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Abstract

Summary: There exists over 1.6 million publicly available gene expression samples across 79,000 data
series in NCBI’s Gene Expression Omnibus database. Due to the lack of the use of standardised ontology
terms to annotate the experimental type and sample type, this database remains difficult to harness
computationally without significant manual intervention. In this work, we present an interactive R/Shiny
tool called GEOracle that utilises text mining and machine learning techniques to automatically identify
perturbation experiments, group treatment and control samples and perform differential expression. We
present applications of GEOracle to discover conserved signalling pathway target genes and identify an
organ specific gene regulatory network.
Availability: GEOracle is available at http://georacle.victorchang.edu.au/
Contact: jho@victorchang.edu.au
Supplementary information: Supplementary data are available at BioRXiv

1 Introduction
The NCBI Gene Expression Omnibus (GEO) is one of the largest public
repositories for genome-wide omic data, including mostly transcriptomic
data (Barrett et al., 2013). As of March 2017, GEO contains over 79,000
data series (GSE), consisting of over 1.6 million individual gene expression
samples (GSM). This database harbours biological insights that are not
apparent when studying each data set individually (Rung and Brazma,
2013). Several packages are available to programmatically access GEO
data, including GEOquery (Davis and Meltzer, 2007), GEOmetadb (Zhu
et al., 2008), compendiumdb (Nandal et al., 2016) and shinyGEO (Dumas
et al., 2016), allowing keyword based search and download of GSE and
GSM, with few standard analysis options.

One major challenge in effectively reusing public gene expression data
is the availability of good quality metadata. The need for standardisation
of metadata is the reason for the development of the Minimum Information
About a Microarray Experiment (MIAME) standard (Brazma et al., 2001),
and more recently the MINSEQE standards for sequencing data (Rung and
Brazma, 2013). While some fields in GEO metadata use controlled voca-
bularies (e.g., species name, gene symbols), the majority of the metadata
appears as free text, describing the context of samples (e.g., tissue type or
developmental stage) and the experimental design (e.g., perturbation expe-
riment). Although this free text is often readily interpretable by humans,
there is no simple means to process this information from GEO in an auto-
mated fashion. Ultimately this imposes a major limitation on effectively
re-using the huge amount of public data in GEO (Rung and Brazma, 2013).
While we believe it is important to push for the use of standard annotations,
we nonetheless wish to reuse the large amount of data that exists in GEO.

A gene expression experiment can typically be classified based on its
experimental design (e.g., perturbation, time-series and case-control expe-
riments). In many cases, data sets from perturbation experiments (e.g.,
gene knock-out, signalling stimulation, or physical stimulation) are valu-
able because they allow us to identify the set of genes that are causally
downstream of the perturbation agent. This has important applications in
determining signalling pathway targets and regulatory networks (Parikh
et al., 2010; Djordjevic et al., 2014; Xiao et al., 2015; Schubert et al.,
2016). There are tens of thousands of perturbation studies in GEO, likely
containing millions of experimentally determined perturbation data. None-
theless, currently there is no simple way to determine whether a GSE
contains perturbation data. Furthermore, even when a GSE is known to
contain perturbation data, it is not trivial to automatically match the tre-
atment samples with their respective control samples since a single GSE
may contains multiple treatment and control groups.

In light of these challenges, we use text mining and machine learning
techniques to classify GSE that contain perturbation data, and to identify
and match the treatment and control samples in a perturbation data set. Text
mining of free text metadata has previously been used to identify related
experiments through semantic similarity (Galeota and Pelizzola, 2016),
and to automatically process large amounts of the GEO database with
limited quality control or user oversight (Zinman et al., 2013; Wang et al.,
2016). Using our R Shiny tool called GEOracle, we can quickly annotate
many perturbation experiments from GEO in a semi-automated fashion
with full user control. GEOracle then performs differential expression
analysis to identify gene targets of the perturbation agent.
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2 Implementation
The GEOracle workflow follows the same steps a bioinformatcian would
employ when analysing perturbation data on GEO. This begins with iden-
tifying whether a GSE is a perturbation experiment. Next comes grouping
of replicate samples and identifying the perturbation group relevent for the
analysis. Finally the appropriate control group is selected and differential
expression analysis is performed. In this section we describe our metho-
dology for performing these steps and evaluate GEOracle’s performance
on manually curated training and test sets. Given a list of GSE accession
numbers, GEOracle begins by extracting their metadata via the R package
GEOmetaDB (Zhu et al., 2008).

2.1 Classifying perturbation GSE

To build a classifier for identifying perturbation experiments, we manu-
ally curated a training set of 277 randomly selected GSE IDs, which we
annotated with the experimental design (Supp. File 1).

Based on 31 manually defined textual features from the free text meta-
data that can differentiate perturbation experiments (including keywords
such as ‘knockout’, ‘KO’, ‘wildtype’, ‘WT’, ‘null’, ‘-/-’, ‘transgenic’,
‘’TG’, Supp. File 3), a support vector machine (SVM) classifier was built
to predict perturbation GSE. Performance was maximised by the radial
basis function kernel (Fig. S1). When evaluated on our training set by
100 rounds of 10-fold cross-validation with internal feature selection, our
model produced a mean Area Under the Receiver Operating Characteristic
curve of 0.89, suggesting high sensitivity and specificity.

2.2 Grouping replicate samples

To evaluate our automated grouping of GSM samples and subsequent
matching of control and perturbation groups, we manually curated a second
set of 73 perturbation GSE (Supp. File 2). Half of these GSE were cho-
sen from the previous training set (including the particularly difficult GSE)
and the other half were randomly selected perturbation GSE. We annotated
the 832 constituent GSM samples into 259 groups labelled as ‘perturba-
tion’ or ‘control’, and paired the ‘perturbation’ sample groups with their
appropriate ‘control’ groups.

For each identified perturbation GSE, GEOracle groups replicate sam-
ples using the available GSM metadata. Replicates could mean biological
or technical replicates that together form a unit of analysis for differential
expression. GSM titles are processed via a series of string manipulations to
remove replicate identifiers and tokenise the titles. A simple hierarchical
clustering approach is used, based on Gower distance between tokeni-
sed GSM titles, with the tree cut at height 0, resulting in identical GSM
titles being assigned to one cluster. The same approach is applied to GSM
characteristics to produce a second clustering of samples. Based on these
two sample clusterings, we identify the most valid clustering outcome
and assign confidences to the output, removing datasets with insufficient
metadata or invalid clustering results from further analysis (Fig. S2).

Our multi stage clustering approach produces a grouping sensitivity of
93.2% at the GSE level (meaning every sample in a GSE must be correctly
grouped for that GSE to be considered a positive result) based on our trai-
ning set. All incorrectly clustered GSE can be explained by typographical
errors and other anomalies in the metadata. This was an improvement over
more naive clustering approaches, based solely on the GSM characteristics,
GSM titles, or a simple concatenation of the two, producing sensitivities
of 64.4%, 86.3% and 74% respectively (Fig. S3). Although samples can
often be grouped by either the titles or the characteristics, the process of
deciding which information to use is non-trivial. Fig. S4 shows a complex
example where a simple concatenation of GSM titles with GSM chara-
cteristics fails to group samples correctly, while our multi-stage decision
process succeeds.

Fig. 1. The GEOracle user interface.

2.3 Classifying sample groups

Both the GSM titles and characteristics were analysed for the presence of
33 textual features that represent molecular concepts that can differentiate
‘perturbation’ from ‘control’ samples (Supp. File 4). We trained another
SVM classifier to label the groups as ‘perturbation’ or ‘control’. We found
the linear kernel for the SVM gave the best results (Fig. S5). We adjust the
predicted labels of some groups when only one label is predicted for all
samples in a GSE. A confidence associated with the final outcome of group
labelling is determined (Fig. S6). We observe a sensitivity of 94.6% for
group classification at the GSE level. This is a large improvement over the
73.3% sensitivity produced by the basic approach of choosing the highest
scoring label based on the occurence of the subset of 20 features that
unambiguously distinguish between ‘perturbation’ and ‘control’ samples.

2.4 Matching perturbation with control groups

GEOracle matches each predicted ‘perturbation’ group to the ‘control’
group with the lowest Gower distance based on the tokenised GSM titles
and characteristics, and determines the confidence for each pairing of
groups (Fig. S7). We observe a sensitivity of 83.1% for group match-
ing at the GSE level. Furthermore, we attempt to determine the identity
of the perturbation agent and perturbation direction for each group pair by
searching for gene names and keywords in the GSM and GSE metadata.
The keywords used represent the concepts of addition (i.e. ‘overexpress’)
and removal (i.e. ‘knockout’) of a perturbation agent. The direction with
the most keyword matches becomes the assigned direction.

2.5 Manual adjustment using the graphical user interface

The GEOracle interface (Fig. 1) guides users through the entire process.
Importantly the interface allows the user to manually adjust and verify
all details of the predicted GSM labels and pairings, and create their own
pairings from all GSM within each GSE. This allows the user to be 100%
confident in the setup of samples for differential expression analysis.

2.6 Differential expression analyses

The paired ‘perturbation’ and ‘control’ groups are then used to compute
differential gene expression using GEO2R, which implements the limma
pipeline (Ritchie et al., 2015). The results can then be downloaded by the
user. GEOracle is currently tailored for microarray data analysis as this
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is the most prevalent data type in GEO, but it can be extended to analyse
RNA-seq data or even other functional genomic data sets such as ChIP-seq.

3 Case studies
We used GEOracle to process six GSE containing TGFβ perturbation
experiments (Supp. File 5) and discover the consensus target genes of
TGFβ signalling stimulation in human cells (Supp. File 6 describes the
process in detail). The total time required for classifying the GSE and GSM
groups, matching the treatment and control samples, manually verifying
the results, downloading the gene expression data from GEO and perfor-
ming differential expression analysis is less than 12 minutes. This analysis
required minimal human intervention and essentially no bioinformatics
expertise.

Based on these results we could identify a consensus TGFβ target
gene signature in human cells consisting of 82 genes (Fig. S8). Many
of the observed trainscriptional changes matched the literature about the
TGFβ pathway, including increased transcription of CTGF, JUN, JUNB
and WNT5B, and repression of TGFBR3, FZD7 and SPRY1, (Supp. File
7). A gene ontology analysis of the 82 genes from the consensus signature
using g:Profiler (Reimand et al., 2007) showed significant enrichment for
the term ‘response to transforming growth factor beta’, with Benjamini-
Hochberg (BH) adjusted p-value of 8.93 x 10−08.

We further used GEOracle to analyse all perturbation microarray data
from mouse cardiac tissues. We searched GEO using the following query:
"mus musculus"[Organism] AND ("heart"[MeSH Terms] OR heart[All
Fields] OR cardiac[All Fields]) AND ("gse"[Filter] AND "Expression
profiling by array"[Filter]). This resulted in 851 GSE (Supp. File 8).

Processing these 851 GSE though GEOracle, including manually
verifying and modifying the predicted sample comparisons, required
approximately 8 hours of user time, again with essentially no bioinfor-
matics expertise required. 164 relevent GSE were included for further
processing. The primary reason for exclusion was that the tissue pro-
filed was not of cardiac origin or relevance. We obtained significantly
differentially expressed genes for 87 genetic perturbations (i.e. gene kno-
ckdown or over expression) and 10 non-genetic factors (diet, chemicals
etc.) using standard thresholds (absolute log 2 fold change > 1 and BH
adjusted P value< 0.05). GEOracle automatically outputs significant dif-
ferentially expressed genes as an edge list for gene regulatory network
construction. From the genetic perturbation experiments we constructed
a gene regulatory network of 23,347 causal and directed relationships
between 9,152 genes (Fig. S9). Of these 14,120 were activating relati-
onships and 9,681 were inhibitory. This case study illustrates how we can
construct a large organ-specific gene regulatory network from published
experimental perturbation data in GEO.
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