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COMPUTATIONAL COMPLEX PREDATOR-PREY DYNAMICS

ADWITIYA CHAUDHURI & SK. SARIF HASSAN

ABSTRACT. Two species predator-prey with stage structure of mature and
immature mathematical models are studied over the last few decades. Xin-an
Zhang et al studied a mathematical model with stage structure of two species
in 2010. In this article, an attempt has been made to comprehend the coupled
predator-prey dynamics with mature-immature stage structure and compare
the dynamics with the existing model. The present model studied by Xin-an
Zhang et al is purely realistic with assumptions of positive parameters. From
the mathematical curiosity, we wonder to investigate the same with complex
parameters and compared with the foreseen results. In addition, the present
model is slightly modified to see some new dynamics of some additional fixed
point including the previous fixed points.
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1. INTRODUCTION

In mathematical ecology, the coexistence of species has become one of the in-
teresting subjects of study [IL 2, [3, 4, Bl [6]. In the past few decades, dynamics of
predator-prey have received great attention and have been investigated in a number
of notable works [7, 8, @l 10, 1l 12} 13]. There have been many modification of
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models from different perspectives such as introducing harvesting policy, control,
delay and so on. The co-existence and stability of ecological systems has become
one of the most prevalent phenomena and thus it is important for us to comprehend
the permanence and global attractivity of systems [I4] [I5]. The strong persistence
(permanent) and extinction are important concepts in predator-prey dynamics. In
real systems, almost all species have their stage structure of mature and immature
[16, I7]. In mature and immature species might also have different kinds/types
such as active/inactive, diseased /nondiseased etc.

In the article [I8], by Xin-an Zhang et al, the dynamics of the two stage structure of
immature and mature predator-prey model is studied with the three assumptions

as stated.
dx
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The parameters a, b, ¢,d and e are all positive constants. The variables in the sys-
tem of egs. (1.1 —1.3) are defined as follows:

e z(t) denotes the population size of immature prey at time .
e y(t) denotes the population size of mature prey at time ¢.
e 2(t) denotes the population size of predator at time ¢.

The system of egs. (1.1 — 1.3) is transformed from the original model
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where «, 71, 2, B, b1, v, v1, r and k are all positive constants, k is a digesting
constant. The transformed parameters a, b, c,d, e are associated as a = ‘:—QB, b=
2

“Tiﬁ, c= ﬁ, d=25and e = ~. The assumptions to the original model as stated
2 1 v ()

in the article [I8] are given by

e H;: The birth rate of the immature population is simple-varied (propor-
tional) to the existing mature population with a proportionality constant
«; for the immature population, the death rate and transformation rate of
mature are simple-varied to the existing immature population with propor-
tionality constant r; and (3; the immature population is density restriction
va?.

e Hy: The death rate of the mature population is simple-varied to the existing
mature population with a proportionality constant rs.

e Hjs: The second species is a predator of the immature population of the
first species; the second species satisfies the logistic predator-prey model.
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We respect all the assumptions as stated (Hy, Hy and H3) with a jump to the
notion of coupled dynamics of prey-predator which is defined as follows.

e By coupling of constituent variables x,y and z, we mean to consider them
as complex variables (the real part and imaginary part) instead of just real.
The complex variables z,y and z essentially refer simultaneous population
of two different kinds (such as sexually active/inactive, diseased /nondiseased
ete).

e The parameters involved in the system of nonlinear eqs. (1.1 — 1.3) are
a,b,c,d and e also taken as complex numbers. The real and imaginary
part of any of these parameters are associated to the two different kinds
of prey (immature and mature) and predator. It is worth noting that
consideration of complex parameters in the model would possibly loose
biological direct implications but certainly this mathematical model would
be mathematically complex and crazy enough which is one of the aims of
the article to understand.

The main results of the article [I8] are given below while the parameters and system
taken real numbers as presented.

e The system of eqs. (1.1 — 1.3) has a positive equilibrium if and only if
a>b+ce

o If a > b+ ce, then the positive equilibrium of the system is globally asymp-
totically stable.

e If b < a < b+ce, then the non-negative equilibrium of the system is globally
asymptotically stable.

e If a < b, then the origin of the system is globally asymptotically stable.

Given this brief introduction, we proceed to the main content and before coming
to the asymptotic behaviours of the prey and predator in the ecological system
with coupled dynamical system, we find the discrete time system of the system of
egs.(1.1 — 1.3).

The discrete-time system of the system of eqs.(1.1 — 1.3) is given by

Tip1 = Tyt (ayt — by — c:vf — dxtzt) dt
Ye + (@ —ye) dt
zt + (ze(—e+ e — 2¢)) dt

Yt+1

Zt+1

Here all parameters a, b, ¢, d and e are complex numbers and dt (which is considered
to be 0.0005 throughout the rest of the article) is the delay term in discritizing the
system.

The rest of the article is organized as follows. In Sec. 2, local asymptotic stability
is discussed for all the fixed points of the system of Fgs.(1.4 —1.6) and its modified
system as discussed in the second last section.
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2. LOCAL STABILITY ANALYSIS

Here we present two most well known necessary results in analyzing local asymptotic
stability of a fixed point before we proceed to do so for the fixed points of the discrete
time system of eqgs.(1.1 — 1.3) [19].

Result 2.1. Let (z,9,2) be a fized point of the system
Tep1 = O(Te, Yt, 2t)
Yer1 = (@, Yr, 21)

Zt41 = X(aft, Yt, Zt)
ailp a2 ais
Let A = as1 G2 Q923 be the jacobian at the point (T, 7y, Z) with eigenvalues

az1 asz Ga33
A1 Ao and A3. Then:

|A1,2.3] < 1= (&,7) is locally asymptotically stable or attracting.

|Tr(A)| < 1+ Det(A) < 2 then (Z,7, Z) is locally asymptotically stable or
attracting.

IXj| > 1 for one j € {1,2,3} = (Z,9,Z) is repelling.

[A;| =1 for one j € {1,2,3} = (%, 9, Z) is saddle.

Another important result in understanding bound for zeroes of a polynomial with
complex coefficients [20] is presented as follows.

Result 2.2. Let p(z) = azz® + as2? + a1z + ag be a cubic polynomial with complex
coefficients such that for some h > 0,

|aa| > hlas| > B?|ar| > B*|aol

Then p(z) has its all zeros in |z| < % where K is the greatest positive root of
the biquadratic equation K* — 2K3 4+ 1 = 0.

Note that K = % <€/19+3\/ﬁ+ V19 - 3v33 + 1) = 1.83929

The fixed points (Z, 7, Z) of the system Of egs.(1.4—1.6) are solutions of the system
of nonlinear equations:

(2.3) T = T+ (afy — bFy — ey — dTyz,) di
(2.4) U1 = Yo+ (Te— o) dt
(25) 2t+1 = zZ:+ (Et(—e + Ty — Zt)) dt

Consequently, the system of equations Egs.(2.2 —2.4) gives four unique fixed points

(0,0,0),(0,0,—e), (2=2,%=2,0) and (“’Clj:ide, “’clf;lde, “’ci’dce). Before we proceed

to study local asymptotical stability of the fixed points, we wish to raise few remarks
about the fixed points as mentioned below:

e The fixed point (0,0,0) means that the predator-prey density will go on
vanishing asymptotically. In an ecological system such a situation is not
expected and it looks abolishing population and hence this fixed point is
not of our interest.
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The other fixed point (0, 0, —e) signifies that the only second species (preda-
tor) will be permanent asymptotically and no mature and immature species
(prey) will exist eventually which is also not an expected dynamics.

The fixed point (“T_b, azb 0) looks reasonable but again the second species

C
(predator) is extinctive.

e The fixed point (“‘J_’:;lde, “_cl_f:ide, “_C:’__dce> is an interesting from a healthy

ecological population perspective since both the prey (immature and ma-
ture) and predator will exist permanently eventually as the system reaches
equilibrium.

It is to be noted that the eventually the density difference among immature,
mature prey and predator is constant and that is e. For example, for the

fixed point (“*CTZCIE, a;lf;lde, a;i;“) the asymptotic density of immature,

a—b+de a—btde a—b—ce
ord 0 ot and 4

a—b+de a=b—ce | _
or1 -~ “orq— ) = e and the parameter e equals to

%. Among all the fixed points of the system, this is the only fixed point

a—b+de a—b+de a—b—ce
c+d 7 c+d ' ctd

since none of the three kinds of populations will get extinctive eventually
as the system reaches its equilibrium.

e The system of Egs.(1.4 — 1.6) does not possess any fixed points where only
the immature prey will be permanent and mature prey and predator will
be extinctive.

e The system of Egs.(1.4 — 1.6) does not even have any fixed points where
only the immature prey and predator will be permanent and mature prey
will be extinctive.

mature prey and predator are respectively. The

density difference is (

) which is biologically significant and interesting

We shall do now the local asymptotic stability analysis of these fixed points by
making the system of Fgs.(1.4—1.6) linearized about the fixed points in the following
subsections.

2.1. Local Stability Analysis of (0,0,0). The linearized system X;y; = JX;
(where X; = [x4,y:, 2:)7 and J is the jacobian) is obtained by linearizing the model
FEqgs.(1.4 — 1.6) about the fixed point point (0,0,0). We wish to note that, we have
considered dt = 0.0005 without loss of generality and proceed to apprehend the
local stability of the fixed points.

Here the jacobian about the fixed point (0,0,0) while the discritizing delay term

dt = 0.0005 is
g +1 —ks 0
200 380
J0,0,0) = 300 200 0 .
0 0 1-55%

The characteristic equation of the jacobian matrix Jg,o,0) is

(e 4+ 200(A — 1)) (a(199 — 200X) + b + 200 (200A% — 399\ + 199))
8000000

The fixed point (0,0, 0) is attracting if all the zeroes lie inside the unit disk. Here we
have the following theorem (follows from the Result 2.2) to ensure local asymptotic
attracting behavior.
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Theorem 2.6. The fized point (0,0,0) is attracting if and only if there exists a
constant h > 1.83929 such that
h2| — (a + 399)e + 399a + b + 119600| N h3|(e — 200)(199(a + 200) + b)|

40000 = 8000000

h
1> —J|a— e+ 599 >
200

The eigenvalues of the jacobian matrix J(g g 0y are ﬁ (:I:\/ a?+2a—4b+1+a+ 399)
and 1 — 555. It is noted that, the J(g ¢,0) consists of only the parameters a,b and e.

Here we shall visualize three dimensional subspaces S(attracting)s S(repeiting) and
S(saddie)y of R3 C C3 for the dt = 0.0005, which are shown in Fig. 1. In precise,
S(attracting,dat) denotes the space of parameters (a,b,e) in R3 for which the fixed
point (0,0,0) is attracting and similarly others.

100000

100000

FIGURE 1. Left: S(astracting), Middle: Sireperiing)

It is to be noted that the set of parameters (a, b, e) such that the fixed point (0, 0,0)
is saddle is turned out to be

S(saddie) = {(—7999,1.5992 x 107, 1714.29), (—3999, —3999, 1714.29), (1,1, 1714.29),
(—7999,1.5992 x 107, 2285.71), (—3999., —3999., 2285.71), (1., 1.,2285.71) }.

We shall now see a set of examples of attracting, repelling and saddle behavior of
the fixed point (0,0, 0).

While @ = 0.0326 + 0.5612¢, b = 0.8819 + 0.6692i, ¢ = 0.1904 + 0.3689i, d =
0.4607 4 0.98167 and e = 0.1564 + 0.85554, then for ten different initial values taken
from the neighbourhood of the fixed point (0,0,0), the trajectories are attracting
to the fixed point (0,0,0) as shown in Fig. 2. The eigenvalues of the jacobian
J(0,0,0) are 0.996481 + 0.005711564,0.998682 — 0.002905567,0.999218 — 0.0042775i
and all these eigenvalues lie inside the unit disk in the complex plane and hence
the trajectories are attracting towards the fixed point (0,0, 0). It is noted that the
la] < [b](0.562146 < 1.10706) is holding well, in the case of real positive parameters
of the original model the condition foro global stability of the origin was a < b.
While ¢ = 0.8217 + 0.4299¢, b = 0.8878 + 0.3912¢, ¢ = 0.7691 4 0.3968i, d =
0.8085+0.75517 and e = 0.3774 4 0.2160¢, then for ten different initial values taken
from the neighbourhood of the fixed point (0, 0,0), the trajectories are attracting to
the fixed point (0,0,0) as shown in Fig. 3. The eigenvalues of the jacobian .J(g )
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FIGURE 2. Attracting to (0,0,0) trajectories

are 0.999551 — 0.000540467,0.999557 4 0.002689963,0.998113 — 0.00108¢ and all
these eigenvalues lie inside the unit disk (modulus of each these eigenvalues are
{0.999551,0.999561,0.998114}) in the complex plane and hence the trajectories are
attracting towards the fixed point (0,0, 0). It is noted that the |a| < [5](0.927364 <
0.970168) is holding here as well.

2 25 5 B s 05 05
Real and Imaginary Plots «10t Real and Imaginary Plots

FIGURE 3. Attracting to (0,0,0) trajectories

Remark 2.7. The fixed point (0,0, 0) is locally asymptotically stable if |a] < |b).

In support of the Remark 2.7, we simulate a set of exemplary trajectories (twenty)
for different set of parameters with |a| < |b| for different initial values as shown in
the Fig. 4.

It is noted that, the converse of the Remark 2.5 is not necessary. For counter
examples, we have taken a set of twenty trajectories where the condition |a| < |
is violated (5a = b) and still trajectories are attracting towards the fixed point
(0,0,0) as shown in Fig. 5.

Here we have taken an example of case where the fixed point (0,0,0) is saddle.
Consider a = 1, b = 1,c = 0.6616 + 0.5170¢, d = 0.1710 4 0.93867 and e = 2285.71
and then for any ten different set of initial values from the neighbourhood of (0, 0, 0),
trajectories are away (converging to other fixed points) from the fixed point (0, 0,0)
(i.e. the fixed point is a saddle) as shown in the F'ig. 6.

Here we shall see few particular cases in this consequence. If the parameters a = 0
and b = 0, then the fixed point (0,0, 0) cannot be attracted since one of the eigen-

values (1, %, 1 — 555) of the jacobian Jig g 0) is unity.

200
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o

05 .05

Real and Imaginary Plots

FIGURE 4. Attracting trajectories to (0,0,0) where |a| < |b]

05 05
Reel and Imaginery lots - : Real and Imaginary Plols

FIGURE 5. Attracting trajectories to (0,0,0) where |a| > |b]

o8 i 12 ) [ [0 05 <05
Real and Imaginary Plots ot Real and Imaginary Plols

FIGURE 6. Saddle to (0,0,0) trajectories

Remark 2.8. While the parameter b = 0, then the fixed point is attracting if
—400 < R(a) < 0, —/—R(a)? — 400R(a) < I(a) < /—R(a)? — 400R(a),
0 < R(e) < 400, —+/400R(e) — R(e)? < J(e) < 1/400R(e) — R(e)?

Note that, (z) denotes the real part of the complex number x.

Such parameters a and e while b = 0 are plotted in the Fig. 7.
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50

—100

—-150

0 100 200 300 400

FIGURE 7. Parameter space of a (left) and e (right) for which the
fixed point (0,0,0) is attracting

Remark 2.9. If the parameter b = 0, then the fixed point is repelling if

R(a) < —400

Rle] > 400

Such parameters a and e while b = 0 are figured out in the Fig. 8.

300

200k 200

100} 100

e R e
—400000 —200 000 300000 400000 -400000 -200000 200000 400000

—100k -100
200 -200

-300F -300

FIGURE 8. Parameter space of a (left) and e (right) for which the
fixed point (0,0, 0) is repelling.
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2.2. Local Stability Analysis of (0,0, —e). The jacobian about the fixed point
(0,0, —e) while the discritizing delay dt = 0.0005 is given by

2—(1)0(a +1de) +1 :féo 0
J0,0,—e) = 00 20 0
— 565 0 565 + 1

The fixed point (0,0, —e) is attracting if all the zeroes lie inside the unit disk.
The following theorem (follows from the Result 2.2) ensures the local asymptotic
attracting behavior of the fixed point (0,0, —e). The characteristic equation of the
jacobian J(g g, ) is

(e — 200(\ — 1))(a(200A — 199) — b + (200A — 199)(de — 200 + 200))
8000000

Theorem 2.10. The fized point (0,0, —e) is altracting if and only if there exists a
constant h > 1.83929 such that

h2|(e + 399)(a + de) + b + 399¢ + 119600| - h3|(e + 200)(199a + b + 199(de + 200))|
40000 = 8000000

h
1> —|a+de+e+599| >
200

The eigenvalues of the jacobian Jg g, _) are
%5+L1&(i¢ﬁ+ﬂdﬁﬁﬂ)—%+Qk+D2+a+@+3%)

Theorem 2.11. The fized point (0,0, —e) is repelling if
400 < R(e) <0,3(e) < —/—RN(e)2 — 400R(e)

Here we are determine the sets of such parameter e such that the fixed point is
repelling and saddle and such parameter are plotted in Fig. 9 respectively. The
parameter e lies in a circle as seen in the Fig. 9.

Theorem 2.12. The fized point (0,0, —e) is saddle if
—400 < R(e) < 0,3(e) = —/—R(e)2 — 400R(e)

Here R(z) and S(x) are denoting real and imaginary part a complex number x.

300 200

200

100
1004

MR PP — 1 L L !
—400000  -200000 200000 400000 a0 300 200 ~100
i

-

-100

00

-200

-300k -200

FIGURE 9. Parameter space of e (left: Repelling) and e (right: Saddle)
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Here we have trajectories (repelling) from the fixed point (0,0, —e) for different
initial values and parameters as shown in Fig. 10. The trajectories are attracting
to the other fixed point (22, 22 ().

c’c’

Realand Imaginary Plots ! ‘ ’ o Real and Imaginary Plots

Ficure 10. Repelling trajectories

It is worth noting that in an ecological system as mentioned in the beginning the
fixed point (0,0,—e) is not desirable. Computationally no complex parameters
(except all are zero including h=0) is found for which the fixed point (0,0, —e) is

attracting.
2.3. Local Stability Analysis of (“T_b, “; ,0) The jacobian about the fixed
point (=2, 2= 0) with d¢ = 0.0005 is given by
b a—b)d
(@ =200 =b) +1 s T
J(ezt oz gy = 200 200 HO
0 0 s5(=t—e)+1
The characteristic polynomial of the jacobian J( —b ) 18
(ach — 1333¢ — 2bcX + 3535 4 200cA? — 399 + 199c) (5h5 (=2 —e) =X +1)

200c

Theorem 2.13. The fized point (‘ZT_b, aT_b, 0) is attracting if and only if there exists
a constant h > 1.83929 such that

h2

a2 —a(3b+c(e—399)+399)+(2b+399)ce+b(2b—799c+399) —119600¢
c

h |a(—c)+a—b
1> |2 T 4 op — e+ 599] >
200 c

A%

40000
B3 | (199(a—200) —399b) (a—b—c(e—200)) )
c

8000000

Here we illustrate an example of parameters such that the fixed point (“’b a=b )

c a c
149 111 624

is attracting for different initial values. Consider a = S5 — 5, b = 35 — =%,

_ 49 i o, _ 161 127i . 891 18 | 89i
c=5—75. €= + 755", and then the fixed point becomes (49 + 1900 1 + 490,0)

which is attractlng for different initial values (20) taken from the neighbourhood of
the point as shown in Fig. 11.

Theorem 2.14. If all the parameters a, b, ¢ and e are real numbers and dt = 0.0005,
then the fized point (“ b, a=b O) 18 attracting if

1 —b a — b+ 400c
— < — —1 _ -
39 <a 5 799(399(1 59600)<b<ac>0 —<e< -
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X-Trajectory, Y-Trajectory Z- Trajectory

-1
0 1000 2000 3000 4000 5000 6000 7000 800D 9000 10000

Real and Imaginary Plots Real and Imaginary Plots

FIGURE 11. Trajectory of real and imaginary plots (left), 3D plot

of the complex trajectories attracting to (15 + 59, 18 4 29¢ 0)

We have found a set of real parameters a,b,c, and e such that Theorem 2.1/ is
valid. The parameters (a,b) and (¢, e) are plotted in the figure Fig. 12.

200
120000 |

100000 |
80000

60000

40000 |

20000 | L
-1001

50000 100000 150000 200000 250000

FIGURE 12. Two dimensional parameter spaces (a,b) (left) and
(c.e) (right)

It is interesting to note that the parameters a and b are collinear and c,e are
symmetric about the axes which is evident from the Fig. 12.

Theorem 2.15. If all the parameters a, b, c and e are real numbers and dt = 0.0005,
then the fized point (‘IT_”, ‘17_”,0) is repelling if
1 a—b
_ h< — -1 - -
a < —399,a< <799(399a 59600),¢c < 0,e < -
A set of real parameters a,b,c, and e is determined such that the fixed point
(a—_b “_b,O) is repelling. The parameters (a,b) and (¢, e) are plotted in the figure

c ¢
Fig. 13.
13 s a—b+de a—b+de a—b—ce : :
2.4. Local Stability Analysis of ( T e ) The jacobian about
the fixed point (“_Cf’:ide, “_Ci'*;lde, a_cljr_dce) with dt = 0.0005 is given by
(b+200)d—c(a—2b+de—200) b _ d(a—b+de)
200(c+d) 200 200(c+d)
Jia—btde a—btde a—b—ce 300 300 0
( cFd '~ c¥d ' co+d ) _ —atbdce o —a+b+200(c+d)+ce

200(ctd) 200(c+d)
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400000 |
J— /

-400000 -200000 200000 400000 600000  BOOOOO

—200000 |-

-400000 -

FIGURE 13. Two dimensional parameter spaces (a,b) (left) and
(¢, e) (right)

Theorem 2.16. The fixed point <“_Citlde, a;ﬁ[‘(‘ide, “_ci_dce> is attracting if

and only if there exists a constant h > 1.83929 such that
hla(c+1) —b(2c+d+ 1) + c(d — 1)e — 599(c + d)|

1> >
200 |¢ + d|

h? ‘—a2 + a(3b + e(c — d) 4+ 399(c + 1)) — 2b2 + b(—c(2e + 799) + d(e — 400) — 399) + ce(d(e + 399) — 399) — 119600(c + d)
>
40000 |c + d| =

h3 ‘199112 — a(598b 4 199(e(c — d) 4 200(c + 1))) + 399b2 + b(399c(e + 200) — 199de + 40000d + 39800) + 199(40000d — c(e + 200)(de — 200))

8000000 |c + d|

For arbitrary complex parameters a, b, ¢, d and e, it is difficult to apprehend
the local behaviour of the fixed point and hence we see it through some
particular cases.

First, we consider b = 0 and e = 0 and that essentially means that r2 # 0,
r =0 and 8+ rl = 0. That proportional constants (r1) and § of the death
rate and transformation rate respectively of the mature prey to the existing
immature prey are opposite in sign. Hence if the death rate of mature
prey is positive then the transformation rate from immature prey to mature
would be negative and vise versa. It may so happen that the parameters
r1 and B both are zero and that is possible only if the transformation rate
of mature do not proportional to the existing immature prey and such a
situation comes when predation comes into action upon immature with a
very high rate.

When the parameters b = 0 and e = 0 and then the eigenvalues of the

: ; 199 —av'c2—2c—4d+14a(—c)—a+400c+400d
acobian Jya bide a—brde a—bce) Are 555
J (“Z5a = ) 2007 400(c+d) ’

av/c?2—2c—4d+1+a(—c)—a+400c+400d
400(c+d) :
In this consequences following results are obtained.
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Theorem 2.17. For complex parameters with b= e =0 (dt = 0.0005), the
a a

fixed point (c-%d’ P Rl
h > 1.83929 such that

hla(c+ 1) — 599(c + d)| 5
200 |c + d| =

) is attracting if and only if there exists a constant

199h3 |a2 — 200a(c + 1) + 40000(c + d)(
8000000 |c + d|

a(a —399(c + 1)) 299

1> =
40000(c + d) 100

Theorem 2.18. For real parameters with b = e = 0, the fixed point (ﬁ, a ﬁ)

is attracting if

1
¢>-l-c<d< (2 —2¢+1),0 < a < 200(c+1)—200V/¢2 — 2¢ — 4d + 1

Here we present an example with different parameters (b = e = 0) such that
the fixed point (
in the Fig. 14.

a a

pow R B ch—d) is attracting. The trajectory plots are given

Real and Imaginary Plots

FIGURE 14. Trajectories converging to (

a a a )
c+d’ c+d’ c+d

It is noted that the Theorem-2.17 is shown to be valid for real parameters
but it is seen in the example where complex parameters are taken which
satisfy the condition

1
e > Llel <ld| < |5 (¢ = 2¢+1) |, ]a] < |200(c+1)—200v/¢2 — 2¢ — 4d + 1|

a a a

—c+d,—c+d,—c+d) for ten

as stated in the Fig. 14, trajectories are attracting to (
different initial values as considered.

We have taken possible real parameters (a, ¢, d) such that the Theorem 2.17

is holding well. The three dimensional plot of the parameters (a,c,d) is
figured in Fig. 15.

It is noted that this is the only non-trivial desired fixed point where predator

and prey are permanent with equal density in the ecological population.
Theorem 2.19. For real parameters with b = e = 0, the fized point (c%%i’ ol Hﬁ)
s repelling if

¢>—1,d < —¢,a < 200(c + 1) — 200/ c2 — 2c — 4d + 1
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2000

500000

SO0000

FIGURE 15. Three dimensional parameter spaces (a, ¢, d) such that
(54as otar o) 1s attracting

We have taken possible real parameters (a, ¢,d) such that the Theorem 2.18
holds. The three dimensional plot of the parameters (a,c,d) is figured in
Fig. 16.

400000
200000 ' 1000

-500000

500000

FIGURE 16. Three dimensional parameter spaces (a, ¢, d) such that

(3> 2> ora) is repelling

Theorem 2.20. For real parameters a,c,d with b = e = 0, the fized point

a a a ; ;
(m, —+d’ m) s saddle Zf

a—200 . _ —a? + 400ac + 400a — 160000c

>
a>0,¢2 =550 160000
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We have taken possible real parameters (a, ¢, d) such that the Theorem 2.19
holds. The three dimensional plot of the parameters (a,c,d) is figured in
Fig. 17.

¥
00000 200000

FIGURE 17. Three dimensional parameter spaces (a, ¢, d) such that

(cta» o> ota) is saddle

If all the parameters a, b, c,d and e are equal then the parametric relation
will be

 JayByiT B _ o
r2_W)rZ;&O/\ﬁ—i—rl—E,T—,B—Frl/\k—mau#o

Here we assemble a set of parameters «, 5, 81,n,71,k,7,71 and ro which
are implicitly associated to the parameters a,b,c,d and e. These complex
parameters «, 3, 51,1, 11, k, 7,71 and ry are figured out in the following Fig.
18.

The existence of such parameters ensures the feasibility of the coupled prey-
predator local stability of special kinds which we shall explore immediately.
When all the parameters a, b, c,d and e are same and equal to A then the

fixed point becomes (h h E) and let us explore local asymptotic stability.

2°2) 2
Theorem 2.21. The fized point (%, %, —%) 1s attracting if
—27.7861 < h < -2

or
—0.209963 < h <0

Here we illustrate the Theorem-2.20 through an example which is shown
in Fig. 19. We took h = —4 and for ten different initial values from the
neighbourhood of the fixed point (%, %, —g), the trajectories are attracting
to the fixed point (-2, —2,2) as desired.
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200000

200000 60009

FiGure 18. Complex parameters «, 3, 51,1, m, k,r, 71 and 72 such
that the parameters a, b, ¢, d and e are all equal.

-1.56

XYZ Plot

Trajectory Plot

Number of teratons.

FIGURE 19. Trajectories attracting to (—2,—2,2)

Theorem 2.22. The fized point (%, g, —%) is repelling if (g, g, —%) if
—400.003 < h < —27.7861

or
0 < h <0.422653
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or
3.41319 < h < 28.7912

Theorem 2.23. The fized point (h h —g) is saddle if (%, %, —%) if

2027
h = —27.7861
or
h = 28.7912

Here we illustrate the Theorem-2.22 through an example which is shown in
Fig. 20. We took h = 28.7912 and for ten different initial values from the

neighbourhood of the fixed point (%, %, —%), then the fixed point (h h —%)

2520
is a saddle as expected.

e e e e Trajectory Plot
oo f Hrations

FIGURE 20. Trajectories attracting to (—2, —2,2)

3. MODIFIED SYSTEM WITH ADDITIONAL DYNAMICS

In this section, we modify the system of equations egs.(1.1 — 1.3) such that
the modified system will have all the previous fixed points including two
additional fixed points of which, one kind is that only immature population
will be permanent (rest are extinctive) and the other kind would be only
immature prey and predator will be permanent ( only mature prey will be
extinctive).

The discrete version of the modified model is given by ...

(3.1) Tep1 = T+ (amt — by — cxf — dxtzt) dt
(3.2) Yir1r = Y+ (el —ye)) dt
(3.3) 241 = 2zt + (ze(—e+xp—2))dt

where all parameters a, b, c,d and e are complex numbers and dt is the de-
lay term in discritizing the system. Note that here a and b parameters are
swaped and accordingly the assumptions to the original model are swaped.
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The fixed points of the system of egs.(3.1 — 3.3) are (0,0,0), (0,0, —e),
(%707 0) )
(@ a?fb,o) 7 <a+de afce) and (afb+de a—b+de afbfce)'

c c+d ™ c+d c+d ' c+d 0 c+d

Including previous four fixed points of the system of egs.(1.1-1.3), the other
two additional fixed points are (%, 0, 0) and (“+de a‘“).

ct+d 7 c+d
Here the fixed point (%, 0, 0) means that the immature species will be per-
manent and mature species including predator will be extinctive eventually.

The other fixed point (“Cfée, , ‘i;‘ff) signifies that the only immature prey

and predator will be permanent and mature species will be extinctive. These
two eventual occurrence were missing in the system of eqs.(1.1—1.3) as men-
tioned in the remarks in the introduction section.

It is worth noting that the present system of eqs.(3.1 — 3.3) is enriched with
additional dynamics including previous dynamics. Here we present local
stability of these fixed points in the following subsections.

3.1. Local Asymptotic Stability of (0,0,0). The jacobian about the

b
s0 t1 —a5 O
fixed point (0,0, 0) is Jg,0,0) = 0 1 0 has three eigen-
0 0 1 — 565

values which include 1 and hence the fixed point (0, 0, 0) cannot be attracting.
The fixed point (0,0, 0) is always a saddle as one of the eigenvalues is unity.

Theorem 3.4. The fized point (0,0,0) of the system of egs. (3.1 —3.3) is
repelling if
R[a] < —400,R[e] < 0

Here we present an example where the fixed point (0,0,0) is repelling. We
consider the parameters a = 90 + 3.3i, e = 237.5 + 248¢ and b, c,d are
arbitrary and then we found the trajectories for different initial values are
repelling from (0, 0,0) and attracting to the other fixed point(s) as shown in
Fig. 21.

0.8
0.6
0.4

0.2

-0.2
200

-200 100

Real and Imaginary Plots

FIGURE 21. Trajectories repelling from (0, 0,0)


https://doi.org/10.1101/151605

bioRxiv preprint doi: https://doi.org/10.1101/151605; this version posted June 18, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

20 ADWITIYA CHAUDHURI & SK. SARIF HASSAN

3.2. Local Asymptotic Stability of (0,0, —e). One of the eigenvalues of
the jacobian about the fixed point (0,0,-e) is unity and hence the fixed point
would be either repeller or a saddle.

Theorem 3.5. For all the real parameters a,b,c,d and e, the fized point
(0,0, —e) is repelling if
e < 0,a < —de — 400

We found the space of real parameters (a,d,e) such that the fixed point
(0,0, —e) is repelling and the space is plotted in the Fig. 22.

500000

10
500000

FIGURE 22. Trajectories repelling from (0,0, —e)

3.3. Local Asymptotic Stability of the (%,0,0). The jacobian about
the fixed point (%, 0, 0) is

1— @ b ___ad
200 a 200 200c¢
0 200c +1 a—ccp
0 0 200c +1

Theorem 3.6. The fized point (%,0,0) is attracting if and only if there
exists a constant h > 1.83929 such that

a2(2c—1)4ac(—c(e—400)+e—800)+400c2(e—300)
)
c

2

‘ n3 ‘ (a—200)(a+200¢)(a—c(e—200))
> 2
40000 - 8000000

h

a(371> 7e+600' >
Theorem 3.7. If the parameters are real then the fixed point (%,0,0) 18
attracting if
a a a + 400c
0<a<400,c< ——,—<e< ——
“ ¢ 400" ¢ c c

We found the parameters (a, ¢, e) with other parameters arbitrary real num-
ber for which the fixed point (%,0,0) is attracting, repelling and saddle
respectively and the three dimensional spaces of a,c and e are plotted in
Fig. 25.
Here we present examples of attracting and saddle trajectories of the fixed
point (%,0,0).
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20000

10000
i

-10000

500000 e

500000 qg -500000

FIGURE 23. Parameter space of (a,c,e) such that the fixed point
(%,0,0) is attracting (left), repelling (middle) and saddle (right)
respectively.

First we consider a = 50 — 91¢,¢ = —1 and e = 0, the trajectories for ten
different initial values taken from the neighbourhood of the fixed point are
attracting and that is shown in Fig. 24.

Real and Imaginary Plots

FIGURE 24. Trajectories attracting towards (2,0,0)

Secondly, we consider a = 98.4615 — 172.308i,¢c = —8 — 4¢ and e = —0.625 +
6.59944, the trajectories for ten different initial values taken from the neigh-
bourhood of the fixed point is saddle and that is figured out in Fig. 25.

Real and Imaginary Plots

F1GURE 25. Saddle trajectories attracting of the fixed point (%, 0, 0)
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3.4. Local Asymptotic Stability of the (“T_b, ‘IT_Z’, 0) . The jacobian about
the fixed point (“—_b, a’T_b, 0) is

b—a)d
s (—a+2b+200)  —t (b-a)
a—b b—a + 1 0
200c 200c —atbtce
0 0 1- 200c

In this consequence, two important theorems are stated below.

Theorem 3.8. For all the real parameters a, b, c,d and e (with dt = 0.0005),
the fized point ("’T_b, “T_b,O) is attracting

1 1
a < 800 (—1 - \/5) Ja<b< 2(3a—800) - Z\/a2 + 1600a — 640000

a? — ab N a3b — 3a2b? + 3ab3 — b* cee a? — 2ab — 400a + b2 + 400b
(a — 2b)2 (a — 2b)* - 400a — 800b — 160000
a—>b a—b+400c
<e< —m
C C

Here we find the two dimensional spaces of parameters (a,b) and (c, e) such
that the fixed point is (a—_b ‘IT_Z’, 0) is attracting and the spaces are figured

c )
out in Fig. 26.

2000 1500+

1000 1000

. - .

4000 2000 ot 2000 4000 00

l_.-" +=1000
N 1]

-2000 I 500 1000 1500

-3000 -500

-1000-

FIGURE 26. Parameter spaces of (a,b) (left) and (c,e) (right) re-
spectively such that (“’b “7717, ()) is attracting.

c

Theorem 3.9. For all the real parameters a,b, c,d and e (with dt = 0.0005),
the fixed point (“T_b, “T_b,O) is repelling

800 (—1—\/5) <a<—400,b<a,c>0

Here we find the three dimensional space of parameters (a,b,c) and (c,e)

such that the fixed point is (“—4’ a=b 0) is repelling and the spaces are

figured out in Fig. 27. ©
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50000

“;b, aT_b, O) is repelling.

FIGURE 27. Parameter space of (a,b,c) such that (

Theorem 3.10. For all the real parameters a,b,c,d and e (with dt =
0.0005), the fized point (%b, “TJ’,O) 15 a saddle
a—2b

c

c>0,e=

Here we find the three dimensional space of parameters (a,b,c) and (c,e)
such that the fixed point is (“?_b, “7_1’, 0) is a saddle and the spaces are figured
out in Fig. 28.

-
.y . -
ok o
. - It T8 L e
. af e )
R AL I I RC) LS A 300
e, = 2 vt
. Qe . -
* e - . -
e, (s K
Dot 0BT, etef Lt e . Al 200 ¢
g "
. T el . el L2 [l
] *a . . -
et e o Jeah " - - . .
P T AL i L S PP R 100
. e ev ..:,.. I LY
. . [] . ot
* o T LYY N - 4
- ] ety KR
. 3 . S -
~40000 ~20000 20000 40000

FIGURE 28. Parameter spaces of (a,b) (left) and (c,e) (right) re-
spectively such that (a_b, ‘ZT_I’, 0) is a saddle.

(&

3.5. Local Asymptotic Stability of the (acfff, , ‘Z;‘éf) . Here we assume

the parameter e = 0 then the fixed point becomes (CJ%d, 0, C;ﬁ) and con-

sequently the density of the eventual population of the immature prey and
predator will be same. We wish to see the condition local stability of this
fixed point.

Theorem 3.11. For the real parameters a,b,c,d, and e = 0, the fixed point
(ﬁd,o, ﬁd) is attracting if

1
1<dg2,800\/&—400(d+1)<a<0,M(—a—400d)<cg1—2x/&
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Theorem 3.12. For the real parameters a,b, c,d, and e = 0, the fixed point
(ﬁd,o, j“d) is repelling if
>0 1 ( 400c) < d <
“= % q00 ¢ ¢

Theorem 3.13. For the real parameters a,b, c,d, and e = 0, the fixed point
<#‘”d,0, #‘d) s a saddle if

1
>0,d = —(—a—400
a>0,d=755(-a—400c)
Here we find the three dimensional space of parameters (a, b, c) such that
a0 ta
spaces are figured out in Fig. 29.

the fixed point is < ) is attracting, repelling and saddle and the

500000

500000~ 00000

a
ctd’ 7 ct+d
attracting (left), repelling (middle) and saddle (right) respectively.

FIGURE 29. Parameter space of (a,b,c) such that ( 2.0 ) is

Here it is noted that, the fixed point (j"d, 0, j‘”d) is mostly repelling as we
observe from the parameter spaces as shown in Fig. 29.

3.6. Local Asymptotic Stability of the (“;l_’:ide, a;ljrzde, “;f’[dce) As

we did earlier, we fix the parameters and see different cases of fixed points.
First we consider b = e = 0.

Theorem 3.14. For all real parameters a,c,d with b = e = 0, the fized

point (#‘”d, as CJ%d) 18 attracting if

a? — 400a + 160000d
400a — 160000
Theorem 3.15. For all real parameters a,c,d with b = e = 0 (dt = 0.0005),

the fixed point (cJ%d, a cJ%d) is repelling if

d<0,0<a<400,c>

1
a>0,—d<c<m(a—400d)
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Theorem 3.16. For all real parameters a,c,d with b = e = 0 (dt = 0.0005),

the fixed point <c-%d’ “a C_ﬁ) is a saddle if

a — 200 <e< a — 400 d —a? 4 400ac + 400a — 160000c
N e T A=
200 — 400 160000

Here we find the three dimensional space of parameters (a,b,c) and (c,e)

a <0,

such that the fixed point is (#"d, ol ﬁ) is attracting, repelling and saddle

and the spaces are figured out in Fig. 30.

500000~ 500000

a a a
c+d’ c+d’ c+d

is attracting (left), repelling (middle) and saddle (right) respec-
tively.

FIGURE 30. Parameter space of (a,b,c) such that (

Secondly, we consider as we did previously that all the parameters a, b, ¢, d
and e are equal to i and then the fixed point becomes (h h ﬁ)

2:2072)"
Theorem 3.17. There does not exist any real parameters which are all equal

such that the fixed point (%, g, —%) s attracting.

Proof. The above theorem is seen valid computationally. ]

Theorem 3.18. For all parameters a,b,c,d and e equal to h while dt =
0.0005, the fixed point is (g, %, —%) is repelling if h < —27.823 or —2.9806 <
h <0 or0<h<4.46943 or h > 28.8255

Theorem 3.19. For all parameters a,bc,d and e equal to h while dt =
0.0005, the fized point is (%, %, —g) is a saddle if h =0 or h = —27.823 or
h = 28.8255

4. DI1SCUSSIONS AND FUTURE ENDEAVOURS

In this paper, the prey (immature and mature) with two stage structures
and predator dynamics is reinvestigated with the notion of coupled-dynamics
through complex variables. The dynamics of the prey-predator in complex
variables is much complicated, than the classical real model, some of the
glimpses we observe through computational study. Further a modification
is made to the previous model to explore other permanence of prey and
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predator population. The stability in the modified model are also adum-
brated. The present system does not qualify to adhere chaos and higher
periodic solutions due to absence of delay in the model. In our future en-
deavours, we wish to explore the same prey and predator dynamics with
delay so that richer dynamics we could experience. This study will help to
understand the interpretation of biological phenomena in theory.
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