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Abstract  11	
  

Single-cell RNA-Sequencing data often harbor variation from multiple correlated sources, which cannot be 12	
  

accurately detected by existing methods. Here we present a novel and robust statistical framework that can capture 13	
  

correlated sources of variation in an iterative fashion: iteratively adjusted surrogate variable analysis (IA-SVA). We 14	
  

demonstrate that IA-SVA accurately captures hidden variation in single cell RNA-Sequencing data arising from cell 15	
  

contamination, cell-cycle stage, and differences in cell types along with the marker genes associated with the source.  16	
  

  17	
  

Single-cell RNA-Sequencing  (scRNA-Seq) data often harbor variation from diverse 18	
  

sources including technical (e.g., biases in capturing transcripts from single cells, PCR 19	
  

amplifications) and biological factors (e.g., differences in cell cycle stage or cell types) that 20	
  

might confound biological conclusions 1-3. Detecting and adjusting for hidden heterogeneity in 21	
  

scRNA-Seq data is essential to accurately characterize gene expression changes stemming from a 22	
  

biological variable of interest (e.g., disease vs. normal). A number of statistical methods have 23	
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been proposed to detect hidden sources of variation in microarray, bulk, and single-cell RNA-24	
  

Seq data: SSVA4 (supervised surrogate variable analysis), USVA5 (unsupervised SVA), ISVA6 25	
  

(Independent SVA), RUVcp7, 8 (removing unwanted variation using control probes), RUVres 26	
  

(RUV using residuals), RUVemp (RUV using empirical negative controls) and scLVM9 (single-27	
  

cell latent variable model). One caveat of these methods is their assumption that the multiple 28	
  

sources of variation are uncorrelated (i.e., orthogonal) with each other and with known 29	
  

variables6. However, in reality transcriptomic data especially single cell measurements typically 30	
  

contain variation stemming from multiple yet correlated hidden factors due to poor experimental 31	
  

design, technical limitations, or biological factors. For example, the number of expressed genes 32	
  

in a cell (a major source of variation), experimental batch effects, cell cycle stage, cell size, and 33	
  

cell type can be highly correlated with each other and may confound the downstream biological 34	
  

conclusions 9, 10 11, 12. To properly detect and account for these sources of variation, we 35	
  

developed a robust and iterative statistical framework, IA-SVA (iteratively adjusted surrogate 36	
  

variable analysis) (Fig. 1a). IA-SVA is designed to identify multiple and potentially correlated 37	
  

hidden sources of variation from scRNA-Seq data with high statistical power and low error rate 38	
  

(see Online Methods, Supplementary Fig. 1, and https://github.com/UcarLab/IA-SVA/).  39	
  

The major advantages of IA-SVA over existing methods are three-fold: First, it 40	
  

accurately captures multiple hidden sources of variation even if the sources are correlated. 41	
  

Second, it enables assessing the significance of each detected factor for explaining the 42	
  

unmodeled variation in the data. Third, it delivers marker genes that are significantly associated 43	
  

with the detected hidden factors. Factors or marker genes inferred by IA-SVA can be 44	
  

instrumental in data interpretation and in improving the performance of downstream analyses, 45	
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such as clustering/visualization of single-cell data using t-distributed stochastic neighbor 46	
  

embedding (t-SNE)	
  13.  47	
  

 Using simulated scRNA-Seq data, we studied and compared the empirical Type I error 48	
  

rate, the power of detection, and the accuracy of estimation for IA-SVA and existing state-of-the-49	
  

art methods, which can also infer the number of significant hidden factors (i.e., USVA and 50	
  

SSVA)  (See Online Methods). Under different simulation scenarios, we found that IA-SVA 51	
  

consistently outperformed USVA and SSVA in terms of detection power and accuracy of the 52	
  

estimate while controlling the Type I error rate under the nominal level (0.05) (Fig. 1b). In 53	
  

particular, IA-SVA significantly outperformed alternatives when hidden factors affect a small 54	
  

percentage of genes (10-20%) and when these factors are moderately correlated with a known 55	
  

factor (i.e., group variable) (the first three columns of Fig. 1b). We compared the efficacy of IA-56	
  

SVA against a broader number of supervised (SSVA and RUVcp) and unsupervised (USVA, 57	
  

PCA, RUVemp and RUVres) methods (Supplementary Note 1). Similarly, IA-SVA was 58	
  

particularly effective in estimating hidden factors that affect a subset of genes (10-20%) (Factor 59	
  

3 in Supplementary Fig. 2) and in inferring correlations among factors (Supplementary Fig. 60	
  

3). We also compared the performance of IA-SVA against unsupervised methods (USVA, PCA, 61	
  

RUVemp, RUVres) to estimate the heterogeneity arising from differences in brain cell types 62	
  

(neurons vs. oligodendrocytes) 14 (See Online Methods). IA-SVA significantly outperformed 63	
  

other methods and accurately inferred the factor that corresponds to cell type assignments (|r| = 64	
  

0.95 vs. 0.83 for the second best performance by RUVres) (Supplementary Fig. 4). 65	
  

 To test the efficacy of IA-SVA in capturing variation within a relatively homogenous cell 66	
  

population, we studied alpha cells (n=101) from three diabetic patients 15 (see Online Methods). 67	
  

We found that Surrogate Variable 2 (SV2) inferred by IA-SVA clearly separated alpha cells into 68	
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two groups (six outlier cells marked in red vs. the rest at SV2 < -0.2) (Fig. 2a). Top 30 genes 69	
  

(e.g., CD9, SPARC, COL4A1, PMEPA1, ENG) correlated with SV2 clearly separated alpha cells 70	
  

into two clusters, where six outlier cells exclusively expressed these genes (Fig. 2b). Alternative 71	
  

methods (PCA, USVA, tSNE) didn’t clearly separate these outlier cells, especially in the case of 72	
  

tSNE analyses (Fig. 2a). This heterogeneity detected in alpha cells was reproducible in a bigger 73	
  

and independently generated islet scRNA-Seq data using the same platform 16  (Supplementary 74	
  

Fig. 5). In both datasets this heterogeneity was associated with fibrotic response genes (e.g., 75	
  

SPARC, COL4A1, COL4A2) suggesting that these outlier cells might originate from cell 76	
  

contamination (e.g., fibroblasts contaminating islet cells) or from cell doublets captured 77	
  

together—a known problem in early Fluidigm C1 experiments 17, 18.  78	
  

  Another established source of heterogeneity in scRNA-Seq data is the differences in cell-79	
  

cycle stages 3. To test whether IA-SVA can capture this, we analyzed scRNA-seq data obtained 80	
  

from human glioblastomas with an established cell-cycle signature 19. Using IA-SVA, we 81	
  

detected a source of hidden heterogeneity (SV2) that clearly separated 12 cells from the rest (Fig. 82	
  

2c) and identified 87 marker genes associated with this source (Fig. 2d). Pathway and GO 83	
  

enrichment analyses of these marker genes 20, 21 revealed significant enrichment for cell-cycle 84	
  

stage related GO terms and KEGG pathways (Supplementary Fig. 6 and Supplementary 85	
  

Table 1). PCA, USVA and tSNE failed to separate these cells (Fig. 2c).  86	
  

	
   In scRNA-Seq data, technical or biological factors are often correlated and can 87	
  

deteriorate the single cell clustering results (e.g., clustering with respect to cell types) by 88	
  

masking the real signal or generating spurious clusters. IA-SVA can be particularly effective in 89	
  

handling this problem by uncovering hidden factors while adjusting for all potential confounders. 90	
  

Moreover, IA-SVA delivers marker genes associated with the hidden factor, which can be 91	
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further tested and evaluated for their biological relevance (e.g., novel markers for different cell 92	
  

types) and can be utilized in clustering analyses for increased performance. To test this, we first 93	
  

studied scRNA-Seq data from alpha (n=101), beta (n=96), and ductal (n=16) cells obtained from 94	
  

three diabetic patients 15 (Online Methods) and used tSNE on all expressed genes to cluster these 95	
  

cells. Color-coding based on the reported cell type assignments 15 showed that, tSNE cannot 96	
  

effectively separate these cells into their respective categories (Fig. 3a). Next, we applied IA-97	
  

SVA on this data and focused on top two significant SVs (SV1 and SV2) since they separated 98	
  

cells into distinct clusters (Supplementary Fig. 7). 86 genes were associated with these two SV2 99	
  

that notably included previously known markers used in the original study (INS, GCG, KRT19) 100	
  

and uncovered potential novel markers of islet cells (Fig. 3c). As expected, tSNE analyses on 101	
  

these 86 genes improved the clustering results significantly and clearly separated different cell 102	
  

types (Fig. 3b). Such improved clustering analyses can also help reveal cells that might be 103	
  

incorrectly labeled based on a single gene marker. We tested whether this pattern can be 104	
  

recapitulated in a bigger data with confounding variables16 by analyzing transcriptomes of 1600 105	
  

islet cells including alpha (n=946), beta (n=503), delta (n=58), and PP (n=93) cells (Online 106	
  

Methods). In this case, designated cell type assignments correlated with known factors especially 107	
  

with the patient identifications (C=0.48 for patient id, C=0.1 for sex, C=0.03 for phenotype and 108	
  

C=0.25 for ethnicity, C=Pearson’s contingency coefficient). If not properly adjusted for, these 109	
  

correlations would lead to spurious clustering of cells. For example, when tSNE is performed on 110	
  

these islet cells and cells are color-coded with respect to the original cell-type assignments 16, 111	
  

cell types did not separate from each other and spurious clusters were observed within each cell 112	
  

type (Fig. 3d). As suspected, potential confounding factors, particularly patient id and ethnicity, 113	
  

explained the spurious clustering of cells (Supplementary Fig. 8). Existing methods to improve 114	
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scRNA-Seq clustering results (e.g., ‘Spectral tSNE’ 22) regress out (remove) variation associated 115	
  

with known variables before estimating hidden factors. However, when biological variables of 116	
  

interest (e.g., cell type assignments) are highly correlated with known factors as in this case, 117	
  

removing the known effects will also impact the signal of interest. To handle this, we conducted 118	
  

IA-SVA analyses while accounting for known factors and extracted four significant SVs. Among 119	
  

these, SV1 and SV4 grouped cells into disjoint clusters (Supplementary Fig. 9a and b); 120	
  

therefore we focused on these as putative SVs associated with differences in cell types (SV3 is 121	
  

not considered since it captures cell contamination). 57 genes associated with these two SVs 122	
  

included once again known marker genes for islet cells (i.e., INS and GCG) (Supplementary 123	
  

Fig. 10). tSNE analyses using these genes clearly separated different cell types into discrete 124	
  

clusters and reinforced the importance of properly adjusting for known factors prior to clustering 125	
  

or marker gene detection (Figure 3e). Top surrogate factors obtained via PCA and USVA failed 126	
  

to detect the heterogeneity associated with cell types (Supplementary Fig. 9c and d). 127	
  

 In summary, IA-SVA can accurately and robustly estimate hidden sources of variation in 128	
  

gene expression data while adjusting for known factors introducing unwanted variation. The 129	
  

iterative framework to detect multiple and potentially correlated factors along with their 130	
  

significance is the main advantage of IA-SVA over existing methods. This flexibility is more 131	
  

realistic given the confounded nature of known and unknown factors introducing heterogeneity 132	
  

in gene expression levels particularly in scRNA-Seq data. Furthermore, IA-SVA infers marker 133	
  

genes associated with the source of variation that can be used for various purposes including 134	
  

novel marker gene detection for different cell types.  135	
  

 136	
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 137	
  

Figure 1. IA-SVA is a robust statistical framework to detect sources of hidden 138	
  
heterogeneity.  (a) IA-SVA uses single-cell gene expression data matrix and known factors to 139	
  
detect hidden sources of variation (e.g., cell contamination, cell-cycle status, and cell type). 140	
  
These hidden factors can be used as additional covariates in differential analysis to increase 141	
  
statistical power. If these factors match to a biological variable of interest (e.g., cell type 142	
  
assignment), genes highly correlated with the factor can be detected and used in downstream 143	
  
analyses (e.g., clustering). (b) Empirical Type I error rate, detection power and the accuracy of 144	
  
estimates for IA-SVA, SSVA, and USVA using simulated single-cell gene expression data. 145	
  
Alternative scenarios are simulated in which hidden factors are moderately (|r|=~0.3-0.6, first 146	
  
three columns) or weakly (|r|<0.3, last three columns) correlated with the group variable.   147	
  
 148	
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 149	
  

Figure 2. IA-SVA can detect heterogeneity originated from a few cells. (a) Heterogeneity 150	
  
within alpha cells captured using IA-SVA, PCA, USVA, and tSNE. Cells are clustered into two 151	
  
groups (black vs. red dots) based on IA-SVA’s surrogate variable 2 (SV2 < -0.2). In PCA, PC1 152	
  
was discarded since it explains the number of expressed genes. (b) Hierarchical clustering of 153	
  
alpha cells using the top 30 marker genes (ward.D2 and cutree_cols =2). 6 cells clearly separated 154	
  
from the rest of the cells in terms of the expression of these 30 genes. (c) Heterogeneity detected 155	
  
within glioblastomas using IA-SVA, PCA, USVA, and tSNE. IA-SVA’s SV2 clearly separates 156	
  
cells into two groups (blue vs. red dots, SV2 < -0.1) with respect to their cell cycle stages. Other 157	
  
methods failed to detect this cell-cycle related heterogeneity. (d) Hierarchical clustering on 87 158	
  
marker genes confirms the separation of cells based on these markers (ward.D2 and cutree_cols 159	
  
= 2). 160	
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 161	
  

Fig. 3. IA-SVA based marker gene selection enhances the performance of clustering 162	
  
algorithms. (a) tSNE analyses using all expressed genes in human islet data. Cells are color-163	
  
coded based on original cell-type assignments. (b) tSNE analyses using IA-SVA marker genes 164	
  
(n=86). Note the improved clustering of cell types into discrete clusters. (c) Hierarchical 165	
  
clustering using 86 marker genes clearly separate cell types (ward.D2 and cutree_cols=3). Rows 166	
  
marked with boxes refer to marker genes used in the original study. (d) tSNE analyses using all 167	
  
expressed genes in a bigger islet data. Note that cells are not effectively clustered with respect to 168	
  
their assigned cell types. (e) tSNE analyses using marker genes obtained via IA-SVA (n=57). 169	
  
Note the improved clustering of cells into discrete clusters.  170	
  
 171	
  

 172	
  

 173	
  

 174	
  

 175	
  

 176	
  

 177	
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ACCESSION CODES 178	
  

The single-cell RNA sequencing read counts and annotations describing samples and experiment 179	
  

settings are included in an R data package (“iasvaExamples”) containing data examples for IA-180	
  

SVA (https://github.com/dleelab/iasvaExamples).  181	
  

 182	
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ONLINE METHODS  201	
  

IA-SVA framework. Formally, we model the log-transformed sequencing read counts for m 202	
  

genes and n samples (i.e., 𝑚  ×  𝑛 = Y) as a combination of primary variable of interest, known 203	
  

and unknown sources of variation as follows:  204	
  

𝑌!×! = 𝑋!×!𝛽!×! + 𝑍!×!𝛾!×! +𝑊!×!𝛿!×! + 𝜀!×!,  205	
  

where X is a matrix for p primary variable(s) of interest (e.g., group assignment for cases and 206	
  

controls), Z is a matrix for q known factors (e.g., sex or ethnicity), W is a matrix for k unknown 207	
  

factors and 𝜀 is the error term. With this model, we can account for any clinical/experimental 208	
  

information about samples (e.g., sex, ethnicity, age, BMI, experimental batch) as known factors 209	
  

(Z) and dissect the variation in the read count data that is attributable to hidden factors (W). 210	
  

Existing unsupervised methods (e.g., USVA, RUVres, ISVA) obtain the residual matrix 211	
  

by regressing read counts (Y) on all known factors (X and Z). Then, they infer the number of 212	
  

hidden factors and directly estimate hidden factors from the residual matrix using dimensionality 213	
  

reduction algorithms (e.g., principal component analysis (PCA), singular value decomposition 214	
  

(SVD) or independent component analysis (ICA)) under the assumption that hidden factors are 215	
  

uncorrelated with each other and also with the known factors. Consequently, when this 216	
  

assumption is not met, the direct inference from the residual matrix can lead to biased estimates 217	
  

of hidden factors and distort estimates.  218	
  

In contrast, IA-SVA does not impose the assumption of uncorrelated factors. Instead, it 219	
  

allows correlations between factors to accurately estimate hidden factors via a novel iterative 220	
  

approach. At each iteration, IA-SVA obtains residuals, i.e., read counts adjusted for all known 221	
  

factors (X and Z) including unknown factors (surrogate variables) estimated from previous 222	
  

iterations and extracts the principal component (PC1) from the residuals using SVD. Next it tests 223	
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the significance of PC1 in terms of its contribution to the unmodeled variation (i.e., the variation 224	
  

of residuals). Using this PC1 (as in the case of previous methods) as a surrogate variable assumes 225	
  

known factors and hidden factors are not correlated. Therefore, IA-SVA uses PC1 to infer 226	
  

marker genes associated with the hidden factor by taking advantage of the fact that PC1 and the 227	
  

true hidden factor are highly correlated. To detect these marker genes, IA-SVA regresses Y on 228	
  

PC1 and calculates the coefficient of determination (R2) for each gene. Genes with high R2 scores 229	
  

are considered as marker genes associated with the hidden factor. These genes are used for an 230	
  

unbiased inference of the hidden factor.  For this, IA-SVA weighs all genes with respect to their 231	
  

R2 scores, conducts SVD on the weighted read count matrix to obtain an unbiased PC1, and use 232	
  

this PC1 as a surrogate variable (SV) for the hidden factor. In the next iteration, IA-SVA uses 233	
  

this SV as an additional known factor to identify further significant hidden factors. The iterative 234	
  

procedure of IA-SVA composed of six major steps as summarized in Supplementary Figure 1 235	
  

and below:  236	
  

 237	
  

[Step 1] Regress Y on all known factors (X and Z), including a surrogate variable (SV) obtained 238	
  

from the previous iteration, to obtain residuals. 239	
  

[Step 2] Conduct SVD on the obtained residuals to extract the first PC (PC1). 240	
  

[Step 3] Test the significance of the contribution of PC1 to unexplained variation in the read 241	
  

count matrix (Y) using a non-parametric permutation-based assessment 5, 23, 24. For more details, 242	
  

see next section.  243	
  

[Step 4] If PC1 is significant, regress Y (in this case not using the known variables) on PC1 to 244	
  

compute the coefficient of determination (R2) for every gene. If PC1 is not significant, stop the 245	
  

iteration and conduct subsequent down stream analysis using previously obtained significant 246	
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SVs. 247	
  

[Step 5] Weigh each gene in Y with respect to its R2 value by multiplying a gene’s read counts 248	
  

with its R2 values. The highly weighted genes in this framework serve as the marker genes for the 249	
  

hidden factor.  250	
  

[Step 6] Conduct a second SVD on this weighted Y to obtain the first PC, which will be used as 251	
  

the surrogate variable (SV) for the hidden factor.  252	
  

 253	
  

At the end of this six-step procedure, if a significant SV is obtained, IA-SVA uses this SV as an 254	
  

additional known factor in Step 1 of the next iteration. The algorithm stops, when no more 255	
  

significant hidden factor are detected in Step 3. Significant SVs obtained via IA-SVA can be 256	
  

used in subsequent analyses. For instance, in differential gene expression analyses SVs can be 257	
  

added as covariates in a regression model to adjust for the unwanted variation. If SVs explain 258	
  

biological variables of interest, e.g., cell type assignments, marker genes for SVs can be further 259	
  

utilized (e.g., marker genes for different cell types).  260	
  

 261	
  

Assessing the significance of the contribution of a hidden factor in the variation of 262	
  

residuals. To assess the significance of a putative hidden factor (i.e., PC1 obtained from Step 2 263	
  

in the previous section), we used the permutation based significance test applied in the surrogate 264	
  

variable analysis 5, 23. Unlike SVA, which tests all putative hidden factors at once, IA-SVA 265	
  

assesses the significance of hidden factors one at a time during the corresponding iteration. 266	
  

Briefly, IA-SVA i) conducts SVD on the residual matrix obtained from Step 1, ii) computes the 267	
  

proportion of variation in this matrix explained by the first singular vector and iii) compares it 268	
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against the values obtained from permuted residual matrices. The detailed steps of the algorithm 269	
  

are as follows: 270	
  

 271	
  

[Step 1] Conduct SVD on the residual matrix.  272	
  

[Step 2] Calculate the proportion of the variance in the residual matrix explained by the first 273	
  

singular vector using the test statistic: 𝑇!"# =
!!!

!!
!

!
, where 𝜆! is the k-th singular value.  274	
  

[Step 3] Generate a permuted residual matrix by i) permuting each row of the log-transformed 275	
  

read count matrix Y and regressing Y on all known factors (X and Z) to obtain fitted residuals.  276	
  

[Step 4] Repeat Step 3 M times and generate an empirical null distribution of the test statistics by 277	
  

calculating (𝑇!!, 𝑖 = 1,… ,𝑀) for the M permuted residual matrices.   278	
  

[Step 5] Compute the empirical p-value for the first singular vector (i.e., putative hidden factor) 279	
  

by counting the number of times the null statistics (𝑇!!) exceeds the observed one (𝑇!"#) divided 280	
  

by the number of permutations (M). 281	
  

 282	
  

Gene expression data filtering. We filtered out low-expressed genes with read counts <= 5 in 283	
  

less than three cells and log-transformed the retained gene expression counts for further analyses. 284	
  

 285	
  

Single-cell RNA-Seq data simulations. We simulated single-cell gene expression data with 286	
  

attributes similar to real-world scRNA-Seq data generated from human pancreatic islets 15. We 287	
  

first estimated zero-inflated negative binomial model parameters (i.e., p0: probabilities that the 288	
  

count will be zero, mu: mean of the negative binomial, size: size of the negative binomial) from 289	
  

this data using the Polyester R package 25. With these model parameters, we simulated 290	
  

expression data for m expressed genes and n cells under two hypotheses: 1) the null hypothesis: 291	
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no hidden sources of variation, and 2) the alternative hypothesis: three hidden factors simulated 292	
  

in the data. Under both scenarios, we simulated a primary variable of interest (i.e., case vs. 293	
  

control) and simulated 10% of genes to be differentially expressed between the two groups. 294	
  

Under the alternative hypothesis, we simulated three hidden factors that affect 30%, 20% and 295	
  

10% of randomly chosen genes respectively and simulated two different scenarios where these 296	
  

factors are moderately correlated (|r|=~0.3-0.6) or weakly correlated (|r|<0.3) with the group 297	
  

variable. 298	
  

 299	
  

Detection power, Type I error rate and accuracy assessment. To assess the detection power, 300	
  

Type I error rate, and the accuracy of IA-SVA estimates, we simulated 1,000 times scRNA-Seq 301	
  

data (as explained in the previous section) for 10,000 genes and 50 cells, under the null 302	
  

hypothesis (i.e., a group (case/control) variable affecting 10% of genes and no hidden factor) and 303	
  

under the alternative hypothesis (i.e., a group variable and three hidden factors affecting 10%, 304	
  

30%, 20%, 10% of genes, respectively). Under the alternative hypothesis, we considered two 305	
  

correlation scenarios where the three hidden factors are moderately (|r|=~0.3-0.6) or weakly 306	
  

(|r|<0.3) correlated with the group variable. We used 0.05 as the nominal significance level (𝛼). 307	
  

Accordingly, for USVA and SSVA analyses, we set 𝛼 at 0.05 by modifying the ‘num.sv’ 308	
  

function in the svaseq R package4. 50 permutations were used to test the significance of a 309	
  

factor’s contribution to the unexplained variation in the data. We defined the empirical Type I 310	
  

error rate as the number of times each method detects a false positive factor under the null 311	
  

hypothesis (i.e., a factor does not exist but is detected as significant at the nominal p-value 312	
  

threshold of 0.05) divided by the number of simulations (i.e., 1,000). Similarly, the empirical 313	
  

power rate for detecting a hidden factor is defined as the number of times each method detects a 314	
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simulated factor under the alternative hypothesis (i.e., a factor actually exists and is detected as 315	
  

significant by the method) divided by 1,000. We assessed the accuracy of the estimates using the 316	
  

average of the absolute correlation coefficients between the simulated and estimated hidden 317	
  

factors. 318	
  

 319	
  

Inference of cell types from brain cells. For a more realistic assessment of algorithms, we used 320	
  

gene expression profiles of neurons (n=52) and oligodendrocytes (n=20) obtained from two 321	
  

different brain tissues: cortex (n=65) and hippocampus (n=7) 14. We treated the cell type 322	
  

assignments (neuron vs. oligodendrocyte) as an unknown variable and estimated it by computing 323	
  

the top SV (or PC in case of PCA) using IA-SVA and other unsupervised methods (i.e., USVA, 324	
  

PCA, RUVemp and RUVres). Given that neurons and oligodendrocytes have very different 325	
  

expression profiles, if entire genes are used for this analysis, all methods will deliver perfect 326	
  

estimates. Thus, to enable performance comparisons, we made the problem more challenging by 327	
  

randomly choosing 1,000 genes and considering only these genes in the analyses (same random 328	
  

set of genes used for all methods for comparability). The number of expressed genes in each cell 329	
  

is a major source of cell-to-cell variation in scRNA-Seq data and frequently correlates with other 330	
  

factors 12. Thus, ‘Sample ID’ and the number of expressed genes are included into IA-SVA, 331	
  

USVA and RUVres models as known factors. We assessed the accuracy of each method in 332	
  

inferring the true cell type by calculating the absolute Pearson correlation coefficient (|r|) 333	
  

between inferred cell types and an indicator variable for the true cell type (e.g., taking one for 334	
  

neurons and zero for oligodendrocytes).  335	
  

 336	
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Detection of a subset of alpha cells that uniquely express a subset of genes. To test whether 337	
  

IA-SVA is effective in capturing heterogeneity within a relatively homogenous cell population, 338	
  

we studied islet alpha cells (n=101) from three diabetic patients 15. After filtering weakly 339	
  

expressed genes, 14,416 genes out of 26,616 were used for further analyses. ‘Patient ID’ and 340	
  

geometric library size are modeled as known factors, and top 3 significant factors contributing to 341	
  

the unexplained variation are inferred using IA-SVA at p-value of 0.05 using 50 permutations. 342	
  

For comparison, we applied PCA, USVA, and tSNE on this data. In the USVA analysis, we 343	
  

similarly used ‘Patient ID’ and the geometric library size as known factors. In the PCA analysis, 344	
  

PC1 is discarded since it is highly correlated with the number of expressed genes. To test 345	
  

whether the heterogeneity detected in alpha cells is reproducible, we conducted similar analyses 346	
  

on a bigger human islet scRNA-Seq dataset independently generated with the Fluidigm C1 347	
  

platform 16. We used gene expression profiles of 563 alpha cells from six diabetic patients. After 348	
  

removing weakly expressed genes, 17,025 genes were retained. ‘Patient ID’ and the geometric 349	
  

library size are modeled as known factors in our models, and top 3 significant SVs are obtained 350	
  

using IA-SVA. For comparison, we conducted similar analyses using PCA (PC1 and PC2 are 351	
  

discarded since PC1 matched number of expressed genes and PC2 captured the ‘Patient ID’, 352	
  

which are adjusted for in IA-SVA and USVA), USVA and tSNE. For USVA, similarly, we 353	
  

adjusted for ‘Patient ID’ and the geometric library size.   354	
  

 355	
  

Detection of heterogeneity stemming from cell-cycle stage differences. To assess the 356	
  

performance of IA-SVA and existing methods in detecting the effect of cell-cycle stage, we 357	
  

analyzed scRNA-Seq data obtained from human glioblastomas, which has an established cell-358	
  

cycle signature 19. We considered gene expression read counts of 25,415 genes and 58 cells 359	
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obtained from a tumor sample (MGH30). After filtering out lowly expressed genes, 21,151 genes 360	
  

were retained. Using IA-SVA, we adjusted for geometric library size at the initial step and 361	
  

iteratively extracted top 3 significant SVs at p-value of 0.05 using 50 permutations. For 362	
  

comparison, we applied PCA, USVA and tSNE on this data. In USVA, similarly, we adjusted for 363	
  

geometric library size. 364	
  

 365	
  

IA-SVA based gene selection can improve the performance of clustering algorithms. To 366	
  

compare the performance of tSNE combined with IA-SVA against standard tSNE analyses, we 367	
  

studied gene expression profiles of alpha (n=101, marked with glucagon (GCG) expression), beta 368	
  

(n=96, marked with insulin (INS) expression), and ductal (n=16, marked with KRT19 expression) 369	
  

cells obtained from three diabetic patients 15. We filtered out low-expressed genes and retained 370	
  

16,047 genes for further analyses. Then, we performed IA-SVA based marker gene selection and 371	
  

conducted tSNE on these selected genes. For comparison we also performed tSNE on all 372	
  

expressed genes (n=16,047). We repeated similar analyses on a bigger and more complex data 373	
  

generated using Fluidigm C1 platform 16, which contains 1,600 cells (alpha (n=946), beta 374	
  

(n=503), delta (n=58) and PP (n=93)) obtained from 6 diabetic and 12 non-diabetic individuals. 375	
  

After filtering lowly expressed genes, the number of retained genes was 19,226. We first 376	
  

clustered these 1,600 cells by performing tSNE on all expressed genes (n=19,226). Next, we 377	
  

conducted IA-SVA analyses while accounting for the known factors (i.e., Patient ID, Phenotype 378	
  

(diabetic vs. non-diabetic), sex and geometric library size) and performed tSNE analysis on the 379	
  

marker genes inferred by IA-SVA. 380	
  

	
  381	
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