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Abstract 
Summary: Gap-filling is a necessary step to produce quality genome-scale metabolic reconstructions 

capable of flux-balance simulation. Most available gap-filling tools use an organism-agnostic ap-

proach, where reactions are selected from a database to fill gaps without consideration of the target 

organism. Conversely, our likelihood based gap-filling with probabilistic annotations selects candidate 

reactions based on a likelihood score derived specifically from the target organism’s genome. Here, 

we present two new implementations of probabilistic annotation and likelihood based gap-filling: a 

web service called ProbAnnoWeb, and a standalone python package called ProbAnnoPy.  

Availability and Implementation: Our tools are available as a web service with no installation need-

ed (ProbAnnoWeb), available at http://probannoweb.systemsbiology.net, and as a local python pack-

age implementation (ProbAnnoPy), available for download at http://github.com/PriceLab/probannopy. 

Contact: Evangelos.Simeonidis@systemsbiology.org; Nathan.Price@systemsbiology.org   

 

 

1 Introduction  
Metabolic modeling approaches provide powerful analytical tools for 

exploration and detailed consideration of the structure and design of a 

metabolic network (Schilling et al. 1999). Genome-scale models (GEMs) 

in particular, which collect all available metabolic knowledge on a par-

ticular organism, have been constructed for an expanding array of organ-

isms based on annotated genome sequences (King et al. 2016). GEMs 

have applications in metabolic engineering, modeling of microbial com-

munities, and simulations that combine transcriptomics, proteomics, 

and/or metabolomics to deepen understanding of an organism’s pheno-

type (Milne et al. 2009; Oberhardt et al. 2009).  

When a model is not readily available for an organism, or when exist-

ing models are not detailed enough to cover the required elements of 

metabolism for the intended analysis, a new reconstruction needs to be 

built. Metabolic reconstruction is a data intensive but well defined pro-

cess (Thiele and Palsson 2010) that requires collecting species-specific 

information from genome annotations, high-throughput experiments, the 

literature, and publically available databases, such as KEGG (Kanehisa 

et al. 2008) or EcoCyc (Karp et al. 2005). Gap-filling methods (Reed et 

al. 2006) are subsequently applied to improve connectivity to the point 

where the model can simulate steady state reaction flux and growth.  

Most gap-filling tools use an organism-agnostic approach; one that 

does not consider the relationship between genome and metabolism in 

selecting candidate reactions from a database. One such example is par-

simonious gap-filling, which fills the model using a universal database 

such as ModelSEED with as few reactions as possible (Devoid et al. 

2013). Conversely, our likelihood based gap-filling (Benedict et al. 

2014) uses probabilistic annotation to compute organism-specific reac-

tion likelihoods of gene functions based on sequence homology with a 

trusted annotation database. These likelihoods can subsequently be used 

to select gap-filling reactions from a biochemical reaction database (Fig. 

1). These annotations can additionally provide insight into an organism’s 

metabolic capabilities and be used in other down-stream modeling tasks.  

Here, we provide two new implementations of our annotation likeli-

hood algorithm and its application to likelihood based gap-filling: Pro-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 16, 2017. ; https://doi.org/10.1101/151258doi: bioRxiv preprint 

http://probannoweb.systemsbiology.net/
http://github.com/PriceLab/probannopy
mailto:Evangelos.Simeonidis@systemsbiology.org
mailto:Nathan.Price@systemsbiology.org
https://doi.org/10.1101/151258
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

bAnnoWeb, a web service, and ProbAnnoPy, a downloadable python 

package. Our tools are compatible with openCOBRA packages for con-

straint-based reconstruction and analysis (Schellenberger et al. 2011). 

Mackinac, a recent tool bridging COBRApy and ModelSEED, addition-

ally provides functions for generating reaction likelihoods and gap-filling 

models within ModelSEED, as well as transferring ModelSEED models 

to and from COBRApy (Mundy et al. 2017). We propose our tools as an 

accessible, easy to use, standalone version of probabilistic annotation, 

with direct integration with COBRApy for likelihood based gap-filling, 

and as a minimalist alternative for those who wish to compute locally or 

to have less interaction with online modeling services. 

2 Methods 

2.1 Probabilistic Annotation and Reaction Likelihoods 

Given an organism’s genome sequence, probabilistic annotation assigns 

an organism-specific likelihood score (0 ≤ 𝑠 ≤ 1) to each reaction in a 

template model database of reactions, which comprises the complete 

pool of candidate reactions for the gap-filling problem. Below we pro-

vide a quick overview of this process, which can be explored in greater 

detail in  (Benedict et al. 2014). 

First, we run BLASTp on each gene in the query genome against a 

reference set of high confidence functional annotations (Altschul et al. 

1990; Camacho et al. 2009). A log score for each query/target gene pair 

is computed as follows: 

 Sij =  −log (Eij + k) (1) 

where Eij is the BLASTp E-value of the pair and k is a small constant 

(10-200).The probability that a query gene i is in the set of genes Aa with 

functional annotation a is proportional to the score between query i and 

each reference target j in Aa: 

 p(i ∈ Aa) =  

∑ Sij
2

j∈Aa

M
∑ Sij

2
j

M
+PC

 (2) 

where M is the maximum log-score of any BLASTp hits and PC is a 

pseudo-count that dilutes likelihoods for annotations with weak homolo-

gy to the query. 

A reaction’s likelihood is a function of its corresponding annotation 

likelihoods derived from its Gene-Protein-Reaction relationship specified 

in a ModelSEED (Overbeek et al. 2005) template model. For iso-

enzymes (i.e. “OR” relationships) we take the maximum of enzyme 

likelihoods, whereas for multi-enzyme complexes (i.e. “AND” relation-

ships) we take the minimum. 

2.2 Probabilistic Annotation and Gap-filling 

Gap-filling can be formulated as a mixed integer linear programming 

(MILP) problem: the reactions in the model are considered in union with 

those in a universal template model, a non-zero or minimum increase 

constraint is placed on the model’s objective function, and the count of 

new reactions carrying non-zero flux is minimized. In parsimonious gap-

filling, each reaction (x) not found in the model receives a gap-filling 

objective coefficient of one ( 𝜆𝑔𝑎𝑝𝑓𝑖𝑙𝑙,𝑥 = 1), and each reaction in the 

model receives a coefficient of zero.  

Likelihood based gap-filling re-weighs the objective coefficients for 

database reactions according to likelihood as follows: 

 λgapfill,x =  max(1 − p(x), 0) (3) 

As such, solutions composed of higher likelihood reactions become 

more favorable, despite potentially requiring more reactions than the 

optimal parsimonious solution.  

3 Workflow 
We make two tools available: ProbAnnoWeb, a web service, and Pro-

bAnnoPy, an installable python package. The latter is compatible with 

Python 2.7, models in COBRApy (Ebrahim et al. 2013) format, and 

depends on usearch, which is freely available for academic use (Edgar 

2010). Like COBRApy, ProbAnnoPy depends on an installed MILP 

solver such as Gurobi. Greater detail on dependencies and the installa-

tion process is available at our GitHub repository. 

3.1 Generating Reaction Likelihoods 

In the general use case, the workflow begins with finding a genome 

sequence for a target organism by downloading its proteome sequence in 

FASTA format. Next, we run probabilistic annotation, which takes the 

FASTA sequence and a template model as arguments. The template 

models serve as general databases for reactions and come from Mod-

elSEED. We supply template models for “Gram Positive”, “Gram Nega-

tive”, and “Microbial” organisms. Template choice does not affect like-

lihoods, only the reactions for which scores are calculated. Probabilistic 

annotation returns likelihoods in the form of a ‘ReactionProbabilities’ 

object, which is a wrapper for a dictionary of reaction likelihoods and 

other information, such as complex and annotation likelihoods.  

3.2 Likelihood based Gap-filling 

We provide functionality for likelihood based gap-filling given a 

model in COBRApy format, a choice of “universal” model to serve as 

reaction database, and reaction likelihoods. We support functionality for 

building a “universal” model from one of the supplied template models, 

 

Fig. 1. Likelihood based gap-filling: a. Gap in the metabolic network, preventing 

production of E; b. A parsimonious gap-filling solution using two new reactions; c. A 

likelihood based gap-filling solution using three new reactions, which are together more 

likely than the parsimonious solution. 
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a step that is automated behind the scenes in the web service. Although 

COBRA is identifier-agnostic, our implementations of probabilistic 

annotation use ModelSEED identifiers; currently, only these identifiers 

are directly supported for probabilistic annotation and likelihood based 

gap-filling. Like COBRApy’s native parsimonious gap-filling, we output 

a list of reactions that can be added to the model. ProbAnnoWeb addi-

tionally automates this step, instead outputting a gap-filled model that 

can be downloaded in SBML format. 

4 Discussion 
Probabilistic annotation is a useful tool both for the analysis of meta-

bolic networks and for likelihood based gap-filling, resulting in higher 

quality reconstructions corresponding to more genomic evidence. Here, 

we make freely available to the community a straightforward implemen-

tation of this algorithm, which can be used to gap-fill metabolic models 

with ModelSEED reactions. We provide multiple interfaces to our im-

plementation for varied technical needs and levels of programming sav-

vy. Further work will extend applications of probabilistic annotation and 

support alternative identifier paradigms. 

Acknowledgements 
The authors thank Nicholas Chia for important discussions and support. 

Funding 
This work was supported by the United States Department of Energy’s Advanced 

Research Projects Agency-Energy [grant number DE-AR0000426 to N.D.P.] and the 

Mayo Clinic Center for Individualized Medicine [M.M.]. 

 

Conflict of Interest: none declared. 

References 
Altschul, S. F., et al. (1990), 'Basic local alignment search tool', J Mol Biol, 215 

(3), 403-10. 

Benedict, M. N., et al. (2014), 'Likelihood-based gene annotations for gap filling 

and quality assessment in genome-scale metabolic models', PLoS Comput 

Biol, 10 (10), e1003882. 

Camacho, C., et al. (2009), 'BLAST+: architecture and applications', BMC 

Bioinform, 10, 421. 

Devoid, S., et al. (2013), 'Automated genome annotation and metabolic model 

reconstruction in the SEED and Model SEED', Methods Mol Biol, 985, 17-45. 

Ebrahim, A., et al. (2013), 'COBRApy: COnstraints-Based Reconstruction and 

Analysis for Python', BMC Syst Biol, 7, 74. 

Edgar, R. C. (2010), 'Search and clustering orders of magnitude faster than 

BLAST', Bioinformatics, 26 (19), 2460-61. 

Kanehisa, M., et al. (2008), 'KEGG for linking genomes to life and the 

environment', Nucleic Acids Res, 36 (Suppl. 1), D480-D84. 

Karp, P. D., et al. (2005), 'Expansion of the BioCyc collection of pathway/genome 

databases to 160 genomes', Nucleic Acids Res, 33 (19), 6083-89. 

King, Z. A., et al. (2016), 'BiGG Models: A platform for integrating, standardizing 

and sharing genome-scale models', Nucleic Acids Res, 44 (D1), D515-D22. 

Milne, C. B., et al. (2009), 'Accomplishments in genome-scale in silico modeling 

for industrial and medical biotechnology', Biotechnol J, 4 (12), 1653-70. 

Mundy, M., Mendes-Soares, H., and Chia, N. (2017), 'Mackinac: a bridge between 

ModelSEED and COBRApy to generate and analyze genome-scale metabolic 

models', Bioinformatics, doi: 10.1093/bioinformatics/btx185. 

Oberhardt, M. A., Palsson, B. O., and Papin, J. A. (2009), 'Applications of genome-

scale metabolic reconstructions', Mol Syst Biol, 5, 320. 

Overbeek, R., et al. (2005), 'The subsystems approach to genome annotation and its 

use in the project to annotate 1000 genomes', Nucleic Acids Res, 33 (17), 

5691-702. 

Reed, J. L., et al. (2006), 'Systems approach to refining genome annotation', Proc 

Natl Acad Sci U S A, 103 (46), 17480-84. 

Schellenberger, J., et al. (2011), 'Quantitative prediction of cellular metabolism 

with constraint-based models: the COBRA Toolbox v2.0', Nat Protoc, 6 (9), 

1290-307. 

Schilling, C. H., et al. (1999), 'Metabolic pathway analysis: basic concepts and 

scientific applications in the post-genomic era', Biotechnol Prog, 15 (3), 296-

303. 

Thiele, I. and Palsson, B. O. (2010), 'A protocol for generating a high-quality 

genome-scale metabolic reconstruction', Nat Protoc, 5 (1), 93-121. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 16, 2017. ; https://doi.org/10.1101/151258doi: bioRxiv preprint 

https://doi.org/10.1101/151258
http://creativecommons.org/licenses/by-nc-nd/4.0/

