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 Dynamic ensembles that capture the flexibility of RNA three-dimensional (3D) structures hold 

great promise in advancing RNA-targeted drug discovery. Here, we experimentally screened the 

transactivation response element (TAR) RNA from human immunodeficiency virus type-1 (HIV-1) 

against ~100,000 small molecules. We used this dataset, along with 240 known hit molecules, to 

evaluate virtual screening (VS) against a high-resolution TAR ensemble determined by combining 

NMR spectroscopy and molecular dynamics (MD) simulations. Ensemble-based VS (EBVS) scores 

molecules with an area under the receiver operator characteristic curve (ROC AUC) of 0.87 with 

~50% of all hits falling within the top 2% of scored molecules, and also correctly predicts the different 

TAR inter-helical structures when bound to six molecules. The prediction accuracy decreased 

significantly with decreasing accuracy of the target ensemble or when docking against a single RNA 

structure. These results demonstrate that experimentally determined ensembles can significantly 

enrich libraries with structure-specific RNA binders as well as motivate the continued development of 

methods for improving ensemble accuracy.  

 Accompanying the non-coding RNA (ncRNA) revolution has been growing interest in RNA as a 

drug target, particularly for diseases that do not have suitable protein targets1–6. The growing list of 

ncRNA targets now includes microRNAs, long ncRNAs, repetitive RNA transcripts, riboswitches, and 

viral RNAs. Much attention has been directed towards targeting ncRNAs with small molecules, which 

do not suffer from the inherent delivery limitations associated with oligonucleotide-based therapeutics, 

and which can be tailored to specifically target the diverse 3D structures of RNA2–5. There are, 

however, fundamental challenges in targeting RNA using small molecules4–7. Libraries used in high-

throughput screening (HTS) are optimized for the deep, hydrophobic pockets of protein targets and 

not the more polar and solvent exposed pockets typical of RNA targets7. Screens targeting ncRNAs 

typically yield very few hit molecules most of which show little discrimination against other cellular 

RNAs, have unfavorable pharmacological properties, and poor activity in cell-based assays. Rational 
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approaches to identify small molecules that bind specific RNA secondary structure have had some 

success8, but achieving the desired selectivity and efficacy is difficult given the reoccurrence of 

secondary structural motifs across the transcriptome. While many RNA targets fold into unique 3D 

structures, application of structure-based approaches such as computational docking to identify 

compounds that specifically bind to these structures has been hampered by the high flexibility of RNA 

and its propensity to undergo large changes upon binding to small molecules that are difficult, if not 

impossible, to model computationally9. 

 Recently, hybrid experimental-computational approaches have been developed that enable the 

determination of dynamic ensembles of biomolecules at atomic resolution10–15. The ensembles 

describe the different conformations sampled by a given biomolecule in solution. Studies on both 

proteins and nucleic acids have shown that conformations similar to those observed in ligand bound 

states are often significantly populated within the ensemble of unbound conformations13–16. Inspired 

by these discoveries, we9 and others17 recently proposed to carry out EBVS by subjecting all 

conformers in experimentally determined ensembles to computational docking9,17. Our approach was 

demonstrated using a dynamic ensemble of HIV-1 TAR18 determined using two sets of NMR residual 

dipolar coupling (RDC) data and MD simulations9,13. RDCs provide long-range information regarding 

the orientation of individual bond vectors in biomolecules relative to an alignment frame and are 

sensitive to internal motions spanning picosecond-to-millisecond timescales19,20. EBVS was able to 

score a small set of 38 known TAR binders with an accuracy comparable to that obtained when 

docking 48 small molecules to their known bound RNA structure9. Experimentally testing the top 57 

scoring small molecules out of a screen of 51,000 compounds yielded six hit molecules that bind TAR 

in vitro, including the first example of a small molecule that binds an RNA apical loop, and a highly 

selective compound that inhibits HIV replication in an HIV indicator cell line with IC50∼20 µM9.  
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EBVS can in principle provide a basis for pre-screening compound libraries to enrich a subset 

of molecules with potentially active hits that specifically bind to the 3D structure(s) of an RNA target. 

EBVS could also aid exploration of new regions of chemical space unhindered by physical constraints 

posed by existing libraries to identify novel RNA-binding scaffolds. To rigorously test the utility of 

EBVS in such pre-screening applications, we first generated a large dataset by subjecting HIV-1 TAR 

(Fig. 1a) to experimental HTS against ~100,000 drug-like organic molecules (Methods and 

Supplementary Fig. 1-4). This represents one of the largest RNA-small molecule screens reported to 

date. The screen employed a Tat peptide displacement assay (Z score=0.71), included several steps 

to prevent false positives and false negatives (see Methods), and yielded a total of seven new hits 

(Supplementary Table 1) representing two novel small molecule classes that bind TAR and inhibit the 

TAR-Tat interaction (Supplemental Fig. 1). Such low hit rates (~0.007%) are typical for large RNA-

small molecule screens7.  

The ~100,000 molecule library used in HTS was augmented with an additional 240 molecules 

previously shown to bind HIV-1 TAR (Supplementary Table 2) and the combined library used in 

EBVS. The additional hits included 81 aminoglycosides and aminoglycoside conjugates as well as a 

diverse set of 159 small molecules including derivatives of beta-carboline, quinolone, diphenylfuran, 

phenothiazine and many others. This is by far the largest and most diverse set of experimentally 

verified binders and non-binders used to evaluate VS against any RNA target.  

EBVS was carried out by computationally docking the virtual small molecule library to a 

recently reported high-resolution dynamic ensemble of HIV-1 TAR RNA14. The ensemble contains 

twenty conformers that describe the various TAR conformations sampled in the unbound state (Fig. 

1b)14. Compared to the previous TAR ensemble used in VS9,13 (see E1 below), this improved 

ensemble was determined using four rather than two sets of RDCs, obtained using a variable-

elongation approach21. In addition, a longer MD simulation (8.2 µs versus 80 ns) was used to 
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generate the pool of starting TAR conformations14. Using the docking program Internal Coordinate 

Mechanics (ICM)22, each small molecule was docked against each of the twenty TAR conformers 

using binding pockets defined by the ICM PocketFinder module (Fig. 1b). The docking scores 

computed for a given small molecule across the twenty TAR conformers were averaged assuming a 

Boltzmann distribution (see Methods). 

To evaluate the ability of EBVS to enrich true hits while discriminating against non-hits, we 

used the EBVS ranked scores to compute a ROC curve, which compares the fraction of hits correctly 

identified (sensitivity) versus the fraction of non-hits incorrectly selected (1-specificity) at all possible 

docking score cutoffs. The ROC AUC describes the global enrichment of true binders with AUC=1.0 

representing perfect enrichment and AUC=0.5 representing random selection of hits and non-hits. 

Strikingly, EBVS globally enriches the compound library (247 hits and ~100,000 non-hits) with a ROC 

AUC=0.87 (Fig. 1c). We find strong early enrichment such that we would have identified 47% of hits 

after screening only 2% of non-hits (ROC(2%)=47%) (Fig. 1c). This corresponds to a hit rate of 5.6% 

compared to 0.2% had the whole library been screened. This level of enrichment was robustly 

observed across the different categories of experimentally verified hits (Fig. 1d) including 

aminoglycosides, non-aminoglycosides, and compounds with demonstrated cell-based activity 

(Supplementary Table 2). These levels of enrichment are comparable to best-case results when 

docking to known bound structures of RNA or protein23,24.  

By comparison, docking to individual TAR conformers either from the NMR ensemble (AUC= 

0.56-0.79) or selected randomly (see E3 below) from the MD generated pool (AUC= 0.38-0.63) leads 

to a precipitous drop in enrichment (Fig. 1e). This trend is observed across all molecule categories 

(Fig. 1f) and highlights the importance of docking to an experimentally informed ensemble. Docking 

predicts relatively uniform binding to the twenty TAR conformers, indicating that all conformers in the 

ensemble contribute to the docking scores across the library. Interestingly, we observe conformer-
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specific enrichment in subsets of molecules within the library (Fig. 1g). For example, conformers 1 

and 2 enrich for both aminoglycoside and non-aminoglycoside hits, conformer 13 enriches for 

aminoglycoside hits, and conformers 19 and 20 enrich for the 14 cell-active hits.  

 Next, we asked whether the accuracy of the TAR ensemble was an important determinant of 

the docking predictions. We repeated EBVS using four additional (E1-E4) twenty-member TAR 

ensembles that have variable levels of accuracy as evaluated based on their ability to predict the four 

NMR RDC datasets14 (Fig. 2a). The parent ensemble (E0) predicts the four RDC datasets with RMSD 

= 4.0 Hz14. By comparison, E1 was determined using only two RDC datasets and a shorter MD 

simulation and predicts all four RDC datasets with RMSD = 7.1 Hz13. E2 and E3 were constructed by 

randomly selecting conformers from two different MD pools (RMSD = 8.6 and 11.0 Hz, respectively) 

while E4 was deliberately selected (see Methods) to poorly satisfy the RDCs (RMSD = 18.0 Hz). 

Significantly, there was a strong correlation between the quality of the ensemble and the EBVS 

enrichment as measured by the ROC AUC (Fig. 2b) and ROC(2%) (Fig. 2c) values. These trends were 

generally observed across different types of hits (Fig. 2d-e).    

Next, we asked whether EBVS correctly predicts the small molecule bound TAR conformations 

for six TAR complexes for which high-resolution NMR structures have previously been reported: 

arginine (1ARJ), acetylpromazine (1LVJ), neomycin B (1QD3), RBT203 (1UUD), RBT158 (1UUI), and 

RBT550 (1UTS). Figure 3a compares the NMR structures to the EBVS top-scoring conformations 

over twenty repeated docking runs. While comparison of structures is complicated by the fact that 

TAR is known to retain a high degree of conformational flexibility when bound to small molecules25–27, 

qualitatively, we observe good agreement between the NMR and the EBVS-predicted bound TAR 

conformations (Fig. 3a). We find more variability in the ligand placement for docking than for NMR 

structures, but in general, docking correctly places molecules near the bulge-expanded major groove 

(Fig. 3a). The one exception is neomycin B; docking predicts binding to either the major or minor 
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groove of the bulge or upper stem whereas it binds to the minor groove of the lower stem in the NMR 

structure, which is unusual since most aminoglycosides bind the RNA major groove28.  

Studies have shown that ncRNAs can adopt structures that vary with respect to the global 

orientation of helical domains when bound to different small molecules18,25,29. We therefore examined 

if EBVS correctly predicts the variations in the TAR inter-helical structure when bound to the six small 

molecules. We compared the inter-helical Euler angles (αh βh γh)30 describing the bend (βh) and twist 

(αh+γh) angles between the two TAR helices. For all molecules, the EBVS predicted inter-helical Euler 

angles are in quantitative agreement with those observed in the bound NMR structures (Fig. 3a). The 

EBVS predicted TAR structures are biased towards the NMR bound structures relative to all twenty 

conformers in the parent E0 ensemble, indicating that docking enriches for accurate bound TAR 

conformations (Fig 3a). In contrast, the predicted bound structures obtained by applying EBVS to the 

randomly selected E3 ensemble show significantly reduced agreement with the NMR structures 

particularly for RBT550, RBT158 and acetylpromazine (Supplementary Fig. 6). Similar results were 

obtained when increasing the thoroughness used in docking (Supplementary Fig. 7).  

We confirmed these findings by evaluating the agreement between the EBVS-predicted 

structures and RDCs previously measured for two of the TAR-small molecule complexes 

(argininamide26 and acetylpromazine27). These RDCs were not used in the NMR structure 

determination. This analysis could not be performed for neomycin B, for which there are also 

available RDCs, because docking predicted more than one small molecule bound conformation, 

which complicates analysis of the RDCs (see Methods). The docking predicted structures satisfy the 

RDCs to a comparable degree as do the high-resolution NMR structures of the TAR complexes (Fig. 

3b and Supplementary Table 3). Applying EBVS to the randomly selected E3 ensemble shows less 

favorable agreement with the measured RDCs of the bound complex, particularly for acetylpromazine 

(Fig. 3b). These results indicate that EBVS can allow the identification of small molecules that target 
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specific RNA conformations within an ensemble, potentially enabling targeted conformational 

modulation of RNA with small molecules5.  

In conclusion, EBVS significantly enriches true TAR hits including compounds with 

documented cell-based activities out of a large pool of ~100,000 non-hits. This result is unlikely to be 

coincidental since we observe that docking predicts bound conformations that agree with 

experimental data including NMR structures and NMR RDCs of TAR-ligand complexes. Finally, we 

show a direct correlation between the accuracy of the unbound TAR ensemble and the quality of 

docking predictions. This suggests that structure-based targeting of flexible biomolecules is possible 

with accurate ensemble representations, motivating the continued development of experimentally 

determined dynamic ensembles and methods of evaluating their accuracies. While we have 

demonstrated a specific application of EBVS to HIV-1 TAR, further studies are needed to evaluate 

how predictions might vary when using different docking programs, starting structures in MD 

simulation, MD force field, and complexity of the target RNA. Nevertheless, EBVS holds great 

promise for enriching compound libraries used in RNA-small molecule screening and can thus be 

utilized to maximize success in RNA-targeted drug discovery.  

 

AUTHOR CONTRIBUTIONS 

Experiments were designed by L.R.G, J.L. and H.M.A.-H., performed by L.R.G. J.L., B.S. A.K. and 

D.K.M, and analyzed by L.R.G., L.R.G. and H.M.A.-H. wrote the manuscript.  

 

ACKNOWLEDGEMENTS 

We would like to thank the University of Michigan Center of Chemical Genomics, in particular 

Martha J. Larsen and Steve Vander Roest, for their help in managing the small molecule library and 

carrying out high throughput screening. We would also like to thank the Duke Magnetic Resonance 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2017. ; https://doi.org/10.1101/151407doi: bioRxiv preprint 

https://doi.org/10.1101/151407
http://creativecommons.org/licenses/by-nc-nd/4.0/


9	  

Spectroscopy Center for their resources and assistance in carrying out NMR measurements. Finally, 

we acknowledge the Duke Compute Cluster for computational resources and support. This work was 

supported by the US National Institutes of Health [P50 GM103297, R01 AI066975 to H.M.A.-H. and 

T32 GM08487 to L.R.G]. 

 

COMPETING FINANCIAL INTERESTS 

H.M.A.–H is an advisor to and holds an ownership interest in Nymirum Inc, an RNA-based drug 

discovery company. Some of the technology used in this paper has been licensed to Nymirum. 

 

ONLINE METHODS 

Library composition 

 The small molecule library used in experimental HTS consisted of 103,498 drug-like small 

molecules that were available at the Center for Chemical Genomics (CCG), University of Michigan, 

Ann Arbor. 100,000 molecules were synthetic organic molecules with drug-like properties purchased 

from ChemDiv (http://www.chemdiv.com). The other 3,498 compounds consisted of 2,000 bioactive 

molecules from MicroSource Discovery Systems Inc. (http://www.msdiscovery.com), 446 molecules 

from the National Institute of Health clinical collection, and 1052 molecules that the CCG had 

previously found to be active against other targets. The library was stored as stock solutions of 2-5 

mM molecule in DMSO for ~3 years for initial screens. Repurchased molecules were stored as stock 

solutions of 3-20 mM compound in DMSO for ~1 year with the exception of CCG-39701 which was 

stored as a powder and dissolved in water before use.  

 A virtual library of the same 103,498 molecules was downloaded from the CCG and saved in 

sdf file format. The library was enriched with 240 molecules drawn using ChemDraw (CambridgeSoft) 

and saved in sdf file format that were previously reported to bind TAR in vitro (Supplementary Table 
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2). These molecules were identified through a literature search of TAR binders. Peptide and metal-

binding molecules were excluded. For papers reporting many chemically similar molecules, only the 

tightest binding derivatives were included to maintain chemical diversity in our library. The protonation 

states of small molecules were predicted at pH 7.4 using the Major Microspecies module in the 

Calculator Plugin (ChemAxon). 

 

Preparation of HIV-1 TAR RNA  

 HIV-1 TAR RNA (Fig. 1a) for NMR studies and experimental assays was prepared by in vitro 

transcription using DNA template containing the T7 promoter (Integrated DNA Technologies). DNA 

template was annealed at 50 µM DNA in 3 mM MgCl2 by heating to 95°C for 5 min and cooling on ice 

for 30 min. The transcription reaction was carried out at 37°C for 12 hours with T7 RNA polymerase 

(New England BioLabs) in the presence of 13C/15N labeled or unlabeled nucleotide triphosphates 

(Cambridge Isotope Laboratories, Inc). RNA was purified using 20% (w/v) denaturing polyacrylamide 

gel electrophoresis (PAGE) with 8 M urea and 1X TBE. Purified RNA was extracted from the gel by 

electroelution in 1X TAE buffer and purified by ethanol precipitation. Purified RNA was dissolved in 

water to 50 µM RNA, heated to 95°C for 5 min and cooled on ice for 1 hour to anneal. For NMR 

experiments, 13C/15N labeled RNA was exchanged into phosphate NMR buffer [15 mM 

NaH2PO4/Na2HPO4, 25 mM NaCl, 0.1 mM EDTA, 10% (v/v) D2O at pH 6.4]. For in vitro assays, 

unlabeled RNA was diluted to 150 nM in Tris-HCl assay buffer [50 mM Tris-HCl, 50 mM KCl, 0.01% 

(v/v) Triton X-100 at pH 7.4].  

 

Preparation of HIV-1 Tat peptide  

 The Tat peptide used in HTS, (5-FAM)-AAARKKRRQRRRAAA-Lys(TAMRA), was purchased 

from LifeTein (Hillsborogh, NJ). The peptide was purified by HPLC and analyzed by Electrospray 
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Ionization Mass Spectrometry; purity was > 95%. The peptide was stored at -20°C as a 100 µM stock 

solution in Tris-HCl assay buffer and diluted to 60 nM with Tris-HCl assay buffer for use in HTS. 

 

High throughput screening assay 

 HTS utilized a previously described TAR-Tat displacement assay31 that relies on the fact that 

the Tat peptide is highly flexible when free is solution and becomes structured upon binding to TAR32–

34. When the Tat peptide is flexible, its two terminal fluorophores, fluorescein and TAMRA, interact 

and their fluorescence is quenched. Alternatively, in its extended form bound to TAR, the 

fluorophores are held at a distance allowing fluorescence resonance energy transfer (FRET) from 

fluorescein to TAMRA. Thus, as inhibitor displaces Tat, there is a decrease in fluorescence signal 

(excitation: 485 nm, emission: 590 nm).  

 

High throughput screening  

  The workflow for HTS is shown in Supplementary Figure 1. The full library was tested in a 

primary screen using a single point measurement (N=1) and 260-fold excess molecule [50 nM TAR, 

20 nM Tat, and 13 µM molecule] followed by a confirmation screen of triplicate measurements (N=3) 

for the 2812 molecules that showed activity, defined as a change in fluorescence signal three 

standard deviations above the negative control (Tat alone). Molecules were pin-tooled (200 nL) into 

opaque 384-well microplates by Biomek FX 384-well nanoliter HDR (Beckman) and Mosquito X1 

(TTP Labtech). TAR and Tat were dispensed with Multidrop reagent dispenser (Thermo Scientific). 

Assay mixtures were incubated at room temperature for 10–15 minutes prior to fluorescence 

measurements using a Pherastar plate reader (BMG Labtech). Each plate during HTS contained 16 

wells of TAR and Tat without molecule to serve as the negative control and 16 wells of Tat only to 
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serve as the positive control. With these controls, the Z-factor35 was calculated for each microplate; 

the average Z-factor throughout the screening campaign was 0.71. 

 

Dose Response Assays 

 A total of 267 molecules with reproducible activity were tested in a dose response assay and 

those with IC50 values below 100 µM were considered hits. Dose-response assays were performed 

such that the final assay concentrations were 50 nM TAR, 20 nM Tat, and 1-1000 µM molecule in 

Tris-HCl assay buffer. Assays were performed in parallel with and without 100-fold excess bulk yeast 

tRNA to test specificity and in the absence of RNA (Tat only) to measure background signal. There 

were 137 molecules that caused fluorescence intensity change with Tat alone, suggesting they bound 

Tat; these were removed from further analysis. Assays were performed in opaque 384-well 

microplates and read with a Clariostar plate reader (BMG Labtech). Fluorescence signal was 

normalized to the highest intensity after subtracting background signal. Dose response curves were fit 

to Equation 1 with OriginPro (OrginLab) using the instrumental weighting method. Equation 2 was 

used to obtain IC50 values. 

y = A1 +
A2 − A1( )

1+10 Logx0−x( )p       (Equation 1) 

	   	   IC50 =10
Logx0       (Equation 2) 

where A1 and A2 are the lowest and highest signals, respectively; p is the hill slope; and log(x0) is the 

logarithm to base 10 of the concentration at half response. All variables were allowed to float during 

the fit. Assays were measured in triplicate and the standard deviation is reported.  

 

Validation of Hits 
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 The 17 small molecule hits from the dose response assays were re-purchased and re-tested 

for activity in addition to 56 molecules with chemical similarity to these hits, defined as having >80% 

similarity based on sphere exclusion clustering performed with JKlustor package (ChemAxon). Next, 

32 molecules, including all 17 hits and 15 chemically similar molecules with possible activity in the 

assay, were tested for TAR binding by NMR chemical shift titrations employing [13C-1H] SOFAST-

HMQC NMR experiments36. NMR experiments were performed at 298 K on 600 MHz and 800 MHz 

Agilent spectrometers equipped with triple-resonance HCN cryogenic probes. 13C/15N-labeled TAR 

was exchanged into NMR buffer. Concentrated stocks of molecule in DMSO were added to TAR such 

that no more than 10% (v/v) DMSO was added to the buffer. Free TAR controls had equivalent 

volumes of DMSO to compensate for minor changes that may be induced by DMSO. Spectra were 

processed using nmrPipe37 and SPARKY38.  

 Nine molecules were inactive in both the displacement assay and NMR when retested with 

fresh molecule, suggesting that the original activity was due to contamination or degradation. One of 

the 56 molecules with chemical similarity to the hits was active in both the displacement assay and 

NMR, despite not being identified as a hit in the primary screen. Three molecules had activity in the 

assay, but did not bind based on NMR chemical shift titrations. Inspection of the Tat-only control for 

these molecules suggest that they likely bind Tat rather than TAR in the displacement assay 

(Supplementary Fig. 5). These should have been identified earlier in the workflow, but the 

fluorescence change in the presence of Tat may not have been large enough. Overall, seven 

molecules were confirmed to bind TAR RNA based on their activity in the TAR-Tat displacement 

assay (Supplementary Fig. 1b) and their ability to induce chemical shift perturbations in the TAR NMR 

spectra (Supplementary Fig. 1c). 

 

HTS hit molecules 
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 The seven novel confirmed HTS hits fall into two general scaffolds; five of the hits share an 

anthraquinone scaffold with two sites of derivatization while the other two molecules share similar 

geometries with napthyl and quinazoline cores (Supplementary Table 1). All anthraquinone 

derivatives maintain their IC50 in the presence of 100-fold excess tRNA, suggesting they are specific 

for TAR (Supplementary Table 1). Several additional anthraquinone molecules with minor differences 

to the five hits did not bind TAR (Supplementary Fig. 2). The fact that small structural changes can 

ablate binding is consistent with the hit molecules making specific interactions with TAR. Interestingly, 

the anthraquinone hits and chemically similar molecules exhibited a change in color from orange to 

blue when diluted from 100% DMSO to an aqueous solution, likely due to DMSO reacting with the 

anthraquinone to form DMSO-anthraquinone, as described previously39. All experiments were 

performed with the derivatives in the blue state. The second class of molecules has much poorer 

activity in the presence of tRNA, suggesting that they are not specific for TAR (Supplementary Table 

1). This lack of specificity is likely due to the positive charges on these molecules, which would 

interact non-specifically with the RNA backbone.  

 The addition of the small molecule hits to TAR resulted in large chemical shift perturbations or 

line broadening in several residues throughout TAR (Supplementary Fig. 1c-f). As expected, hits with 

similar chemical structures induce similar chemical shift perturbations indicating that they interact with 

TAR using similar binding modes (Supplementary Fig. 1c-d). There are however two interesting 

exceptions. One of the five anthraquinone molecules, CCG-133905, induces significantly more 

broadening consistent with tighter binding, although other factors such as aggregation could induce 

the broadening (Supplementary Fig. e). The anthraquinone molecule, CCG-133994, which contains 

an ester and an amine, induces chemical shift perturbations that are distinct from the other 

anthraquinone molecules, suggesting a distinct binding mode for this molecule (Supplementary Fig. 
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f). Furthermore, NMR reveals that this molecule is in slow exchange, which is in agreement with the 

fact that it is the tightest binder in the TAR-Tat displacement assays.  

 

Identification of false negatives in HTS 

 Molecules that were insoluble in the assay conditions or that had fluorescence interference 

with the Tat peptide would have been excluded from the HTS workflow and this may represent a 

possible source of false negatives in our dataset. To investigate this possibility, we selected nine 

molecules in the top ~3% of docking scores and tested them for TAR binding using NMR. Three of 

the nine molecules did in fact bind TAR under NMR conditions (Supplementary Fig. 4b). Closer 

analysis revealed different factors led to the exclusion of these small molecules from HTS during the 

primary screen. One molecule, CCG-39701, was insoluble in DMSO but was active in the assay 

when dissolved in water (Supplementary Fig. 4a). The other two molecules, CCG-208298 and CCG-

100975, had fluorescence interference at high concentration preventing determination of an accurate 

IC50 (Supplementary Fig. 4a). These results highlight a weakness of HTS, which is the presence false 

negatives, which we recognize is a source of uncertainty in our analysis. To avoid biasing the results, 

these molecules were not included in the ROC analysis.   

 

Virtual Screening 

 VS was performed using the docking program Internal Coordinate Mechanics  (ICM, Molsoft)22. 

Docking was set up as described previously19. Briefly, each of the 20 conformers of the TAR dynamic 

ensemble34 was uploaded to ICM in PDB format and converted to ICM objects using the default 

options (waters deleted and hydrogens optimized). Binding pockets were identified with the ICM 

PocketFinder Module using a tolerance value of 4.6. Receptor maps were generated to include all 

atoms within 5 Å of the predicted binding pockets with atom occupancy weighted. Docking was run 
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with a thoroughness value of 1, flexible ring sampling level 2, and covalent geometry relaxed. For 

high-thoroughness docking, the thoroughness value was increased to 20, and all other parameters 

remained the same. 

 

Ensemble-Based Docking Scores 

 The docking scores provided by ICM represent predicted binding energies in kcal/mol. For 

each molecule, the fractional population of all 20 TAR conformers was calculated using the 

Boltzmann distribution (Eq. 3). The population of each conformer was multiplied by its docking score 

and these values were summed over all conformers to calculate the population-weighted score of 

each molecule (Eq. 4).  

     pi =
e
−εi

kT

e
−εi

kT
i=1

M
∑

     (Equation 3) 

 

score = pi ×εii=1

M
∑       (Equation 4) 

 

Where pi is the population of conformer i, εi is the docking score of conformer i, k is the Boltzmann 

constant, T is temperature (298 K), and M is the number of conformers in the ensemble.  

 

Receiver Operator Characteristic Curves 

 OriginPro (OriginLab) was used to plot receiver operator characteristic curves using Equations 

5 and 6 and to calculate the area under the curve using the trapezoidal rule. Details on these 

equations can be found at (http://www.originlab.com/doc/Origin-Help/ROCCurve-Algorithm).  

1− specificity(x) =1− nTN
nTN + nFP

   (Equation 5) 
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sensitivity(y) = nTP
nTP + nFN

    (Equation 6) 

where n  is the number of true negatives (TN), true positives (TP), false negatives (FN) or false 

positives (FP) at any given score threshold value.  

 

TAR Ensembles of Variable Accuracy 

 The RDC-derived TAR ensembles (E0 and E1) were determined as reported previously13,14. 

The randomly selected ensembles (E2 and E3) were constructed by using a random number 

generator to randomly select 20 structures from the two pools of TAR conformations generated using 

MD simulations13,14 containing 10,000 and 80,000 conformations, respectively. An ensemble that 

poorly agrees with all four RDC data sets (E4) was generated using a sample and select (SAS) 

Monte Carlo selection scheme to maximize the χ2 function assessing the agreement between 

measured and predicted RDCs  (Eq.  7)13. 

Χ2 =
Di, j

calc −Di, j
exp( )

2

δi, j
2i, j∑     (Equation 7) 

 Where i runs over all the RDCs measured for the different constructs j and δ is the weight used 

to normalize different RDC data sets, and is set at one tenth of the range of RDCs measured for each 

TAR construct14. Dexp are the experimentally measured RDCs and Dcalc are the predicted RDCs that 

were calculate by PALES40,41 as described below. 

 The quality of the various TAR ensembles used in this study was determined by evaluating 

how well they agree with four sets of RDC data measured on variably elongated TAR RNA molecules 

as described previously14. Briefly, the program PALES40,41 was used to calculate predicted RDCs 

based on the structures in the ensemble, after in silico elongation as described previously14. A scaling 
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factor was used to account for variations in experimental conditions. The predicted RDCs are 

averaged for all structures of the ensemble assuming equal probabilities (Eq. 8). 

Di, j
calc =

λ j

N
Di, j

k

k=1

N
∑      (Equation 8) 

where k runs over the N conformers of the ensemble, λj is the scaling factor for the jth TAR construct 

and Di,j is the ith coupling in the jth construct. These calculated RDCs were then compared to 

measured RDCs and the RMSD (Hz) was calculated. 

 

Docking Predicted Pose Analysis 

 Pose analysis was carried out for six TAR binders for which there are NMR structures 

deposited in the PDB: arginine (1ARJ), acetylpromazine (1LVJ), neomycin B (1QD3), RBT203 

(1UUD), RBT158 (1UUI), and RBT550 (1UTS)28,42–45. For each of these molecules, docking was 

repeated twenty times with thoroughness set to one (Fig. 3a). It was also repeated five times with the 

thoroughness value increased to twenty, meaning the time spent docking each ligand was increased 

twenty-fold (Supplemental Fig. 7). The inter-helical angles (αh, βh, γh) were computed for each 

ensemble conformer as well as for each model of the NMR structures using an in-house software as 

described previously29.  For this calculation, the lower helix was defined as C19-G43, A20-U42 and 

G21-C41 and the upper helix was defined by G26-C39, A27-U38 and G28-C37. For docking results, 

the inter-helical angles were population-weighted based on docking scores and averaged over all 

runs. The inter-helical angles of the NMR structures were averaged over all models. Repeating this 

analysis using five docking runs with increased thoroughness improved the agreement between inter-

helical angles for RBT158, RBT550, acetylpromazine and arginine, had little effect in the case of 

neomycin B, and worsened the agreement for the twist angle in the case of RBT203 (Supplementary 

Fig. 7). Interestingly, neomycin B and RBT203 were the least consistent in conformer selection 

across the 5 runs of docking.  
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 We also compared the docking predicted poses and NMR structures to published RDCs of the 

ligand-TAR complex for arginine26 and acetylpromazine27 . This analysis was done only for the most 

favored conformer from high-thoroughness docking over the 5 runs: conformer 8 for arginine (>86% 

populated in 4/5 runs) and conformer 3 for acetylpromazine (>72% populated in 4/5 runs). For the 

random ensemble, E3, conformer 4 was selected for arginine (>99% populated for 4/5 runs) and 

conformer 3 was selected for acetylpromazine (>99% populated for 5/5 runs). Likewise, only the 

lowest energy NMR structure was used for this analysis. The program RAMAH46 was used to 

compare these structures to the published RDC data sets. Briefly, RAMAH determines the best-fit 

order tensor for a given structure and set of RDCs using single value decomposition, it then uses this 

order tensor to calculate RDCs and reports the RMSD (Hz) between calculated and experimental 

RDCs. RDCs of N-H bond vectors and for residues in the bulge, loop, or terminal ends were 

excluded.   
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FIGURE LEGENDS 

Figure 1. Evaluating EBVS against HIV-1 TAR using an experimental dataset derived from HTS 

using ~100,000 small molecules. a. Secondary structure of HIV-1 TAR. b. Ensemble of HIV-1 TAR 

(E0) determined using four sets of RDCs showing binding pockets (blue) predicted by ICM. c- d. ROC 

curve analysis of EBVS showing enrichment of the c. 247 hits and d. aminoglycoside hits (purple), 

non-aminoglycoside hits (blue), and cell-active hits (red). Dotted lines indicate the ROC(2%) values. e- 

f. EBVS ROC AUC values compared to ROC AUC values obtained when docking to the individual 

conformers of e. the parent ensemble E0 (black) or random ensemble E3 (orange) and f. for specific 

hit molecule categories of the parent ensemble: aminoglycosides (purple), non-aminoglycosides 

(blue), and cell-active compounds (red). g. Docking predicted Boltzmann populations for each 

conformer when bound to a small molecule averaged over all molecules in the library. Values shown 

for all 247 hit molecules, false positive molecules, aminoglycoside hits, non-aminoglycoside hits, and 

cell-active hits. 

 

Figure 2. The accuracy of EBVS predictions is directly correlated to the quality of the HIV-1 TAR 

ensemble. a. Distinct ensembles of unbound TAR with variable accuracy as assessed based on 

agreement with experimental RDCs (RMSD shown in parentheses). b-e. Correlation between the 

TAR ensemble accuracy (RDC RMSD) and b. ROC AUC values for all 247 hits; c. ROC AUC values 

for aminoglycoside hits (purple), non-aminoglycoside hits (blue) and cell-active hits (red); d. ROC(2%) 

values for all 247 hits; and e. ROC(2%) values for aminoglycoside hits (purple), non-aminoglycoside 

hits (blue) and cell-active hits (red). 

 

Figure 3. Assessing EBVS-predicted small molecule bound TAR conformations. a. For each small 

molecule, NMR structures (all models) are compared to EBVS-predicted structures (all conformations 
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predicted to be > 25% populated following 20 independent docking runs). Colored in red are the base 

pairs in the upper and lower stems used to superimpose the RNA structures (left) and the small 

molecule (right). Also shown are the inter-helical bend (βh) and twist (αh+γh) angles30 (negative and 

positive twist angles correspond to over- and under-twisting respectively) averaged over all models in 

the NMR structure (blue circles) and the Boltzmann-weighted angles predicted by EBVS averaged 

over 20 docking runs (green squares). Also shown are the angles for individual conformers in the 

parent ensemble (open squares).  b.  Histograms of the calculated RDC RMSD (Hz) between ligand-

bound TAR RDCs and the NMR structures (blue), E0 conformers (green), and E3 conformers 

(orange). The asterisks indicate the RDC RMSD for the lowest energy NMR structure (blue) and the 

EBVS-predicted docking structure for E0 (green) and E3 (orange) for docking with thoroughness set 

to 20 over 5 docking runs.  
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