG based on observable fitness effects indepen-

dent of d. We do this by calculating the relative distance of genotype G from K,795

the genotype containing all available mutations. If we replace d with wK −wwt

in the left hand side of the above equation and using equation (3) we get

wK − wwt − (wG − wwt)

wK − wwt
=

∏
i∈G(1− ui)−

∏k
i=1(1− ui)

1−
∏k

i=1(1− ui)

=
∏

i∈G(1− ui)
1−

∏
i∈Gc (1−ui)

1−
∏k

i=1(1−ui)

=
∏

i∈G(1− ui)wGc−wwt

wK−wwt

which implies

rG =
wK − wG

wGc − wwt
=
∏
i∈G

(1− ui). (18)

Equation (18) reveals that if one places genotype Gc into the G background

one obtains fitness effect wK − wG, which under the stickbreaking model is800

smaller than the fitness gain produced by placing Gc into the wildtype back-

ground (wGc − wwt). Comparison of the two fitness effects produces the RDB

for G.

Note that equation (18) only applies for a proper subset G of K and cannot

be used to calculate to calculate the RDB for K. However, we can still obtain805
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an expression for rK by applying equation (18) to the genotype containing the

single mutation j and the genotype containing all mutations but j, denoted by

jc.

wK − wj

wjc − wwt
= 1− uj (19)

and

wK − wjc

wj − wwt
=
∏
i 6=j

(1− ui) (20)

implying that810

rK,j =

(
wK − wj

wjc − wwt

)(
wK − wjc

wj − wwt

)
=

k∏
i=1

(1− ui). (21)

Note that rK = rK,j for all j, but when we add noise to the mix, than the above

will give us a set of estimates of rK for each j.
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