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Abstract

Due to the large numbers of transcription factors (TFs) and cell types, querying binding profiles of all

TF/cell type pairs is not experimentally feasible, owing to constraints in time and resources. To address this

issue, we developed a convolutional-recurrent neural network model, called FactorNet, to computationally

impute the missing binding data. FactorNet trains on binding data from reference cell types to make

accurate predictions on testing cell types by leveraging a variety of features, including genomic sequences,

genome annotations, gene expression, and single-nucleotide resolution sequential signals, such as DNase I

cleavage. To the best of our knowledge, this is the first deep learning method to study the rules governing

TF binding at such a fine resolution. With FactorNet, a researcher can perform a single sequencing assay,

such as DNase-seq, on a cell type and computationally impute dozens of TF binding profiles. This is an

integral step for reconstructing the complex networks underlying gene regulation. While neural networks can

be computationally expensive to train, we introduce several novel strategies to significantly reduce the

overhead. By visualizing the neural network models, we can interpret how the model predicts binding which

in turn reveals additional insights into regulatory grammar. We also investigate the variables that affect

cross-cell type predictive performance to explain why the model performs better on some TF/cell types than

others, and offer insights to improve upon this field. Our method ranked among the top four teams in the

ENCODE-DREAM in vivo Transcription Factor Binding Site Prediction Challenge.
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Introduction 1

High-throughput sequencing has led to a diverse set of methods to interrogate the epigenetic landscape for 2

the purpose of discovering tissue and cell type-specific putative functional elements. Such information 3

provides valuable insights for a number of biological fields, including synthetic biology and translational 4

medicine. Among these methods are ChIP-seq, which applies a large-scale chromatin immunoprecipitation 5

assay that maps in vivo transcription factor (TF) binding sites or histone modifications genome-wide 6

(Johnson et al., 2007), and DNase-seq, which identifies genome-wide locations of open chromatin, or 7

“hotspots”, by sequencing genomic regions sensitive to DNase I cleavage (Crawford, G. et al., 2006; John 8

et al., 2013). At deep sequencing depth, DNase-seq can identify TF binding sites, which manifest as dips, or 9

“footprints”, in the digital DNase I cleavage signal (Hesselberth et al., 2009; Boyle et al., 2011; Neph, S. et al., 10

2012). Other studies have shown that cell type-specific functional elements can display unique patterns of 11

motif densities and epigenetic signals (Quang et al., 2015b). Computational methods can integrate these 12

diverse datasets to elucidate the complex and non-linear combinations of epigenetic markers and raw 13

sequence contexts that underlie functional elements such as enhancers, promoters, and insulators. Some 14

algorithms accomplish this by dividing the entire genome systematically into segments, and then assigning 15

the resulting genome segments into “chromatin states” by applying machine learning methods such as 16

Hidden Markov Models, Dynamic Bayesian Networks, or Self-Organizing Maps (Ernst and Kellis, 2012; 17

Hoffman et al., 2012; Mortazavi et al., 2013). 18

The Encyclopedia of DNA Elements (ENCODE) (ENCODE Project Consortium, 2012) and NIH 19

Roadmap Epigenomics (Roadmap Epigenomics Consortium et al., 2015) projects have generated a large 20

number of ChIP-seq and DNase-seq datasets for dozens of different cell and tissue types. Owing to several 21

constraints, including cost, time or sample material availability, these projects are far from completely 22

mapping every mark and sample combination. This disparity is especially large for TF binding profiles 23

because ENCODE has profiled over 600 human biosamples and over 200 TFs, translating to over 120,000 24

possible pairs of biosamples and TFs, but as of the writing of this article only about 8,000 TF binding 25

profiles are available. Due to the strong correlations between epigenetic markers, computational methods 26

have been proposed to impute the missing datasets. One such imputation method is ChromImpute (Ernst 27

and Kellis, 2015), which applies ensembles of regression trees to impute missing chromatin marks. With the 28

exception of CTCF, ChromImpute does not impute TF binding. Moreover, ChromImpute does not take 29

sequence context into account, which can be useful for predicting the binding sites of TFs like CTCF that 30

are known to have a strong binding motif. 31
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Computational methods designed to predict TF binding include PIQ (Sherwood et al., 2014), Centipede 32

(Pique-Regi et al., 2011), and msCentipede (Raj et al., 2015). These methods require a collection of motifs 33

and DNase-seq data to predict TF binding sites in a single tissue or cell type. While such an approach can 34

be convenient because the DNase-seq signal for the cell type considered is the only mandatory experimental 35

data, it has several drawbacks. These models are trained in an unsupervised fashion using algorithms such as 36

expectation maximization (EM). From our experience, EM-based algorithms can be very computationally 37

inefficient. To compensate for this issue, PIQ, Centipede, and msCentipede limit training and evaluation to 38

motif matches, which represent a small and unrepresentative fraction of the whole genome. Furthermore, the 39

manual assignment of a motif for each TF is a strong assumption that completely ignores any additional 40

sequence contexts such as co-binding, indirect binding, and non-canonical motifs. This can be especially 41

problematic for TFs like REST, which is known to have eight non-canonical binding motifs (Quang and Xie, 42

2014). 43

More recently, deep neural network (DNN) methods have gained significant traction in the bioinformatics 44

community. DNNs are useful for biological applications because they can efficiently identify complex 45

non-linear patterns from large amounts of feature-rich data. They have been successfully applied to 46

predicting splicing patterns (Leung et al., 2014), predicting variant deleteriousness (Quang et al., 2015a), and 47

gene expression inference (Chen et al., 2016). The convolutional neural network (CNN), a variant of the 48

DNN, has been useful for genomics because it can process raw DNA sequences and the kernels are analogues 49

to position weight matrices (PWMs), which are popular models for describing the sequence-specific binding 50

pattern of TFs. Examples of genomic application of CNNs include DanQ(Quang and Xie, 2016), DeepSEA 51

(Zhou and Troyanskaya, 2015), Basset (Kelley et al., 2016), and DeepBind (Alipanahi et al., 2015). These 52

methods accept raw DNA sequence inputs and are trained in a supervised fashion to discriminate between 53

the presence and absence of epigenetic markers, including TF binding, open chromatin, and histone 54

modifications. Consequently, these algorithms are not suited to the task of predicting epigenetic markers 55

across cell types. Instead, they are typically designed for other tasks such as motif discovery or functional 56

variant annotation. Unlike the other three CNN methods, DanQ also uses a recurrent neural network (RNN), 57

another type of DNN, to form a CNN-RNN hybrid architecture that can outperform pure convolutional 58

models. RNNs have been useful in other machine learning applications involving sequential data, including 59

phoneme classification (Graves and Schmidhuber, 2005), speech recognition (Graves et al., 2013), machine 60

translation (Sundermeyer et al., 2014), and human action recognition (Zhu et al., 2016). More recently, CNNs 61

and RNNs have been used for predicting single-cell DNA methylation states (Angermueller et al., 2017). 62

To predict cell type-specific TF binding, we developed FactorNet, which combines elements of the 63
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Figure 1. Simplified diagram of the FactorNet model. An input DNA sequence (top) is first one hot
encoded into a 4-row bit matrix. Real-valued single-nucleotide signal values are concatenated as extra rows
to this matrix. A rectifier activation convolution layer transforms the input matrix into an output matrix
with a row for each convolution kernel and a column for each position in the input (minus the width of the
kernel). Each kernel is effectively a sequence motif. Max pooling downsamples the output matrix along the
spatial axis, preserving the number of channels. The subsequent recurrent layer contains long short term
memory (LSTM) units connected end-to-end in both directions to capture spatial dependencies between
motifs. Recurrent outputs are densely connected to a layer of rectified linear units. The activations are
likewise densely connected to a sigmoid layer that nonlinear transformation to yield a vector of probability
predictions of the TF binding calls. An identical network, sharing the same weights, is also applied to the
reverse complement of the sequence (bottom). Finally, respective predictions from the forward and reverse
complement sequences are averaged together, and these averaged predictions are compared via a loss function
to the true target vector. Although not pictured, we also include a sequence distributed dense layer between
the convolution and max pooling layer to capture higher order motifs.
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aforementioned algorithms. FactorNet trains a DNN on data from one or more reference cell types for which 64

the TF or TFs of interest have been profiled, and this model can then predict binding in other cell types. The 65

FactorNet model builds upon the DanQ CNN-RNN hybrid architecture by including additional real-valued 66

coordinated-based signals such as DNase-seq signals as features. FactorNet is similar to a recently developed 67

method called DeepCpG, which integrates sequence context and neighboring methylation rates to predict 68

single-cell DNA methylation states using a CNN and a bidirectional RNN (Angermueller et al., 2017). We 69

also extended the DanQ network into a ”Siamese” architecture that accounts for reverse complements (Figure 70

1). This Siamese architecture applies identical networks to both strands to ensure that both the forward and 71

reverse complement sequences return the same outputs, essentially halving the total amount of training data, 72

ultimately improving training efficiency and predictive accuracy. Both networks share the same weights. 73

Siamese networks are popular among tasks that involve finding similarity or a relationship between two 74

comparable objects. Two examples are signature verification (Bromley et al., 1993) and assessing sentence 75

similarity (Mueller and Thyagarajan, 2016). Another recent method, TFImpute (Qin and Feng, 2017), shares 76

many similarities with FactorNet. Like FactorNet, TFImpute is intended to impute missing TF binding 77

datasets, and it uses a CNN-RNN architecture, and a weight-sharing strategy to handle reverse complements. 78

TFImpute is a sequence-only method and therefore more comparable to DeepSEA, DeepBind, and Basset. 79

Unlike FactorNet, TFImpute does not directly accept cell type-specific data like DNase-seq as model inputs. 80

We submitted the FactorNet model to the ENCODE-DREAM in vivo Transcription Factor Binding Site 81

Prediction Challenge (https://www.synapse.org/ENCODE), where it placed among the top four ranked 82

teams. All results discussed in this paper are derived from data in the Challenge. The Challenge delivers a 83

crowdsourcing approach to figure out the optimal strategies for solving the problem of TF binding prediction. 84

Results 85

Predictive performance varies across transcription factors 86

Table 1 shows a partial summary of FactorNet cross-cell type predictive performances on a variety of cell 87

type and TF combinations as of the conclusion of the ENCODE-DREAM Challenge. Final rankings in the 88

Challenge are based on performances over 13 TF/cell type pairs. A score combining several primary 89

performance measures is computed for each pair. In addition to the 13 TF/cell type pairs for final rankings, 90

there are 28 TF/cell type “leaderboard” pairs. Competitors can compare performances and receive live 91

updating of their scores for the leaderboard TF/cell type pairs. Scores for the 13 final ranking TF/cell type 92
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Table 1. Partial summary of FactorNet cross-cell type predictive performances on the
ENCODE-DREAM Challenge data. Each final ranking TF/cell type pair is demarcated with a *.
For each final ranking TF/cell type pair, we provide, in parentheses, performance scores based on the
evaluation pair’s original ChIP-seq fold change signal.

Recall at
Factor Cell type auROC auPR 50% FDR
CTCF* iPSC 0.9966 (0.9998) 0.8608 (0.9794) 0.9142 (0.9941)
CTCF GM12878 0.9968 0.8451 0.8777
CTCF* PC-3 0.9862 (0.9942) 0.7827 (0.8893) 0.7948 (0.9272)
ZNF143 K562 0.9884 0.6957 0.7303
MAX MCF-7 0.9956 0.6624 0.8290
MAX* liver 0.9882 (0.9732) 0.4222 (0.6045) 0.3706 (0.6253)
EGR1 K562 0.9937 0.6522 0.7312
EGR1* liver 0.9856 (0.9741) 0.3172 (0.5306) 0.2164 (0.5257)
HNF4A* liver 0.9785 (0.9956) 0.6188 (0.8781) 0.6467 (0.9291)
MAFK K562 0.9946 0.6176 0.6710
MAFK MCF-7 0.9906 0.5241 0.5391
GABPA K562 0.9957 0.6125 0.6299
GABPA* liver 0.9860 (0.9581) 0.4416 (0.5197) 0.3550 (0.5202)
YY1 K562 0.9945 0.6078 0.7393
TAF1 HepG2 0.9930 0.5956 0.6961
TAF1* liver 0.9892 (0.9657) 0.4283 (0.4795) 0.4039 (0.4766)
E2F6 K562 0.9885 0.5619 0.6455
REST K562 0.9958 0.5239 0.5748
REST* liver 0.9800 (0.9692) 0.4122 (0.5596) 0.4065 (0.5945)
FOXA1* liver 0.9862 (0.9813) 0.4922 (0.6546) 0.4889 (0.6728)
FOXA1 MCF-7 0.9638 0.4487 0.4613
JUND H1-hESC 0.9948 0.4098 0.3141
JUND* liver 0.9765 (0.9825) 0.2649 (0.6921) 0.1719 (0.7223)
TCF12 K562 0.9801 0.3901 0.3487
STAT3 GM12878 0.9975 0.3774 0.3074
NANOG* iPSC 0.9885 (0.9876) 0.3539 (0.6421) 0.3118 (0.6680)
CREB1 MCF-7 0.9281 0.3105 0.2990
E2F1* K562 0.9574 (0.9888) 0.2406 (0.6428) 0.0000 (0.6573)
FOXA2* liver 0.9773 (0.9932) 0.2172 (0.7920) 0.0231 (0.8278)

pairs were not available until the conclusion of the challenge. Our model achieved first place on six of the 13 93

TF/cell type final ranking pairs, the most of any team. 94

FactorNet typically achieves auROC scores above 97% for most of the TF/cell type pairs, reaching as low 95

as 92.8% for CREB1/MCF-7. auPR scores, in contrast, display a wider range of values, reaching as low as 96

21.7% for FOXA1/liver and 87.8% for CTCF/iPSC. For some TFs, such as CTCF and ZNF143, the 97

predictions are already accurate enough to be considered useful. Much of the variation in auPR scores can be 98

attributed to noise in the ChIP-seq signal used to generate the evaluation labels, which we demonstrate by 99

building classifiers based on taking the mean in a 200 bp window of the ChIP-seq fold change signal with 100

respect to input control. Peak calls are derived from the SPP algorithm (Kharchenko et al., 2008), which 101

uses the fold-change signal and peak shape to score and rank peaks. An additional processing step scores 102
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peaks according to an irreproducible discovery rate (IDR), which is a measure of consistency between 103

replicate experiments. Bins are labeled positive if they overlap a peak that meets the IDR threshold of 5%. 104

The IDR scores are not always monotonically associated with the fold-changes. Nevertheless, we expect that 105

performance scores from the fold-change signal classifiers should serve as overly optimistic upper bounds for 106

benchmarking. Commensurate with these expectations, the auPR scores of the FactorNet models are less 107

than, but positively correlative with, the respective auPR scores of the ChIP-seq fold-change signal classifiers 108

(Figure 2A). Interestingly, this pattern does not extend to the auROC scores, and in more than half of the 109

cases the FactorNet auROC scores are greater (Figure 2B). These results are consistent with previous studies 110

that showed the auROC can be unreliable and overly optimistic in an imbalanced class setting (Saito and 111

Rehmsmeier, 2015), which is a common occurrence in genomic applications (Quang and Xie, 2016), 112

motivating the use of alternative measures like the auPR that ignore the overly abundant true negatives. 113

We can also visualize the FactorNet predictions as genomic signals that can be viewed alongside the 114

ChIP-seq signals and peak calls (Figure 2C and S1). Higher FactorNet prediction values tend to coalesce 115

around called peaks, forming peak-like shapes in the prediction signal that resemble the signal peaks in the 116

original ChIP-seq signal. The visualized signals also demonstrate the differences in signal noise across the 117

ChIP-seq datasets. The NANOG/iPSC ChIP-seq dataset, for example, displays a large amount of signal 118

outside of peak regions, unlike the HNF4A/liver ChIP-seq dataset which has most of its signal focused in 119

peak regions. 120

The ENCODE-DREAM challenge data, documentation, and results can be found on the Challenge 121

homepage: https://www.synapse.org/ENCODE. 122

Interpreting neural network models 123

Using the same heuristic from DeepBind (Alipanahi et al., 2015) and DanQ (Quang and Xie, 2016), we 124

visualized several kernels from a HepG2 multi-task model as sequence logos by aggregating subsequences that 125

activate the kernels (Figure 3A). The kernels significantly match motifs associated with the target TFs. 126

Furthermore, the aggregated DNase I signals also inform us of the unique “footprint” signatures the models 127

use to identify true binding sites at single-nucleotide resolution. After visualizing and aligning all the kernels, 128

we confirmed that the model learned a variety of motifs (Figure 3B). A minority of kernels display very little 129

sequence specificity while recognizing regions of high chromatin accessibility (Figure 3C). 130

Saliency maps are another common technique of visualizing neural network models (Simonyan et al., 131

2013). To generate a saliency map, we compute the gradient of the output category with respect to the input 132
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Figure 2. Predictive performance and ChIP-seq signal varies across TF/cell-type pairs. Scat-
terplots compare (A) auPR and (B) auROC scores between FactorNet predictions and mean ChIP-seq fold
change signal. Each marker corresponds to one of the 13 final ranking TF/cell type pairs. Spearman (ρ)
and Pearson (σ) correlations are displayed in each plot. (C) Genome browser (Kent et al., 2002) screenshot
displays the ChIP-seq fold change signal, FactorNet predictions, and peak calls for four TF/cell type pairs in
the TYW3 locus. Confidently bound regions are more heavily shaded than ambiguously bound regions.

sequence. By visualizing the saliency maps of a genomic sequence, we can identify the parts of the sequence 133

the neural network finds most relevant for predicting binding, which we interpret as sites of TF binding at 134

single-nucleotide resolution. Using a liver HNF4A peak sequence and HNF4A predictor model as an example, 135

the saliency map highlights a subsequence overlapping the summit that strongly matches the known 136

canonical HNF4A motif, as well as two putative binding sites upstream of the summit on the reverse 137

complement (Figure 3D). 138

Data variation influences predictive performance 139

In the cases for which two or more testing cell types are available for the same TF, we also observe some 140

rather large disparities in performance. With the exception of FOXA1, FactorNet consistently performs 141
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Figure 3. Visually interpreting FactorNet models. (A) Network kernels from a HepG2 multi-task
FactorNet model are converted to sequence logos and aligned with motifs from JASPAR (Mathelier, A. et al.,
2016) using TOMTOM (Gupta et al., 2007). Mean normalized DNase I cleavage signals and their maximum
values are displayed above the aligned logos. E-values measure similarity between query and target motifs,
corrected for multiple hypothesis testing. All kernels are converted to sequence logos and aligned with RSAT
(Medina-Rivera et al., 2015). The heatmaps are ordered by this alignment and colored according to the
motif information content (IC) (B) or mean DNase I cleavage signal (C) at each nucleotide position. (D)
Normalized liver DNase I cleavage signal and saliency maps of aligned stranded sequences centered on the
summit of a liver HNF4A peak in the TYW3 locus (Figure 2C). Negative gradients are converted to zeros.
We visualized saliency maps with the DeepLIFT visualizer (Shrikumar et al., 2017)
.

poorer for liver than for other cell types, the difference in auPR reaching as much as 33.5% in the case of 142

EGR1 (Table 1). Variation in data quality across cell type-specific datasets may partially explain these 143

performance differences. The DNase-seq data, which is arguably the most informative cell type-specific 144

feature for binding prediction, widely varies in terms of sequencing depth and signal-to-noise ratio (SNR) 145

across the cell types, which we measure as the fraction of reads that fall into conservative peaks (FRiP) 146

(Figure S2A). Notably, liver displays the lowest SNR with a FRiP score of 0.05, which is consistent with its 147

status as a primary tissue; all other cell types are cultured cell lines. 148

To further scrutinize the effect data variation has on performance, we trained several FactorNet 149

single-task models and plotted the learning curves to monitor for overfitting (Figure S2B). Learning curves 150

trace the predictive performance of neural networks on training and validation sets. They are useful for 151
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identifying signs of overfitting, a common problem in machine learning. These learning curves focus on the 152

GM12878 and HeLa-S3 cell types, using one cell type for training and the other as a validation set. We 153

selected these two cell types because they are the only two reference cell types for E2F1, which FactorNet 154

performed particularly poor on. In addition, the HeLa-S3 DNase-seq data read count and FRiP score are 155

both almost twice that of the read count and FRiP score for the GM12878 DNase-seq data. 156

From the learning curves of the E2F1 model trained on GM12878, we observe evidence of overfitting. The 157

HeLa-S3 cross-cell type validation loss reaches a minimum value within four training epochs, after which it 158

increases until it reaches a steady state value. In contrast, the GM12878 within-cell type validation loss 159

steadily decreases past the first four epochs and remains much smaller than the HeLa-S3 validation loss 160

throughout training. At first, we speculated the gap to be caused by the differences in the cell type 161

DNase-seq data; however, based on the learning curves for other TFs, this may not necessarily be the sole 162

reason. In the cases of GABPA and TAF1, the differences in validation losses is much smaller. One possible 163

explanation for these results is the differences in the ChIP-seq protocols between the GM12878 and HeLa-S2 164

datasets. Unlike the other three TFs, the GM12878 and HeLa-S3 E2F1 ChIP-seq datasets were generated 165

using two different antibodies: ENCAB037OHX and ENCAB000AFU, respectively. Both ZNF143 ChIP-seq 166

datasets were generated using the same antibody (ENCAB000AMR), but the model trained on HeLa-S3 167

displays an unusually high validation loss difference. We speculate this is because the GM12878 ZNF143 168

ChIP-seq dataset was generated using both single-end 36 bp and paired-end 100 bp reads while the HeLa-S3 169

ZNF143 ChIP-seq dataset was generated using only single-end 36 bp reads. Given that paired-end 100 bp 170

reads can map to genomic regions that are unmapable for the shorter 36 bp reads, we suspect that 171

differences in read types can introduce significant dataset-specific artifacts. 172

Given the differences in the GM12878 and HeLa-S3 E2F1 ChiP-seq datasets resulting from the use of 173

different antibodies, we investigated whether a model exclusively trained on one cell type could improve our 174

predictive performance for the K562/E2F1 testing set. To do so, we retrained single- and multi-task models 175

exclusively on either GM12878 or HeLa-S3 and evaluated cross-cell type binding performance on the 176

E2F1/K562 testing set. In contrast, the E2F1 model used at the conclusion of the Challenge was trained on 177

data from both reference cell types. The K562 E2F1 ChIP-seq dataset was generated using the antibodies 178

ENCAB037OHX and ENCAB851KCY, the former of which was also used for GM12878. Hence, we expect 179

that the GM12878 model would be a better predictor for K562 E2F1 binding sites than the other two models, 180

which we find to indeed be the case (Figure S2C-D). Although we managed to improve upon our previous 181

E2F1 model, the cross-cell type performance for E2F1 is still inadequate, especially compared to TFs like 182

CTCF. Predicting binding for TFs in the E2F family is notoriously difficult because members of this protein 183
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family share almost identical binding motifs, which in turn makes distinguishing between multiple members 184

of the same family difficult. For TFs that are part of a large family sharing similar sequence binding 185

preference, we conjecture that performance will be limited regardless of the choice of cell type or antibody. 186

Comparing single- and multi-task training 187

Although a thorough comparison between single- and multi-task training is beyond the scope of this paper, 188

our results on E2F1 show that single- and multi-task models can differ in performance. Specifically, the 189

cross-cell type auPR of the single-task GM12878 model is more than 10% greater than that of its respective 190

multi-task model (Figure S2C and Figure S2D). To the best of our knowledge, the cross-cell type performance 191

of each training method depends on the TF/cell type pair. For example, when we retrained single-task and 192

multi-task models for NANOG using H1-hESC as a reference cell type and evaluated the models on iPSC, 193

the multi-task model’s auPR score is over 16% greater than that of the single-task model (Figure S3). 194

While we initially assumed that the multi-task training confers an advantage by introducing additional 195

information through the multiple labels, at least in the case of NANOG, there are too many conflating 196

variables to immediately conclude this. One of these conflating variables is the differences in training data 197

between single-task and multi-task models. In our current framework, the multi-task training contains 198

significantly more negative bins per training epoch than the single-task training does to balance the positive 199

bins from multiple ChIP-seq datasets. By increasing the ratio of negative to positive samples per epoch for 200

single-task training, we can close the gap between the two training methods in terms of the auPR score, 201

demonstrating that the selection of negative bins affects predictive accuracy. Moreover, the single-task 202

models each use 654,657 weights and require 30 seconds-5 minutes per training epoch whereas the multi-task 203

models each use 5.4 million weights and require 2-3 hours per training epoch, making the former significantly 204

more efficient than the latter. Regardless of whether single- or multi-task training is advantageous, 205

ensembling predictions from both model types can yield significant improvements in performance. It should 206

be noted this pattern did not hold true for the case of training on HeLa-S3 data and evaluating on 207

E2F1/K562 (Figure S2D), and we speculate that the difference in antibodies may explain this discrepancy. 208

Discussion 209

In this work, we introduced FactorNet - an open source package to apply stacked convolutional and recurrent 210

neural networks for predicting TF binding across cell types. While RNNs are computationally expensive to 211

train, especially compared to CNNs, FactorNet incorporates several heuristics to significantly speed up model 212
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training and improve predictive performance. Using data from the ENCODE-DREAM Challenge, we 213

demonstrated how our model can effectively integrate cell type-specific data such as DNase-seq to generalize 214

TF binding from reference cell types to testing cell types. As of the conclusion of the Challenge, FactorNet is 215

one of the top performing binding prediction models. 216

Through our post-Challenge analyses, we gained insights into the variables that affect predictive 217

performance, allowing us to propose strategies for improving the model. First, we observed that the 218

predictive performance widely varied over all TF/cell type pairs, especially in terms of the auPR metric. By 219

leveraging the original ChIP-seq fold change signal, we established upper bounds for the auPR metric for 220

each final ranking TF/cell type pair. These bounds also correlate positively with auPR scores from 221

FactorNet predictions, showing that a large amount of the variation in predictive performance can be 222

attributed to the noise in the original ChIP-seq signal (Figure 2A). We expect that predictive performance 223

for many TF/cell type pairs can be improved by redoing experiments with higher quality antibodies. 224

Alternatively, ChIP-exo, a modification of ChIP-seq that uses exonucleases to degrade contaminating 225

non-protein-bound DNA fragments (Rhee and Pugh, 2011), may improve the quality of ChIP signals. Next, 226

we investigated the variation in the DNase-seq datasets. We found that the DNase-seq datasets greatly differ 227

in terms of sequencing depth and SNR (Figure S3). While we do correct for the variation in sequencing 228

depth by normalizing the cleavage signals to 1x coverage, we do not correct for the variation in the SNR. The 229

performance lost is most staggering for the liver cell type, which has the DNase-seq dataset with the lowest 230

SNR. However, differences in DNase-seq SNR do not fully account for differences in predictive performance. 231

By studying several within- and cross-cell type validation curves, we also concluded that differences in 232

antibodies and read lengths can introduce significant dataset-specific biases (Figure S2B). Accordingly, we 233

can improve performance by omitting less compatible cell type datasets (Figure S2C-D). 234

We also compared single- and multi-task training frameworks. Several deep learning methods, including 235

DeepSEA and Basset, primarily use multi-task training, which involves assigning multiple labels, 236

corresponding to different chromatin markers, to the same DNA sequence. The authors of these methods 237

propose that the multi-task training improves efficiency and performance. FactorNet supports both types of 238

training. Our results do not entirely favor one method over the other. For the K562/E2F1 cross-cell type 239

testing set, the GM12878 single-task model outperformed GM12878 multi-task model (Figure S2C); however, 240

for the NANOG/iPSC cross-cell type testing set, the H1-hESC multi-task model outperformed the H1-hESC 241

single-task model (Figure S3). In the latter case, the performance gap can be narrowed by changing the 242

proportion of negative to positive training samples in the single-task framework, suggesting that any 243

additional gain granted by the multiple labels is eclipsed by the choice of negative sets. Nevertheless, 244
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ensembling single- and multi-task models together appears to be an effective method of improving predictive 245

performance, at least if antibodies and read lengths are kept consistent. 246

Another avenue we can explore for improving the model is hyperparameter tuning. We selected the 247

hyperparameters for the models in this work arbitrarily for demonstration and uniformity purposes (Table 248

S1-S3). Although we have not yet implemented them, distributed computing hyperparameter tuning 249

algorithms (Bergstra et al., 2013) can systematize hyperparameter selection and improve performance. 250

One of the chief criticisms of neural networks is that they are “black box” models. While neural networks 251

can achieve great performances in predictive tasks, the exact reasons for why this is the case is not always 252

entirely clear. In contrast to these criticisms, we can visualize and interpret aspects of the FactorNet model. 253

By converting network kernels to motifs, we show that FactorNet can recover motifs that are known to 254

contribute to binding (Figure 3A). DNase I footprint patterns help discriminate true binding sites from 255

putative sites that simply match a motif. Previous TF binding prediction methods, such as Centipede, 256

require users to supply motifs. FactorNet relaxes this strong assumption and essentially performs de novo 257

motif discovery during the learning process to identify the sequence patterns that are most useful for binding 258

prediction. Saliency maps can also help elucidate the complex regulatory grammar that govern TF binding 259

by visualizing the spatial positions and orientations of multiple binding sites that work together to recruit 260

TFs (Figure 3D). 261

Our adherence to standardized file formats also makes FactorNet robust. For example, FactorNet can 262

readily accept other genomic signals that were not included as part of the Challenge but are likely relevant to 263

TF binding prediction, such as conservation and methylation. Along these same lines, if we were to refine our 264

pre-processing strategies for the DNase-seq data, we can easily incorporate these improved features into our 265

model as long as the data are available as bigWig files (Kent et al., 2010). Other sources of open chromatin 266

information, such as ATAC-seq (Buenrostro et al., 2015) and FAIRE-seq (Giresi et al., 2007), can also be 267

used to replace or complement the existing DNase-seq data. In addition, FactorNet is not necessarily limited 268

to only TF binding predictions. If desired, users can provide the BED files of positive intervals to train 269

predictive models for other markers, such as histone modifications. As more epigenetic datasets are 270

constantly added to data repositories, FactorNet is already in a prime position to integrate both new and 271

existing datasets. 272

In conclusion, FactorNet is a very flexible framework that lends itself to a variety of future research 273

avenues. The techniques that we introduced in this paper will also be useful for the field of machine learning, 274

especially since neural network models are becoming increasingly popular in genomics. Some of the design 275

elements of FactorNet were motivated by the specific properties inherent in the structure of the data. Many 276
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of these properties are shared in data found in other applications of machine learning. For example, the 277

directional nature and modularity of DNA sequences prompted us to search for a model that can discover 278

local patterns and long-range interactions in sequences, which led us to ultimately select a hybrid neural 279

network architecture that includes convolution and bidirectional recurrence. Natural language processing 280

problems, such as topic modeling and sentiment analysis, can also benefit from such an architecture since 281

language grammar is directional and modular. Another unique aspect of the data that guided our design is 282

the double strandedness of DNA, which prompted us to adopt a Siamese architecture to handle pairs of input 283

sequences (Figure 1). Protein-protein interaction prediction also involves sequence pairs and would likely 284

benefit from a similar framework. Our heuristics for reducing training time and computational overhead will 285

serve as useful guidelines for other applications involving large imbalanced data, especially if recurrent 286

models are utilized. We therefore expect that FactorNet will be of value to a wide variety of fields. 287

Methods 288

ENCODE-DREAM Challenge dataset 289

The ENCODE-DREAM Challenge dataset is comprised of DNase-seq, ChIP-seq, and RNA-seq data from the 290

ENCODE project or The Roadmap Epigenomics Project covering 14 cell types and 32 TFs. All annotations 291

and pre-processing are based on hg19/GRCh37 release version of the human genome and GENCODE release 292

19 (Harrow et al., 2012). Data are restricted to chromosomes X and 1-22. Chromosomes 1, 8 and 21 are set 293

aside exclusively for evaluation purposes and binding data were completely absent for these three 294

chromosomes during the Challenge. TF binding labels are provided at a 200 bp resolution. Specifically, the 295

genome is segmented into 200 bp bins sliding every 50 bp. Each bin is labeled as bound (B), unbound (U) or 296

ambiguously bound (A) depending on the majority label of all nucleotides in the bin. Ambiguous bins 297

overlap peaks that fail to pass the IDR threshold of 5% and are excluded from evaluation. A more complete 298

description of the dataset, including pre-processing details such as peak calling, can be found in the 299

ENCODE-DREAM Challenge website (https://www.synapse.org/ENCODE). 300

Evaluation 301

The TF binding prediction problem is evaluated as a two-class binary classification task. For each test 302

TF/cell type pair, the following performance measures are computed: 303

1. auROC. The area under the receiver operating characteristic curve is a common metric for evaluating 304
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classification models. It is equal to the probability that a classifier will rank a randomly chosen positive 305

instance higher than a randomly chosen negative one. 306

2. auPR. The area under the precision-recall curve is more appropriate in the scenario of few relevant 307

items, as is the case with TF binding prediction (Quang and Xie, 2016). Unlike the auROC metric, the 308

auPR metric does not take into account the number of true negatives called. 309

3. Recall at fixed FDR. The recall at a fixed false discovery rate (FDR) represents a point on the 310

precision-recall curve. Like the auPR metric, this metric is appropriate in the scenario of few relevant 311

items. This metric is often used in applications such as fraud detection in which the goal may be to 312

maximize the recall of true fraudsters while tolerating a given fraction of customers to falsely identify 313

as fraudsters. The ENCODE-DREAM Challenge computes this metric for several FDR values. 314

As illustrated in Figure 1, the FactorNet Siamese architecture operates on both the forward and reverse 315

complement sequences to ensure that both strands return the same outputs during both training and 316

prediction. Although a TF might only physically bind to one strand, this information cannot usually be 317

inferred directly from the peak data. Thus, the same set of labels are assigned to both strands in the 318

evaluation step. 319

Features and data pre-processing 320

FactorNet works directly with standard genomic file formats and requires relatively little pre-processing. 321

BED files provide the locations of reference TF binding sites and bigWig files (Kent et al., 2010) provide 322

dense, continuous data at single-nucleotide resolution. bigWig values are included as extra rows that are 323

appended to the four-row one hot input DNA binary matrix. FactorNet can accept an arbitrary number of 324

bigWig files as input features, and we found the following signals to be highly informative for prediction: 325

1. DNase I cleavage. For each cell type, reads from all DNase-seq replicates were trimmed down to first 326

nucleotide on the 5’ end, pooled and normalized to 1x coverage using deepTools (Ramı́rez et al., 2014). 327

2. 35 bp mapability uniqueness. This track quantifies the uniqueness of a 35 bp subsequence on the 328

positive strand starting at a particular base, which is important for distinguishing where in the genome 329

DNase I cuts can be detected. Scores are between 0 and 1, with 1 representing a completely unique 330

sequence and 0 representing a sequence that occurs more than 4 times in the genome. Otherwise, scores 331

between 0 and 1 indicate the inverse of the number of occurrences of that subsequence in the genome. It 332

is available from the UCSC genome browser under the table wgEncodeDukeMapabilityUniqueness35bp. 333
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In addition to sequential features, FactorNet also accepts non-sequential metadata features. At the cell 334

type level, we applied principal component analysis to the inverse hyperbolic sine transformed gene 335

expression levels and extracted the top 8 principal components. Gene expression levels are measured as the 336

average of the fragments per kilobase per million for each gene transcript. At the bin level, we included 337

Boolean features that indicate whether gene annotations (coding sequence, intron, 5’ untranslated region, 3’ 338

untranslated region, and promoter) and CpG islands (Gardiner-Garden and Frommer, 1987) overlap a given 339

bin. We define a promoter to be the region up to 300 bps upstream and 100 bps downstream from any 340

transcription start site. To incorporate these metadata features as inputs to the model, we append the values 341

to the dense layer of the neural network and insert another dense layer containing the same number of ReLU 342

neurons between the new merged layer and the sigmoid layer (Figure 1). 343

Training 344

Our implementation is written in Python, utilizing the Keras 1.2.2 library (Chollet et al., 2015) with the 345

Theano 0.9.0 (Bastien et al., 2012; Bergstra et al., 2010) backend. We used an NVIDIA Titan X Pascal GPU 346

for training. 347

FactorNet supports single- and multi-task training. Both types of neural network models are trained 348

using the Adam algorithm (Kingma and Ba, 2014) with a minibatch size of 100 to minimize the mean 349

multi-task binary cross entropy loss function on the training set. We also include dropout (Srivastava et al., 350

2014) to reduce overfitting. One or more chromosomes are set aside as a validation set. Validation loss is 351

evaluated at the end of each training epoch and the best model weights according to the validation loss are 352

saved. Training sequences of constant length centered on each bin are efficiently streamed from the hard 353

drive in parallel to the model training. Random spatial translations are applied in the streaming step as a 354

form of data augmentation. Each epoch, an equal number of positive and negative bins are randomly 355

sampled and streamed for training, but this ratio is an adjustable hyperparameter (see Table S1 for a 356

detailed explanation of all hyperparameters). In the case of multi-task training, a bin is considered positive if 357

it is confidently bound to at least one TF. Bins that overlap a blacklisted region (ENCODE Project 358

Consortium, 2012) are automatically labeled negative and excluded from training. 359

Single-task training 360

Single-task training leverages data from multiple cell types by treating bins from all cell types as individually 361

and identically distributed (i.i.d.) records. To make single-task training run efficiently, one bin is allotted per 362
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positive peak and these positive bins are included at most once per epoch for training. Each epoch, negative 363

bins are also drawn randomly without replacement from the training chromosomes. For example, if we were 364

to train on a single cell type that has 10,000 peaks for a particular TF, then we may train on 10,000 positive 365

bins and 10,000 negative bins each epoch. Ambiguously bound bins are excluded from training. 366

Multi-task training 367

FactorNet can only perform multi-task training when training on data from a single cell type due to the 368

variation of available binding data for the cell types. For example, the ENCODE-DREAM Challenge 369

provides reference binding data for 15 TFs for GM12878 and 16 TFs for HeLa-S3, but only 8 TFs are shared 370

between the two cell types. Unlike the single-task models, which ignore ambiguous bins during training, the 371

multi-task models assign negative labels to the ambiguous bins because of the frequent overlap of confidently 372

and ambiguously bound regions. Compared to single-task training, multi-task training takes considerably 373

longer to complete due to the larger number of positive bins. At the start of training, positive bins are 374

identified by first segmenting the genome into 200 bins sliding every 50 bp and discarding all bins that fail to 375

overlap at least one confidently bound TF site. Each epoch, negative bins are drawn randomly with 376

replacement from the training chromosomes. 377

Bagging 378

Ensembling is a common strategy for improving classification performance. At the time of the Challenge, we 379

implemented a simple ensembling strategy commonly called “bagging submissions”, which involves averaging 380

predictions from two or more models. Instead of averaging prediction probabilities directly, we first convert 381

the scores to ranks, and then average these ranks. Rank averaging is more appropriate than direct averaging 382

if predictors are not evenly calibrated between 0 and 1, which is often the case with the FactorNet models. 383

Software availability 384

Source code is available at the github repository http://github.com/uci-cbcl/FactorNet. In addition to the 385

source code, the github repository contains all models and data used for the ENCODE-DREAM Challenge. 386
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Supporting Information

Table S1. Summary and description of the hyperparameters used for the single-task models
in Figure S2B.

Hyperparameter Value Description
-v validchroms chr3 chr5 chr7 chr10 chr12 chr14

chr16 chr18 chr20 chrX
Sequences on these chromosomes are set
aside for validation.

-e epochs 200 (ZNF143, TAF1), 300 (E2F1,
GABPA)

Max number of epochs to train before
training ends.

-ep patience 200 (ZNF143, TAF1), 300 (E2F1,
GABPA)

Number of epochs with no improvement
in the validation loss.

-lr learningrate 0.00001 Learning rate for the Adam optimizer. We
decreased it from the default value of 0.001
to smooth the learning curves.

-n negatives 1 Number of negative bins to sample per
positive bin per epoch.

-L seqlen 1000 Length, in bps, of input sequences to the
model.

-w motifwidth 26 Width, in bps, of the convolutional ker-
nels.

-k kernels 32 Number of kernels/motifs in the model.
-r recurrent 32 Number of recurrent units (in one direc-

tion) in the model.
-d dense 128 Number of units in the dense layer in the

model.
-p dropout 0.5 Dropout rate between the recurrent and

dense layers. Also the dropout rate be-
tween the dense and sigmoid layers.

-m metaflag False Flag for including cell type-specific meta-
data features (usually gene expression).

-g gencodeflag True Flag for including CpG island and gene
annotations.

-mo motifflag True Flag for initializing two of the kernels to
the PWM of the canonical motif (forward
and reverse complement).

-s randomseed Varies Random seed for reproducibility.
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Table S2. Hyperparameters used for the multi-task models in Figures 3 and S2-S3. Unspecified
values should be assumed to be the same as those found in Table S1.

Hyperparameter Value Notes
-v validchroms chr11
-e epochs 20 Fewer epochs needed for multi-task train-

ing due to the large number of training
bins.

-ep patience 20
-lr learningrate 0.001 Default value of 0.001 is sufficient for most

applications.
-n negatives 1
-g gencodeflag False Multi-task training does not currently in-

corporate any metadata features.
-mo motifflag False

Table S3. Hyperparameters used for the single-task models in Figures S2C-D and S3. Unspeci-
fied values should be assumed to be the same as those found in Table S1.

Hyperparameter Value Notes
-v validchroms chr11
-e epochs 100 Need more epochs than multi-task train-

ing due to fewer positive bins.
-ep patience 20
-lr learningrate 0.001 Default value of 0.001 is sufficient for most

applications.
-n negatives Varies (but usually 1) In some cases, increasing this value from

1 improves cross-cell type auPR scores for
single-task models.
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Figure S1. FactorNet cross-cell type predictions are comparable to ChIP-seq signals and peaks.
A genome browser shot similar to Figure 2A focusing on the NADK/GNB1 locus.
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Figure S2. Variation in cell type-specific datasets influence cross-cell type predictive perfor-
mance. (A) IGV (Thorvaldsdóttir et al., 2013) browser screenshot displays pooled DNase I cleavage signal
and conservative DNase-seq peaks for eight cell types. The inset is a magnified view at the MTPN promoter,
a known NRF1 binding site. (B) Each plot displays learning curves of single-task models trained on either
GM12878 or HeLa-S3. We generated within- and cross-cell type validation sets by extracting an equal number
of positive and negative bins from the validation chromosomes. The difference between the smallest within-
and cross-cell type validation losses are displayed in each plot. (C and D) Precision-recall curves of single-
and multi-task models evaluated on the E2F1/K562 testing set trained exclusively on either GM12878 or
HeLa-s3. Dotted lines indicate points of discontinuity. Model weights were selected based on the within-cell
type validation loss on chr11. We generated single-task scores by bagging scores from two single-task models
initialized differently. Final bagged models ensemble respective single- and multi-task models.
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Figure S3. Comparison of single- and multi-task training. Cross-cell type precision-recall curves of
single-task and multi-task NANOG binding prediction models trained on H1-hESC and evaluated on iPSC.
Model weights were selected based on the within-cell type validation loss on chr11. We generated single-task
scores by bagging scores from two single-task models initialized differently. The three single-task models
differ in the ratio of negative-to-positive bins per training epoch. The bagged models are the rank average
scores from the multi-task model and one of the three single-task models. auPR scores are in parentheses.
Both training and testing ChiP-seq datasets use the ENCAB000AIX antibody.
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