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ABSTRACT 

Regeneration-capable flatworms are informative research models to study the mechanisms of stem 

cell regulation, regeneration and tissue patterning. However, the lack of transgenesis methods 

significantly hampers their wider use. Here we report development of a transgenesis method for 

Macrostomum lignano, a basal flatworm with excellent regeneration capacity. We demonstrate that 

microinjection of DNA constructs into fertilized one-cell stage eggs, followed by a low dose of 

irradiation, frequently results in random integration of the transgene in the genome and its stable 

transmission through the germline. To facilitate selection of promoter regions for transgenic reporters, 

we assembled and annotated the M. lignano genome, including genome-wide mapping of 

transcription start regions, and showed its utility by generating multiple stable transgenic lines 

expressing fluorescent proteins under several tissue-specific promoters. The reported transgenesis 

method and annotated genome sequence will permit sophisticated genetic studies on stem cells and 

regeneration using M. lignano as a model organism. 

 

 

INTRODUCTION 

Animals that can regenerate missing body parts hold clues to advancing regenerative medicine and 

are attracting increased attention (Tanaka and Reddien, 2011). Significant biological insights on stem 

cell biology and body patterning were obtained using free-living regeneration-capable flatworms 

(Platyhelminthes) as models (Elliott and Sanchez Alvarado, 2013; Rink, 2013; Wagner et al., 2011). 

The most often studied representatives are the planarian species Schmidtea mediterranea (Elliott and 

Sanchez Alvarado, 2013) and Dugesia japonica (Umesono et al., 2011). Many important molecular 

biology techniques and resources are established in planarians, including fluorescence-activated cell 

sorting, gene knockdown by RNA interference, in situ hybridization, and genome and transcriptome 

assemblies (Rink, 2013). One essential technique still lacking in planarians, however, is transgenesis, 

which is required for in-depth studies involving e.g. gene overexpression, dissection of gene 

regulatory elements, real-time imaging and lineage tracing. The reproductive properties of planarians, 

including asexual reproduction by fission and hard non-transparent cocoons containing multiple eggs 

in sexual strains, make development of transgenesis technically challenging in these animals. 

More recently, a basal flatworm Macrostomum lignano (Macrostomorpha) emerged as a model 

organism that is complementary to planarians (Grudniewska et al., 2016; Mouton et al., 2009; 

Simanov et al., 2012; Wasik et al., 2015). The reproduction of M. lignano, a free-living marine 

flatworm, differs from planarians, as it reproduces by laying individual fertilized one-cell stage eggs. 

One animal lays approximately one egg per day when kept in standard laboratory conditions at 20ºC. 

The eggs are around 100 microns in diameter, and follow the archoophoran mode of development, 

having yolk-rich oocytes instead of supplying the yolk to a small oocyte via yolk cells (Morris et al., 

2004). The laid eggs have relatively hard shells and can easily be separated from each other with the 

use of a fine plastic picker. These features make M. lignano eggs easily amenable to various 

manipulations, including microinjection (Sato et al., 2016). In addition, M. lignano has several 

convenient characteristics, such as ease of culture, transparency, small size, and a short generation 
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time of three weeks (Mouton et al., 2009; Simanov et al., 2012). It can regenerate all tissues posterior 

to the pharynx, and the rostrum (Egger et al., 2006). This regeneration ability is driven by stem cells, 

which in flatworms are called neoblasts (Wagner et al., 2011; Rink, 2013; Davies et al., 2017). Recent 

research in planarians has shown that the neoblasts population is heterogeneous and consists of 

progenitors and stem cells (Scimone et al., 2014; Van Wolfswinkel et al., 2014). The true pluripotent 

stem cell population is, however, not identified yet. 

Here we present a method for transgenesis in M. lignano using microinjection of DNA into single-

cell stage embryos and demonstrate its robustness by generating multiple transgenic tissue-specific 

reporter lines. We also present a significantly improved genome assembly of the M. lignano DV1 line 

and an accompanying transcriptome assembly and genome annotation. The developed transgenesis 

method, combined with the generated genomic resources, will enable new research avenues on stem 

cells and regeneration using M. lignano as a model organism, including in-depth studies of gene 

overexpression, dissection of gene regulatory elements, real-time imaging and lineage tracing. 

 

 

RESULTS 

 

Microinjection and random integration of transgenes 

M. lignano is an obligatorily non-self-fertilizing simultaneous hermaphrodite (Fig. 1a) that produces 

substantial amounts of eggs (Fig. 1b,c). We reasoned that microinjection approaches used in other 

model organisms, such as Drosophila, zebrafish and mouse, should also work in M. lignano eggs 

(Fig. 1d, Supplementary Video 1). First, we tested how the egg handling and microinjection 

procedure itself impacts survival of the embryos (Supplementary Table 1). Separating the eggs laid 

in clumps and transferring them into new dishes resulted in a 17% drop in hatching rate, and 

microinjection of water decreased survival by a further 10%. Thus, in our hands more than 70% of the 

eggs can survive the microinjection procedure (Supplementary Table 1). When we injected 

fluorescent Alexa 555 dye, which can be used to track the injected material, about 50% of the eggs 

survived (Supplementary Table 1). For this reason, we avoided tracking dyes in subsequent 

experiments. Next, we injected in vitro synthesized mRNA encoding green fluorescent protein (GFP) 

and observed its expression in all successfully injected embryos (n > 100) within 3 hours after 

injection (Fig. 1e), with little to no autofluorescence detected in either embryos or adult animals 

(Supplementary Fig. 1). The microinjection technique can thus be used to deliver biologically 

relevant materials into single-cell stage eggs with a manageable impact on the survival of the 

embryos. 

To investigate whether exogenous DNA constructs can be introduced and expressed in M. 

lignano, we cloned a 1.3 kb promoter region of the translation elongation factor 1 alpha (EFA) gene 

and made a transcriptional GFP fusion in the Minos transposon system (Supplementary Fig. 2a). 

Microinjection of the Minos::pEFA::eGFP plasmid with or without Minos transposase mRNA resulted 

in detectable expression of GFP in 5-10% of the injected embryos (Supplementary Fig. 2c). 

However, in most cases GFP expression was gradually lost as the animals grew (Supplementary 
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Fig. 2f), and only a few individuals transmitted the transgene to the next generation. From these 

experiments we established the HUB1 transgenic line with ubiquitous GFP expression 

(Supplementary Fig. 2e), for which stable transgene transmission has been observed for over 50 

generations (Marie-Orleach et al., 2014, 2016). 

The expected result for transposon-mediated transgenesis is genomic integration of the fragment 

flanked by transposon inverted terminal repeats. However, plasmid sequences outside the terminal 

repeats, including the ampicillin resistance gene, were detected in the HUB1 line, suggesting that the 

integration was not mediated by Minos transposase. Furthermore, Southern blot analysis revealed 

that HUB1 contains multiple transgene copies (Supplementary Fig. 2g). We next tried a different 

transgenesis strategy using meganuclease I-SceI (Thermes et al., 2002) to improve transgenesis 

efficiency (Supplementary Fig. 2b). We observed a similar 3-10% frequency of initial transgene 

expression, and only two instances of germline transmission, one of which resulted from the negative 

control experiment without co-injected meganuclease protein (Supplementary Fig. 2c). These results 

suggest that I-SceI meganuclease does not increase efficiency of transgenesis in M. lignano, but 

instead that exogenous DNA can be integrated in the genome by non-homologous recombination 

using the endogenous DNA repair machinery. 

 

Improvement of integration efficiency 

The frequency of germline transgene transmission in the initial experiments was less than 0.5% of the 

injected eggs, while transient transgene expression was observed in up to 10% of the cases 

(Supplementary Fig. 2c,f). We hypothesized that mosaic integration or mechanisms similar to 

extrachromosomal array formation in C. elegans (Mello and Fire, 1995) might be at play in cases of 

transient gene expression in M. lignano. We next tested two approaches used in C. elegans to 

increase the efficiency of transgenesis: removal of vector backbone and injection of linear DNA 

 

Figure 1. Macrostomum lignano embryos are amenable to microinjection. (a) Schematic 

morphology and a bright-field image of an adult M. lignano animal. (b) Clump of fertilized eggs. (c) 

DIC image of a one-cell stage embryo. (d) Microinjection into a one-cell stage embryo. (e) 

Expression of GFP in the early embryo 3 hours after injection with in vitro synthesized GFP mRNA. 

Scale bars are 100 μm. 
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fragments (Etchberger and Hobert, 2008a), and transgene integration by irradiation (Mello and Fire, 

1995). Injection of PCR-amplified vector-free transgenes resulted in the germline transmission in 5 

cases out of 269 injected eggs, or 1.86% (Table 1), and the stable transgenic line NL1 was obtained 

during these experiments (Fig. 2a). In this line, the GFP coding sequence was optimized for M. 

lignano codon usage. While we did not observe obvious differences in expression levels between 

codon-optimized and non-optimized GFP sequences, we decided to use codon-optimized versions in 

all subsequent experiments. 

M. lignano is remarkably resistant to ionizing radiation, and a dose as high as 210 Gy is required 

to eliminate all stem cells in an adult animal (De Mulder et al., 2010; Grudniewska et al., 2016). We 

reasoned that irradiation of embryos immediately after transgene injection might stimulate non-

homologous recombination and increase integration rates. Irradiation dose titration revealed that M. 

lignano embryos are less resistant to radiation than adults and that a 10 Gy dose results in hatching 

of only 10% of the eggs, whereas more than 90% of eggs survive a still substantial dose of 2.5 Gy 

(Supplementary Table 2). Irradiating injected embryos with 2.5 Gy resulted in 1-8% germline 

transmission rate for various EFA promoter constructs in both plasmid and vector-free forms (Table 

1). The stable transgenic line NL3 expressing codon-optimized red fluorescent protein Cherry was 

obtained in this way (Fig. 2b), demonstrating that ubiquitous expression of fluorescent proteins other 

than GFP is also possible in M. lignano. Finally, to test nuclear localization of the reporter protein, we 

fused GFP with a partial coding sequence of the histone 2B (H2B) gene as described 

previously(Kanda et al., 1998). The injection of the transgene fragment followed by irradiation 

demonstrated 5% transgenesis efficiency (Table 1), and the stable NL20 transgenic line with nuclear 

GFP localization was established (Fig. 2c). 

 

 

Figure 2. Ubiquitously expressed elongation factor 1 alpha promoter transgenic lines. (a) NL1 line 

expressing enchanced GFP (eGFP). (i) FITC channel; (ii) bright-field; (iii) merged. (b) NL3 line 

expressing codon-optimized Cherry (oCherry). (i) DsRed channel; (ii) bright-field; (iii) merged. (c) 

NL20 line expressing codon-optimized nuclear localized H2B::oGFP fusion. (i) FITC channel; (ii) 

bright-field; (iii) merged; (iv-vi) single cells from a macerated animal showing nuclear localization of 

GFP; (iv) DNA staining by Hoechst; (v) FITC channel; (iv) merge of Hoechst, FITC and bright-field. 

Scale bars are 100 μm. 
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Table 1. Efficiency of transgenesis with different reporter constructs and treatments  

Reporter 
Injected 

line 
Injected 

DNA 
Irradiation 
treatment 

Injected 
eggs 

Positive 
hatchlings 

(%) 

Germline 
transmission 

(%) 

Established 
lines 

EFA::eGFP DV1 PCR - 269 39 (14.50) 5 (1.86) NL1 

EFA::oGFP DV1 plasmid - 114 28 (24.56) 0 - 

EFA::oGFP DV1 plasmid 2.5 Gy 42 13 (30.95) 2 (4.76) - 

EFA::oGFP DV1 fragment 2.5 Gy 102 4 (3.92) 2 (1.96) NL7 

EFA::oCherry DV1 plasmid 2.5 Gy 80 4 (5.00) 1 (1.25) NL3 

EFA::oCherry DV1 fragment 2.5 Gy 36 6 (16.67) 3 (8.33) NL4, NL5, NL6 

EFA::H2B::oGFP DV1 fragment 2.5 Gy 38 10 (26.32) 2 (5.26) NL20 

ELAV4::oGFP DV1 fragment 2.5 Gy 56 29 (51.79) 2 (3.57) NL21 

MYH6::oGFP DV1 fragment 2.5 Gy 103 13 (12.62) 1 (0.97) NL9 

APOB::oGFP DV1 fragment 2.5 Gy 65 2 (3.08) 1 (1.54) NL22 

CABP7::oGFP DV1 plasmid - 20 2 (10.00) 1 (5.00) NL23 

CABP7::oNeon 
Green; ELAV4:: 
oScarlet-I 

NL10 plasmid - 137 3 (2.19) 2 (1.46) NL24 

 

Genome assembly and annotation 

To extend the developed transgenesis approach to promoters of other genes, an annotated genome 

assembly of M. lignano was required. Towards this, we have generated and sequenced 29 paired-end 

and mate-pair genomic libraries of the DV1 line using 454 and Illumina technologies (Supplementary 

Table 3). Assembling these data using the MaSuRCA genome assembler (Zimin et al., 2013) resulted 

in a 795 Mb assembly with N50 scaffold size of 11.9 kb (data not shown). While this assembly was 

useful for selecting several novel promoter regions, it suffered from fragmentation. In a parallel effort, 

a PacBio-based assembly of the DV1 line, termed ML2, was recently published (Wasik et al., 2015). 

The ML2 assembly is 1,040 Mb large and has N50 contig size of 36.7 kb and NG50 contig size of 

64.5 kb when adjusted to the 700 Mb genome size estimated from k-mer frequencies (Wasik et al., 

2015). We performed fluorescence-based genome size measurements and estimated that the haploid 

genome size of the DV1 line is 742 Mb (Supplementary Fig. 3). It was recently demonstrated that M. 

lignano can have a polymorphic karyotype, where in addition to the basal 2n=8 karyotype, also 

animals with aneuploidy for the large chromosome, with 2n=9 and 2n=10 exist(Zadesenets et al., 

2016). We confirmed that our laboratory culture of the DV1 line has predominantly 2n=10 and 2n=9 

karyotypes (Supplementary Fig. 3a,b) and estimated that the size of the large chromosome is 240 

Mb (Supplementary Fig. 3f). In contrast, an independently established M. lignano wild-type line 

NL10 has the basal karyotype 2n=8 and does not show detectable variation in chromosome number 

(Supplementary Fig. 3). This line, however, was established only recently and was not a part of the 

genome sequencing effort. 

We re-assembled the DV1 genome from the generated Illumina and 454 data and the published 

PacBio data (Wasik et al., 2015) using the Canu assembler (Koren et al., 2017) and SSPACE 

scaffolder (Boetzer et al., 2011). The resulting Mlig_3_7 assembly is 764 Mb large with N50 contig 

and scaffold sizes of 215.2 Kb and 245.9 Kb respectively (Supplementary Table 4), which is greater 

than 3-fold continuity improvement over the ML2 assembly. To compare the quality of the ML2 and 
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Mlig_3_7 assemblies, we used the genome assembly evaluation tool REAPR, which identifies 

assembly errors without the need for a reference genome (Hunt et al., 2013). According to the 

REAPR analysis, the Mlig_3_7 assembly has 63.95% of error-free bases compared to 31.92% for the 

ML2 assembly and 872 fragment coverage distribution (FCD) errors within contigs compared to 1,871 

in the ML2 assembly (Supplementary Fig. 4a). Another genome assembly evaluation tool, FRCbam, 

which calculates feature response curves for several assembly parameters (Vezzi et al., 2012), also 

shows better overall quality of the Mlig_3_7 assembly (Supplementary Fig. 4b). Finally, 96.9% of 

transcripts from the de novo transcriptome assembly MLRNA150904 (Grudniewska et al., 2016) can 

be mapped on Mlig_3_7 (>80% identity, >95% transcript length coverage), compared to 94.88% of 

transcripts mapped on the ML2 genome assembly, and among the mapped transcripts more have 

intact open reading frames in the Mlig_3_7 assembly than in ML2 (Supplementary Fig. 4c). Based 

on these comparisons, the Mlig_3_7 genome assembly represents a substantial improvement in both 

continuity and base accuracy over the ML2 assembly. 

More than half of the genome is repetitive, with LTR retrotransposons and simple and tandem 

repeats accounting for 21% and 15% of the genome respectively (Supplementary Table 5). As 

expected from the karyotype of the DV1 line, which has additional large chromosomes, the Mlig_3_7 

assembly has substantial redundancy, with 180 Mb in duplicated non-repetitive blocks that are longer 

than 500 bp and at least 95% identical. When repeat-annotated regions are included in the analysis, 

the duplicated fraction of the genome rises to 312 Mb. 

Since genome-guided transcriptome assemblies are generally more accurate than de novo 

transcriptome assemblies, we generated a new transcriptome assembly based on the Mlig_3_7 

genome assembly using a combination of the StringTie (Pertea et al., 2015) and TACO (Niknafs et 

al., 2016) transcriptome assemblers, a newly developed TBONE gene boundary annotation pipeline, 

previously published RNA-seq datasets (Cannon et al., 2016; Grudniewska et al., 2016) and the de 

novo transcriptome assembly MLRNA150904 (Grudniewska et al., 2016). Since many M. lignano 

transcripts are trans-spliced (Wasik et al., 2015; Grudniewska et al., 2016), we extracted reads 

containing trans-splicer leader sequences from raw RNA-seq data and mapped them to the Mlig_3_7 

genome assembly after trimming the trans-splicing parts. This revealed that many more transcripts in 

M. lignano are trans-spliced than was previously appreciated from de novo transcriptome assemblies 

(6,167 transcripts in Grudniewska et al., 2016; 7,500 transcripts in Wasik et al., 2015; 28,273 in this 

study, Supplementary Table 6). We also found that almost 7% of the assembled transcripts are in 

fact precursor mRNAs, i.e. they have several trans-splicing sites and encode two or more proteins 

(Supplementary Table 6, Supplementary Fig. 5a). Therefore, in the transcriptome assembly we 

distinguish between transcriptional units and genes transcribed within these transcriptional units. For 

this, we developed computational pipeline TBONE (Transcript Boundaries based ON experimental 

Evidence), which relies on experimental data, such as trans-splicing and polyadenylation signals 

derived from RNA-seq data, to ‘cut’ transcriptional units and establish boundaries of mature mRNAs 

(Supplementary Fig. 5a). The new genome-guided transcriptome assembly, Mlig_RNA_3_7_DV1, 

has 66,777 transcriptional units, including duplicated copies and alternative forms, which can be 

collapsed to 33,715 non-redundant transcripts when clustered by 95% global sequence identity 
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(Supplementary Table 6). These transcriptional units transcribe 72,846 genes, of which 44,328 are 

non-redundant, 38.8% are trans-spliced and 79.98% have an experimentally defined poly(A) site 

(Supplementary Table 6). The non-redundant transcriptome has TransRate scores of 0.4360 and 

0.4797 for transcriptional units and gene sequences respectively, positioning it among the highest 

quality transcriptome assemblies (Smith-Unna et al., 2016). The transcriptome is 98.1% complete 

according to the Benchmarking Universal Single-Copy Orthologs(Simao et al., 2015), with only 3 

missing and 3 fragmented genes (Supplementary Table 6). 

The Mlig_RNA_3_7_DV1 transcriptome assembly, which incorporates experimental evidence for 

gene boundaries, greatly facilitates selection of promoter regions for transgenesis. Furthermore, we 

previously generated 5´-enriched RNA-seq libraries from mixed stage populations of animals 

(Grudniewska et al., 2016) using RAMPAGE (Batut et al., 2013). In our hands, the RAMPAGE signal 

is not sufficiently localized around transcription start sites to be used directly by the TBONE pipeline, 

but it can be very useful for determining transcription starts during manual selection of promoter 

regions for transgenesis (Supplementary Fig. 5b,c). We used the UCSC genome browser software 

(Kent et al., 2002) to visualize genome structure and facilitate design of new constructs for 

transgenesis (Supplementary Fig. 5). The M. lignano genome browser, which integrates genome 

assembly, annotation and RNA-seq data, is publicly accessible at http://gb.macgenome.org. 

 

Tissue-specific transgenic lines 

Equipped with the annotated M. lignano genome and the developed transgenesis approach, we next 

set to establish transgenic lines expressing tissue-specific reporters. For this, we selected homologs 

of the MYH6, APOB, ELAV4 and CABP7 genes, for which tissue specificity in other model organisms 

is known and upstream promoter regions can be recognized based on genome annotation and gene 

boundaries (Supplementary Fig. 5). Similar to the EFA promoter, in all cases the transgenesis 

efficiency was in the range of 1-5% of the injected eggs (Table 1) and stable transgenic lines were 

obtained (Fig. 3). Expression patterns were as expected from prior knowledge and corroborated by 

the whole mount in situ hybridization results: the MYH6::GFP is expressed in muscle cells, including 

muscles within the stylet (Fig. 3a, Supplementary Video 2); APOB::GFP is gut-specific (Fig. 3b); 

ELAV4::GFP is testis-specific, including the sperm, which is accumulated in the seminal vesicle (Fig. 

3c); and CABP7::GFP is ovary-specific and is also expressed in developing eggs (Fig. 3d). Finally, 

we made a double-reporter construct containing ELAV4::oNeonGreen and CABP7::oScarlet-I in a 

single plasmid (Fig. 3e). mNeonGreen (Shaner et al., 2013) and mScarlet (Bindels et al., 2016) are 

monomeric yellow-green and red fluorescent proteins, respectively, with the highest reported 

brightness among existing fluorescent proteins. The transgenesis efficiency with the double-reporter 

construct was comparable to other experiments (Table 1), and transgenic line NL24 expressing 

codon-optimized mNeonGreen (oNeonGreen) in testes and codon-optimized mScarlet-I (oScarlet) in 

ovaries was established (Fig. 3e), demonstrating the feasibility of multi-color reporters in M. lignano. 

The successful generation of stable transgenic reporter lines for multiple tissue-specific promoters 

validates the robustness of the developed transgenesis method and demonstrates the value of the 

generated genomic resource. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 18, 2017. ; https://doi.org/10.1101/151654doi: bioRxiv preprint 

https://doi.org/10.1101/151654
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

 

 

Figure 3. Tissue-specific promoter transgenic lines. (a) NL9 line expressing GFP under the muscle-specific 

promoter of the MYH6 gene. (i) FITC channel; (ii) bright-field; (iii) merged; (iv,v) detailed images of the body wall 

and stylet respectively; (vi) whole-mount in situ hybridization expression pattern of MYH6 transcript. (b) NL22 line 

expressing GFP under the gut-specific promoter of the APOB gene. (i) FITC channel; (ii) bright-field; (iii) merged; 

(iv,v) detailed images of the gut side and distal tip respectively; (vi) whole-mount in situ hybridization expression 

pattern of the APOB transcript. (c) NL21 line expressing GFP under the testis-specific promoter of the ELAV4 

gene. (i) FITC channel; (ii) bright-field; (iii) merged; (iv,v) detailed images of the testis and seminal vesicle, 

respectively; (vi) whole-mount in situ hybridization expression pattern of the ELAV4 transcript. (d) NL23 line 

expressing GFP under the ovary-specific promoter of the CABP7 gene. (i) FITC channel; (ii) bright-field; (iii) 

merged; (iv) detailed image of the ovary and developing egg; (v) whole-mount in situ hybridization expression 

pattern of the CABP7 transcript. (e) NL24 line expressing in a single construct NeonGreen under the testis-specific 

promoter of the ELAV4 gene and Scarlet-I under the ovary-specific promoter of the CABP7 gene. (i) FITC channel; 

(ii) DsRed channel; (iii) bright-field; (iv) merged; (v,vi) detailed images of the testis and ovary regions, respectively. 

Scale bars are 100 μm. 
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Identification of transgene integration sites 

To directly demonstrate that transgenes integrate into the M. lignano genome and to establish 

genomic locations of the integration sites, we initially attempted to identify genomic junctions by 

inverse PCR with outward-oriented transgene-specific primers (Supplementary Fig. 6a) in the NL7 

and NL21 transgenic lines. However, we found that in both cases short products of ~200 nt are 

preferentially and specifically amplified from genomic DNA of the transgenic lines (Supplementary 

Fig. 6b,c). The size of the PCR products can be explained by formation of tandem transgenes 

(Supplementary Fig. 6a), and sequencing confirmed that this is indeed the case (Supplementary 

Fig. 6d). Next, we used the Genome Walker approach, in which genomic DNA is digested with a set 

of restriction enzymes, specific adapters are ligated and regions of interest are amplified with 

transgene-specific and adapter-specific primers. Similarly, many of the resulting PCR products turned 

out to be transgene tandems. But in the case of the NL21 line we managed to establish the 

integration site on one side of the transgene (Supplementary Fig. 6e), namely at position 45,440 in 

scaf3369 (Mlig_3_7 assembly) in the body of a 2-kb long LTR retrotransposon, 10.5 kb downstream 

from the end of the Mlig003479.g3 gene and 2.5 kb upstream from the start of the Mlig028829.g3 

gene. 

 

Transgene expression in regenerating animals 

Our main rationale for developing M. lignano as a new model organism is based on its experimental 

potential to study the biology of regenerative processes in vivo in a genetically tractable organism. 

Therefore, it is essential to know whether regeneration could affect transgene stability and behaviour. 

Towards this, we monitored transgene expression during regeneration in the testis- and ovary-specific 

transgenic lines NL21 and NL23, respectively (Supplementary Fig. 7). Adult animals were 

amputated anterior of the gonads and monitored for 10 days. In both transgenic lines regeneration 

proceeded normally and no GFP expression was observed in the first days of regeneration 

(Supplementary Fig. 7). Expression in ovaries was first detected at day 8 after amputation, and in 

testes at day 10 after amputation (Supplementary Fig. 7). Thus, tissue-specific transgene expression 

is restored during regeneration, as expected for a regular genomic locus. 

 

 

DISCUSSION 

Free-living regeneration-capable flatworms are powerful model organisms to study mechanisms of 

regeneration and stem cell regulation (Elliott and Sanchez Alvarado, 2013; Rink, 2013). Currently, the 

most popular flatworms among researchers are the planarian species S. mediterranea and D. 

japonica (Rink, 2013). A method for generating transgenic animals in the planarian Girardia tigrina 

was reported in 2003 (González-Estévez et al., 2003), but despite substantial ongoing efforts by the 

planarian research community it has thus far not been reproduced in either S. mediterranea or D. 

japonica. The lack of transgenesis represents a significant experimental limitation of the planarian 

model systems. Primarily for this reason we focused on developing an alternative, non-planarian 

flatworm model, Macrostomum lignano. We reasoned that the fertilized one-cell stage eggs, which are 
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readily available in this species, will facilitate development of the transgenesis method, leveraging the 

accumulated experience on transgenesis in other model organisms. 

In this study, we demonstrate a reproducible transgenesis approach in M. lignano by 

microinjection and random integration of DNA constructs. Microinjection is the method of choice for 

creating transgenic animals in many species and allows delivery of the desired material into the egg, 

whether it is RNA, DNA or protein (Sato et al., 2016). Initially, we tried transposon- and 

meganuclease-mediated approaches for integration of foreign DNA in the genome, but found in the 

course of the experiments that instead, random integration is a more efficient way for DNA 

incorporation in M. lignano. Random integration utilizes the molecular machinery of the host, 

integrating the provided DNA without the need for any additional components (Yan et al., 2013). The 

method has its limitations, since the location and the number of integrated transgene copies cannot 

be controlled, and integration in a functional site can cause unpredictable disturbances and variation 

in transgene expression (Yan et al., 2013). Indeed, we observed differences in the expression levels 

between independent transgenic lines for the EFA transgene reporter (Supplementary Fig. 

8).Transgene silencing might occur in a copy-dependent manner, as is the case in the germline of C. 

elegans (Kelly et al., 1997). However, the fact that we readily obtained transgenic lines with germline-

specific expression (Fig. 3c-e) indicates that germline transgene silencing is not a major issue in M. 

lignano. 

The efficiency of integration and germline transmission varied between 1% and 8% of injected 

eggs in our experiments (Table 1), which is reasonable, given that a skilled person can inject up to 50 

eggs in one hour. Although injection of a circular plasmid carrying a transgene can result in integration 

and germline transmission with acceptable efficiency (e.g. line NL23, Table 1), we found that injection 

of vector-free (Etchberger and Hobert, 2008b) transgenes followed by ionizing irradiation of injected 

embryos with a dose of 2.5 Gy gave more consistent results (Table 1). Irradiation is routinely used in 

C. elegans for integration of extrachromosomal arrays, presumably by creating DNA breaks and 

inducing non-homologous recombination (Mello and Fire, 1995). While irradiation can have 

deleterious consequences by inducing mutations, in our experiments we have not observed any 

obvious phenotypic deviations in the treated animals and their progeny. Nevertheless, for the 

downstream genetic analysis involving transgenic lines, several rounds of backcrossing to non-

irradiated stock might be required to remove any introduced mutations, which is easily possible given 

that these worms are outcrossing and have a short generation time (Marie-Orleach et al., 2016, 

2017). Despite the mentioned limitations, random integration of foreign DNA appears to be a 

straightforward and productive approach for generating transgenic lines in M. lignano and can be 

used as a basis for further development of more controlled transgenesis methods in this animal, 

including transposon-based (Ivics et al., 2009), integrase-based (Fogg et al., 2014), homology-based 

(Gerlai, 2016) or CRISPR/Cas9-based (Komor et al., 2016) approaches. 

The draft genome assembly of the M. lignano DV1 line, which is also used in this study, was 

recently published (Wasik et al., 2015). The genome appeared to be difficult to assemble and even 

the 130x coverage of PacBio data resulted in the assembly with N50 of only 64 Kb (Wasik et al., 

2015), while in other species N50 in the range of several megabases is usually achieved with such 
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PacBio data coverages (Chin et al., 2016). By adding Illumina and 454 data and using a different 

assembly algorithm, we have generated a substantially improved draft genome assembly, Mlig_3_7, 

with N50 scaffold size of 245.9 Kb (Supplementary Table 4). The difficulties with the genome 

assembly stem from the unusually high fraction of simple repeats and transposable elements in the 

genome of M. lignano (Wasik et al., 2015). Furthermore, it was shown that M. lignano has a 

polymorphic karyotype and the DV1 line used for genome sequencing has additional large 

chromosomes (Zadesenets et al., 2016, and Supplementary Fig. 3), which further complicates the 

assembly. The chromosome duplication also complicates genetic analysis and in particular gene 

knockout studies. To address these issues, we have established a different wild-type M. lignano line, 

NL10, from animals collected in the same geographical location as DV1 animals. The NL10 line 

appears to have no chromosomal duplications or they are present at a very low rate in the population, 

and its measured genome size is 500 Mb (Supplementary Fig. 3). While the majority of transgenic 

lines reported here are derived from the DV1 wild-type line, we observed similar transgenesis 

efficiency when using the NL10 line (Table1, line NL24). Therefore, we suggest that NL10 line is a 

preferred line for future transgenesis applications in M. lignano. 

To facilitate the selection of promoter regions for transgenic reporter constructs, we have 

generated Mlig_RNA_3_7 transcriptome assembly, which incorporates information from 5´- and 3´-

specific RNA-seq libraries, as well as trans-splicing signals, to accurately define gene boundaries. We 

integrated genome assembly, annotation and expression data using the UCSC genome browser 

software (Supplementary Fig. 5, http://gb.macgenome.org). For genes tested in this study, the 

regions up to 2 kb upstream of the transcription start sites are sufficient to faithfully reflect tissue-

specific expression patterns of these genes (Fig. 3), suggesting the preferential proximal location of 

gene regulatory elements, which will simplify analysis of gene regulation in M. lignano in the future. 

In conclusion, we demonstrate that transgenic M. lignano animals can be generated with a 

reasonable success rate under a broad range of conditions, from circular and linear DNA fragments, 

with and without irradiation, as single and double reporters, and for multiple promoters, suggesting 

that the technique is robust. Similar to transgenesis in C. elegans, Drosophila and mouse, 

microinjection is the most critical part of the technique and requires skill that can be developed with 

practice. The generated genomic resources and the developed transgenesis approach provide a 

technological platform for harvesting the power of M. lignano as an experimental model organism for 

research on stem cells and regeneration. 
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METHODS 

 

M. lignano lines and cultures 

The DV1 inbred M. lignano line used in this study was described previously (Janicke et al., 2013; 

Wasik et al., 2015; Zadesenets et al., 2016). The NL10 line was established from 5 animals collected 

near Lignano, Italy. Animals were cultured under laboratory conditions in plastic Petri dishes 

(Greiner), filled with nutrient enriched artificial sea water (Guillard’s f/2 medium). Worms were fed ad 

libitum on the unicellular diatom Nitzschia curvilineata (Heterokontophyta, Bacillariophyceae) (SAG, 

Göttingen, Germany). Climate chamber conditions were set on 20°C with constant aeration, a 14/10h 

day/night cycle. 

 

Cloning of the elongation factor 1 alpha promoter 

The M. lignano EFA promoter sequence was obtained by inverse PCR. Genomic DNA was isolated 

using a standard phenol-chloroform protocol; fully digested by XhoI and subsequently self-ligated 

overnight (1ng/ul). Diluted self-ligated gDNA was used for inverse PCR using the EFA specific 

primers Efa_IvPCR_rv3 TCTCGAACTTCCACAGAGCA and Efa_IvPCR_fw3 CAAGAAGGAGGAGAC 

CACCA. Subsequently, nested PCR was performed using the second primer pair Efa_IvPCR_rv2 

AAGCTCCTGTGCCTCCTTCT and Efa_IvPCR_fw2 AGGTCAAGTCCGTCGAAATG. The obtained 

fragment was cloned into p-GEM-T and sequenced. Later on, the obtained sequence was confirmed 

with the available genome data. Finally, the obtained promoter sequence was cloned into two different 

plasmids: the MINOS plasmid (using EcoRI / NcoI) and the I-SceI plasmid (using PacI / AscI). 

 

Codon optimization 

Highly-expressed transcripts were identified from RNA-seq data (Grudniewska et al., 2016) and 

codon weight matrices were calculated using the 100 most abundantly expressed non-redundant 

genes. C. elegans Codon Adapter code (Redemann et al., 2011) was adapted for M. lignano 

(http://www.macgenome.org/codons) and used to design codon-optimized coding sequences 

(Supplementary Table 7). Gene fragments (IDT, USA) containing codon-optimized sequences, EFA 

3’UTR and restriction cloning sites, were inserted into the pCS2+ vector to create optiMac plasmids 

used in the subsequent promoter cloning. 

 

Cloning of tissue-specific promoters 

Promoters were selected using Mlig_3_7 as well as several earlier M. lignano genome assemblies 

and MLRNA1509 transcriptome assembly (Grudniewska et al., 2016). RAMPAGE signal was used to 

identify the transcription start site and an upstream region of 1-2.5 kb was considered to contain the 

promoter sequence. An artificial ATG was introduced after the presumed transcription start site. This 

ATG was in-frame with the GFP of the target vector. The selected regions were cloned into optiMac 

vector using HindIII and BglII sites. Primers and cloned promoter sequences are provided in 

Supplementary Table 7. 
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Preparation and collection of eggs 

Worms used for egg laying were kept in synchronized groups of roughly 500 per plate and transferred 

twice per week to prevent mixing with newly hatching offspring. The day before microinjections, 

around 1000 worms from 2 plates were combined (to increase number of eggs laid per plate) and 

transferred to plates with fresh f/2 medium and no food (to remove the leftover food from the digestive 

tracks of the animals as food debris can attach to the eggs and impair the microinjections by clogging 

needles and sticking to holders). On the day of the injections, worms were once again transferred to 

fresh f/2 without food to remove any debris and eggs laid overnight. Worms were kept in the dark for 3 

hours and then transferred to light. After 30 minutes in the light, eggs were collected using plastic 

pickers made from microloader tips (Eppendorf, Germany), placed on a glass slide in a drop of f/2 and 

aligned in a line for easier handling.  

 

Needle preparation 

Needles used in the microinjection procedure were freshly pulled using either borosilicate glass 

capillaries with filament (BF100-50-10, Sutter Instrument, USA) or aluminosilicate glass capillaries 

with filament (AF100-64-10, Sutter Instrument, USA) on a Sutter P-1000 micropipette puller (Sutter 

Instrument, USA) with the following settings: Heat=ramp-34, Pull=50, Velocity=70, Time=200, 

Pressure=460 for borosilicate glass and Heat=ramp, Pull=60, Velocity=60, Time=250, Pressure=500 

for aluminosilicate glass. The tips of the needles were afterwards broken and sharpened using a MF-

900 microforge (Narishige, Japan). Needles were loaded using either capillary motion or microloader 

tips (Eppendorf, Germany). Embryos were kept in position using glass holders pulled from borosilicate 

glass capillaries without a filament (B100-50-10, Sutter Instrument, USA) using P-1000 puller with the 

following settings: Heat=ramp+18, Pull=0, Velocity=150, Time=115, Pressure=190. The holders 

where broken afterwards using a MF-900 microforge to create a tip of approximately 140 µm outer 

diameter and 50 µm inner diameter. Tips were heat-polished to create smooth edges and bent to a 

~20° angle. 

 

Microinjections 

All microinjections were carried out on fresh one-cell stage M. lignano embryos. An AxioVert A1 

inverted microscope (Carl Zeiss, Germany) equipped with a PatchMan NP2 for the holder and a 

TransferMan NK2 for the needle (Eppendorf, Germany) was used to perform all of the 

micromanipulations. A FemtoJet express (Eppendorf, Germany), with settings adjusted manually 

based on the amount of mucous and debris surrounding the embryos, was used as the pressure 

source for microinjections. A PiezoXpert (Eppendorf, Germany) was used to facilitate the penetration 

of the eggshell and the cell membrane of the embryo. 

 

Irradiation 

Irradiation was carried out using a IBL637 Caesium-137 source (CISbio International, France). 

Embryos were exposed to 2.5 Gy of γ-radiation within 1 hour post injection. 
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Establishing transgenic lines 

Positive hatchlings (P0) were selected based on the presence of fluorescence and transferred into 

single wells of a 24 well-plate. They were then crossed with single wild-type worms that were raised in 

the same conditions. The pairs were transferred to fresh food every 2 weeks. Positive F1 animals from 

the same P0 cross were put together on fresh food and allowed to generate F2 progeny. After the 

population of positive F2 progeny grew to over 200 hatchlings, transgenic worms were singled out and 

moved to a 24 well plate. The selected worms were then individually back-crossed with wild type 

worms to distinguish F2 animals homozygous and heterozygous for the transgene. The transgenic F2 

worms that gave only positive progeny in the back-cross (at least 10 progeny observed) were 

assumed to be homozygous, singled out, moved to fresh food and allowed to lay eggs for another 

month to purge whatever remaining wild-type sperm from the back-cross. After the homozygous F2 

animals stopped producing new offspring, they were crossed to each other to establish a new 

transgenic line. The lines were named according to guidelines established at 

http://www.macgenome.org/nomenclature.html. 

 

Microscopy 

Images were taken using a Zeiss Axio Zoom V16 microscope with an HRm digital camera and Zeiss 

filter sets 38HE (FITC) and 43HE (dsRed), an Axio Scope A1 with a MRc5 digital camera or an Axio 

Imager M2 with an MRm digital camera. 

 

Southern blot analysis 

Southern blots were done using the DIG-System (Roche), according to the manufacturer’s manual 

with the following parameters: vacuum transfer at 5 Hg onto positively charged nylon membrane for 2 

h, UV cross-linking 0.14 J/cm2, overnight hybridization at 68ºC. 

 

Identification of transgene integration sites 

The Universal GenomeWalker 2.0 Kit (Clontech Laboratories, USA) with restriction enzymes StuI and 

BamHI was used according to the manufacturer’s protocol. Sanger sequencing of PCR products was 

performed by GATC Biotech (Germany). 

 

Whole mount in situ hybridization 

cDNA synthesis was carried out using the SuperScript III First-Strand Synthesis System (Life 

Technologies, USA), following the protocol supplied by the manufacturer. 2µg of total RNA were used 

as a template for both reactions: one with oligo(dT) primers and one with hexamer random primers. 

Amplification of selected DNA templates for ISH probes was performed by standard PCR with GoTaq 

Flexi DNA Polymerase (Promega, USA). Amplified fragments were cloned into pGEM-T vector system 

(Promega, USA) and validated by Sanger sequencing. Primers used for amplification are listed in 

Supplementary Table 7. Templates for riboprobes were amplified from sequenced plasmids using 

High Fidelity Pfu polymerase (Thermo Scientific, USA). pGEM-T backbone binding primers: forward 

(5’-CGGCCGCCATGGCCGCGGGA-3’) and reversed (5’TGCAGGCGGCCGCACTAGTG-3’) and 
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versions of the same primers with an upstream T7 promoter sequence (5’-

GGATCCTAATACGACTCACTATAGG-3’. Based on the orientation of the insert in the vector either 

forward primer with T7 promoter and reverse without or vice versa, were used to amplify ISH probe 

templates. Digoxigenin (DIG) labelled RNA probe synthesis was performed using the DIG RNA 

labelling Mix (Roche, Switzerland) and T7 RNA polymerase (Promega, USA) following the 

manufacturer protocol. The concentration of all probes was assessed with the Qubit RNA BR assay 

(Invitrogen). Probes were then diluted in Hybridization Mix (Pfister et al., 2007) (20 ng/µl), and stored 

at −80°C. The final concentration of the probe and optimal hybridization temperature were optimized 

for every probe separately. Whole mount in situ hybridization was performed following a published 

protocol(Pfister et al., 2007). Pictures were taken using a standard light microscope with DIC optics 

and an AxioCam HRC (Zeiss, Germany) digital camera. 

 

Karyotyping 

DV1 and NL10 worms were cut above the testes and left to regenerate for 48 hours to increase the 

amount of dividing cells. Head fragments were collected and treated with 0.2% colchicine in f/2 

(Sigma, C9754-100mg) for 4 hours at 20°C to arrest cells in mitotic phase. Head fragments were then 

collected and treated with 0.2% KCl as hypotonic treatment for 1 hour at room temperature. 

Fragments were then put on SuperfrostPlus slides (Fisher, 10149870) and macerated using glass 

pipettes while being in Fix 1 solution (H2O : EtOH : glacial acetic acid 4:3:3). The cells were then fixed 

by treatment with Fix 2 solution (EtOH : glacial acetic acid 1:1) followed by Fix 3 solution (100% 

glacial acetic acid), before mounting by using Vectashield with Dapi (Vectorlabs, H-1200). At least 

three karyotypes were observed per worm and 20 worms were analyzed per line. 

 

Genome size measurements 

Genome size of the DV1 and NL10 lines was determined using flow cytometry approach(Hare and 

Johnston, 2011). In order eliminate the residual diatoms present in the gut, animals were starved for 

24h. For each sample 100 worms were collected in an Eppendorf tube. Excess f/2 was aspirated and 

worms were macerated in 200µl 1x Accutase (Sigma, A6964-100ML) at room temperature for 30 

minutes, followed by tissue homogenization through pipetting. 800µl f/2 was added to the suspension 

and cells were pelleted by centrifugation at 4°C, 1000 rpm, 5 min. The supernatant was aspirated and 

the cell pellet was resuspended in the nuclei isolation buffer (100 mM Tris-HCl pH 7.4, 154 mM NaCl, 

1 mM CaCl2, 0.5 mM MgCl2, 0.2% BSA, 0.1% NP-40 in MilliQ water). The cell suspension was passed 

through a 35 µm pore size filter (Corning, 352235) and treated with RNase A and 10 mg/ml PI for 15 

minutes prior to measurement. Drosophila S2 cells (gift from O. Sibon lab) and chicken erythrocyte 

nuclei (CEN, BioSure, 1006, genome size 2.5 pg) were included as references. The S2 cells were 

treated in the same way as Macrostomum cells. The CEN were resuspended in PI staining buffer (50 

mg/ml PI, 0.6% NP-40 in Calcium and Magnesium free Dulbecco’s PBS Life Technologies, 

14190136). Fluorescence was measured on a BD FacsCanto II Cell Analyzer first separately for all 

samples and then samples were combined based on the amount of cells to obtain an even distribution 
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of different species. The combined samples were re-measured and genome sizes calculated using 

CEN as a reference and S2 as positive controls (Supplementary Fig. 2). 

 

Preparation of genomic libraries 

One week prior to DNA isolation animals were kept on antibiotic-containing medium. Medium was 

changed every day with 50 μg/ml streptomycin or ampicillin added in alternating fashion. Worms were 

starved 24 hours prior to extraction, and then rinsed in fresh medium. Genomic DNA was extracted 

using the USB PrepEase Genomic DNA Isolation kit (USB-Affymetrix, Cat. No. 78855) according to 

manufacturer's instructions. For the lysis step worms were kept in the supplied lysis buffer (with 

Proteinase K added) at 55 °C for 30-40 minutes and mixed by inverting the tube every 5 minutes. 

DNA was ethanol-precipitated once following the extraction and resuspended in TE buffer (for making 

454 libraries Qiagen EB buffer was used instead). Concentration of DNA samples was measured with 

the Qubit dsDNA BR assay kit (Life Technologies, Cat. No. Q32850). 

454 shotgun DNA libraries were made with the GS FLX Titanium General Library Preparation Kit 

(Roche, Cat. No. 05233747001), and for paired-end libraries the set of GS FLX Titanium Library 

Paired End Adaptors (Roche, Cat. No. 05463343001) was used additionally. All the libraries were 

made following the manufacturer's protocol and sequenced on 454 FLX and Titanium systems. 

Illumina paired-end genomic libraries were made with the TruSeq DNA PCR-free Library 

Preparation Kit (Ilumina, Cat. No. FC-121-3001) following the manufacturer’s protocol. Long-range 

mate-pair libraries were prepared with the Nextera Mate Pair Sample Preparation Kit (Illumina, Cat. 

No. FC-132-1001) according to manufacturer’s protocol. Libraries were sequenced on the Illumina 

HiSeq 2500 system. 

 

Genome assembly 

PacBio data (acc. SRX1063031) were assembled with Canu (Koren et al., 2017) v. 1.4 with default 

parameters, except the errorRate was set to 0.04. The resulting assembly was polished with 

Pilon(Walker et al., 2014) v. 1.20 using Illumina shotgun data mapped by Bowtie (Langmead and 

Salzberg, 2012) v. 2.2.9 and RNA-seq data mapped by STAR (Dobin et al., 2013) v. 2.5.2b. Next, 

scaffolding was performed by SSPACE (Boetzer et al., 2011) v. 3.0 using paired-end and mate-pair 

Illumina and 454 data. Mitochondrial genome of M. lignano was assembled separately from raw 

Illumina reads using the MITObim software (Hahn et al., 2013) and the Dugesia japonica complete 

mitochondrial genome (acc. NC_016439.1) as a reference. The assembled mitochondrial genome 

differed from the recently published M. lignano mitochondrial genome(Egger et al., 2017) (acc. no. 

MF078637) in just 1 nucleotide in an intergenic spacer region. The genome assembly scaffolds 

containing mitochondrial sequences were filtered out and replaced with the separately assembled 

mitochondrial genome sequence. The final assembly was named Mlig_3_7. Genome assembly 

evaluation was performed with REAPR (Hunt et al., 2013) and FRCbam (Vezzi et al., 2012) software 

using HUB1_300 paired-end library and DV1-6kb-1, HUB1-3_6kb, HUB1-3_7kb, ML_8KB_1 and 

ML_8KB_2 mate-pair libraries (Supplementary Table 2). 
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Transcriptome assembly  

Previously published M. lignano RNA-seq data (Cannon et al., 2016; Grudniewska et al., 2016) 

(SRP082513, SRR2682326) and the de novo transcriptome assembly MLRNA150904 (Grudniewska 

et al., 2016) were used to generate an improved genome-guided transcriptome assembly. First, trans-

splicing and polyA-tail sequences were trimmed from MLRNA150904 and the trimmed transcriptome 

was mapped to the Mlig_3_7 genome assembly by BLAT (Kent, 2002) v. 36x2 and hits were filtered 

using the pslCDnaFilter tool with the parameters “-ignoreNs -minId=0.8 -globalNearBest=0.01 -

minCover=0.95 –bestOverlap”. Next, RNA-seq data to were mapped to genome by STAR (Dobin et 

al., 2013) v. 2.5.2b with parameters “--alignEndsType EndToEnd --twopassMode Basic --

outFilterMultimapNmax 1000”. The resulting bam files were provided to StringTie (Pertea et al., 2015) 

v. 1.3.3 with the parameter “--rf", and the output was filtered to exclude lowly expressed antisense 

transcripts by comparing transcripts originating from the opposite strands of the same genomic 

coordinates and discarding those from the lower-expressing strand (at least 5-fold read count 

difference). The filtered StringTie transcripts were merged with the MLRNA150904 transcriptome 

mappings using meta-assembler TACO (Niknafs et al., 2016) with parameters “--no-assemble-

unstranded --gtf-expr-attr RPKM --filter-min-expr 0.01 --isoform-frac 0.75 --filter-min-length 100” and 

novel transcripts with RPKM less than 0.5 and not overlapping with MLRNA150904 mappings were 

discarded. The resulting assembled transcripts were termed ‘Transcriptional Units’ and the assembly 

named Mlig_RNA_3_7_DV1.TU. To reflect closely related transcripts in their names, sequences were 

clustered using cd-hit-est from the CD-HIT v. 4.6.1 package (Fu et al., 2012) with the parameters “-r 0 

-c 0.95 -T 0 -M 0”, and clustered transcripts were given the same prefix name. Close examination of 

the transcriptional units revealed that they often represented precursor mRNA for trans-splicing and 

contained several genes. Therefore, further processing of the transcriptional units to identified 

boundaries of the encoded genes was required. For this, we developed computational pipeline 

TBONE (Transcript Boundaries based ON experimental Evidence), which utilizes exclusively 

experimental data to determine precise 5’ and 3’ ends of trans-spliced mRNAs. Raw RNA-seq data 

were parsed to identify reads containing trans-splicing sequences, which were trimmed, and the 

trimmed reads were mapped to the genome assembly using STAR (Dobin et al., 2013). The resulting 

wiggle files were used to identify signal peaks corresponding to sites of trans-splicing. Similarly, for 

the identification of polyadenylation sites we used data generated previously (Grudniewska et al., 

2016) with CEL-seq library construction protocol and T-fill sequencing method. All reads originating 

from such an approach correspond to sequences immediately upstream of poly(A) tails and provide 

exact information on 3’UTR ends of mRNAs. The generated trans-splicing and poly(A)_ signals were 

overlapped with genomic coordinates of transcriptional units by TBONE, ‘cutting’ transcriptional units 

into processed mRNAs with exact gene boundaries, where such experimental evidence was 

available. Finally, coding potential of the resulting genes was estimated by TransDecoder (Haas et al., 

2013), and transcripts containing ORFs but missing a poly(A) signal and followed by transcripts 

without predicted ORF but with poly(A) signal were merged if the distance between the transcripts 

was not greater than 10kb and the spanning region was repetitive. 
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Annotation of transposable elements and genomic duplications 

Two methods were applied to identify repetitive elements de novo both from the raw sequencing data 

and from the assembled scaffolds. Tedna software (Zytnicki et al., 2014) v. 1.2.1 was used to 

assemble transposable element models directly from the repeated fraction of raw Illumina paired-end 

sequencing reads with the parameters “-k 31 -i 300 -m 200 -t 37 --big-graph=1000”. To mine repeat 

models directly from the genome assembly, RepeatModeler package (http://www.repeatmasker.org) 

was used with the default settings. Identified repeats from both libraries were automatically annotated 

using RepeatClassifier perl script from the RepeatModeler package against annotated repeats 

represented in the Repbase Update – RepeatMasker edition database (Jurka et al., 2005) v. 

20170127. Short (< 200 bp) and unclassified elements were filtered out from both libraries. Additional 

specific de novo screening for full-length long terminal repeats (LTR) retrotransposons was performed 

using the LTRharvest tool (Ellinghaus et al., 2008) with settings “-seed 100 -minlenltr 100 -maxlenltr 

3000 -motif tgca -mindistltr 1000 -maxdistltr 20000 -similar 85.0 -mintsd 5 -maxtsd 20 -motifmis 0 -

overlaps all”. Identified LTR retrotransposons were then classified using the RepeatClassifier perl 

script filtering unclassified elements. Generated repeat libraries were merged together with the 

RepeatMasker (Jurka et al., 2005) library v. 20170127. The resulted joint library was mapped on the 

genome assembly with RepeatMasker. Tandem repeats were annotated and masked with Tandem 

Repeat Finder (Benson, 1999) with default settings. Finally, to estimate overall repeat fraction of the 

assembly, the Red de novo repeat annotation tool (Girgis, 2015) with default settings was applied. 

To identify duplicated non-repetitive fraction of the genome, repeat-masked genome assembly 

was aligned against itself using LAST software (Kiełbasa et al., 2011), and aligned non-self blocks 

longer than 500 nt and at least 95% identical were calculated. 

 

Data availability 

All raw data were submitted to NCBI Sequence Read Archive under accession numbers 

SRX2866466-SRX2866494. Annotated genome assembly has been deposited at 

DDBJ/ENA/GenBank under the accession NIVC00000000. The version described in this paper is 

version NIVC01000000. 

 

 

ACKNOWLEDGEMENTS 

We thank H. Clevers for the support on the early stages of the project; E. Cuppen, E. de Bruin, P. van 

Zon and H. Lunstroo for the help with generating 454 data, and ERIBA sequencing facility for 

generating Illumina data. This work was supported by the European Research Council (ERC Starting 

Grant “MacModel”, grant no. 310765) to E.B. A.A. was supported by the Biotechnology and Biological 

Sciences Research Council (BBSRC, grant no. BB/K007564/1). P.L. was supported by the Austrian 

Science Fund (FWF, grant no. 25404). L.S. was supported by the Swiss National Science Foundation 

(SNFS, grant no. 3100A0-127503 and 31003A-143732). The work on annotation of transposable 

elements was supported by the Russian Foundation for Basic Research (RFBR, grant no. 15-04-

08003) to E.B. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 18, 2017. ; https://doi.org/10.1101/151654doi: bioRxiv preprint 

https://doi.org/10.1101/151654
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

AUTHOR CONTRIBUTIONS 

E.B., P.L. and L.S. conceived the project. E.B. supervised the project and provided resources. 

J.Wudarski, K.M., T.D., D.S., P.W., M.Gre, K.U. made constructs and performed transgenesis. 

J.Wudarski optimized transgenesis efficiency. L.G., F.B., M.Gre., M.Gru and D.V. maintained M. 

lignano cultures. D.O. and L.G. established the NL10 line. D.S. and M.Gru generated genomic and 

RAMPAGE libraries. A.A., W.Q., L.S., E.B. contributed to sequencing genomic libraries. F.B. and S.M. 

performed genome size measurement and karyotyping. V.G. and E.B. performed genome and 

transcriptome assemblies and annotation. K.U. performed transposon annotation. J.Wudarski, D.S. 

and J.Wunderer performed in situ hybridizations. J.Wudarski and E.B. wrote the manuscript. All 

authors read the manuscript and provided edits. 

 

 

REFERENCES 

Batut, P., Dobin, A., Plessy, C., Carninci, P., and Gingeras, T.R. (2013). High-fidelity promoter 
profiling reveals widespread alternative promoter usage and transposon-driven developmental gene 
expression. Genome Res. 23, 169–180. 

Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids 
Res. 27, 573–580. 

Bindels, D.S., Haarbosch, L., van Weeren, L., Postma, M., Wiese, K.E., Mastop, M., Aumonier, S., 
Gotthard, G., Royant, A., Hink, M.A., et al. (2016). mScarlet: a bright monomeric red fluorescent 
protein for cellular imaging. Nat. Methods 14, 53–56. 

Boetzer, M., Henkel, C. V., Jansen, H.J., Butler, D., and Pirovano, W. (2011). Scaffolding pre-
assembled contigs using SSPACE. Bioinformatics 27, 578–579. 

Cannon, J.T., Vellutini, B.C., Smith, J., Ronquist, F., Jondelius, U., and Hejnol, A. (2016). 
Xenacoelomorpha is the sister group to Nephrozoa. Nature 530, 89–93. 

Chin, C.-S., Peluso, P., Sedlazeck, F.J., Nattestad, M., Concepcion, G.T., Clum, A., Dunn, C., 
O’Malley, R., Figueroa-Balderas, R., Morales-Cruz, A., et al. (2016). Phased diploid genome 
assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054. 

Davies, E.L., Lei, K., Seidel, C.W., Kroesen, A.E., McKinney, S.A., Guo, L., Robb, S.M., Ross, E.J., 
Gotting, K., and Sánchez Alvarado, A. (2017). Embryonic origin of adult stem cells required for tissue 
homeostasis and regeneration. Elife 6. 

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and 
Gingeras, T.R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. 

Egger, B., Ladurner, P., Nimeth, K., Gschwentner, R., and Rieger, R. (2006). The regeneration 
capacity of the flatworm Macrostomum lignano - On repeated regeneration, rejuvenation, and the 
minimal size needed for regeneration. Dev. Genes Evol. 216, 565–577. 

Egger, B., Bachmann, L., and Fromm, B. (2017). Atp8 is in the ground pattern of flatworm 
mitochondrial genomes. BMC Genomics 18, 414. 

Ellinghaus, D., Kurtz, S., and Willhoeft, U. (2008). LTRharvest, an efficient and flexible software for de 
novo detection of LTR retrotransposons. BMC Bioinformatics 9, 18. 

Elliott, S.A., and Sanchez Alvarado, A. (2013). The history and enduring contributions of planarians to 
the study of animal regeneration. Wiley Interdiscip. Rev. Dev. Biol. 2, 301–326. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 18, 2017. ; https://doi.org/10.1101/151654doi: bioRxiv preprint 

https://doi.org/10.1101/151654
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

Etchberger, J.F., and Hobert, O. (2008). Vector-free DNA constructs improve transgene expression in 
C. elegans. Nat. Methods 5, 3. 

Fogg, P.C.M., Colloms, S., Rosser, S., Stark, M., and Smith, M.C.M. (2014). New applications for 
phage integrases. J. Mol. Biol. 426, 2703–2716. 

Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: Accelerated for clustering the next-
generation sequencing data. Bioinformatics 28, 3150–3152. 

Gerlai, R. (2016). Gene targeting using homologous recombination in embryonic stem cells: The 
future for behavior genetics? Front. Genet. 7, 1–10. 

Girgis, H.Z. (2015). Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the 
genomic scale. BMC Bioinformatics 16, 227. 

González-Estévez, C., Momose, T., Gehring, W.J., and Saló, E. (2003). Transgenic planarian lines 
obtained by electroporation using transposon-derived vectors and an eye-specific GFP marker. Proc. 
Natl. Acad. Sci. U. S. A. 100, 14046–14051. 

Grudniewska, M., Mouton, S., Simanov, D., Beltman, F., Grelling, M., de Mulder, K., Arindrarto, W., 
Weissert, P.M., van der Elst, S., and Berezikov, E. (2016). Transcriptional signatures of somatic 
neoblasts and germline cells in Macrostomum lignano. Elife 5, 1–23. 

Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., 
Eccles, D., Li, B., Lieber, M., et al. (2013). De novo transcript sequence reconstruction from RNA-seq 
using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512. 

Hahn, C., Bachmann, L., and Chevreux, B. (2013). Reconstructing mitochondrial genomes directly 
from genomic next-generation sequencing reads--a baiting and iterative mapping approach. Nucleic 
Acids Res. 41, e129. 

Hare, E.E., and Johnston, J.S. (2011). Genome size determination using flow cytometry of propidium 
iodide-stained nuclei. Methods Mol. Biol. 772, 3–12. 

Hunt, M., Kikuchi, T., Sanders, M., Newbold, C., Berriman, M., and Otto, T.D. (2013). REAPR: a 
universal tool for genome assembly evaluation. Genome Biol. 14, R47. 

Ivics, Z., Li, M.A., Mates, L., Boeke, J.D., Nagy, A., Bradley, A., and Izsvak, Z. (2009). Transposon-
mediated genome manipulation in vertebrates. Nat. Methods 6, 415–422. 

Janicke, T., Marie-Orleach, L., De Mulder, K., Berezikov, E., Ladurner, P., Vizoso, D.B., and Schärer, 
L. (2013). Sex allocation adjustment to mating group size in a simultaneous hermaphrodite. Evolution 
67, 3233–3242. 

Jurka, J., Kapitonov, V. V., Pavlicek, A., Klonowski, P., Kohany, O., and Walichiewicz, J. (2005). 
Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–
467. 

Kanda, T., Sullivan, K.F., and Wahl, G.M. (1998). Histone-GFP fusion protein enables sensitive 
analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385. 

Kelly, W.G., Xu, S., Montgomery, M.K., and Fire, A. (1997). Distinct requirements for somatic and 
germline expression of a generally expressed Caenorhabditis elegans gene. Genetics 146, 227–238. 

Kent, W.J. (2002). BLAT — The BLAST -Like Alignment Tool. Genome Res. 12, 656–664. 

Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and Haussler, D. 
(2002). The human genome browser at UCSC. Genome Res. 12, 996–1006. 

Kiełbasa, S.M., Wan, R., Sato, K., Horton, P., and Frith, M.C. (2011). Adaptive seeds tame genomic 
sequence comparison. Genome Res. 21, 487–493. 

Komor, A.C., Badran, A.H., and Liu, D.R. (2016). CRISPR-Based Technologies for the Manipulation 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 18, 2017. ; https://doi.org/10.1101/151654doi: bioRxiv preprint 

https://doi.org/10.1101/151654
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

of Eukaryotic Genomes. Cell 168, 1–17. 

Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., and Phillippy, A.M. (2017). Canu: 
scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation. 
Genome Res. 27, 722–736. 

Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 
357–359. 

Marie-Orleach, L., Janicke, T., Vizoso, D.B., Eichmann, M., and Schärer, L. (2014). Fluorescent 
sperm in a transparent worm: validation of a GFP marker to study sexual selection. BMC Evol. Biol. 
14, 148. 

Marie-Orleach, L., Janicke, T., Vizoso, D.B., David, P., and Schärer, L. (2016). Quantifying episodes 
of sexual selection: Insights from a transparent worm with fluorescent sperm. Evolution (N. Y). 70, 
314–328. 

Marie-Orleach, L., Vogt-Burri, N., Mouginot, P., Schlatter, A., Vizoso, D.B., Bailey, N.W., and Schärer, 
L. (2017). Indirect genetic effects and sexual conflicts: Partner genotype influences multiple 
morphological and behavioral reproductive traits in a flatworm. Evolution (N. Y). 

Mello, C., and Fire, A. (1995). DNA transformation. Methods Cell Biol. 48, 451–482. 

Morris, J., Nallur, R., Ladurner, P., Egger, B., Rieger, R., and Hartenstein, V. (2004). The embryonic 
development of the flatworm Macrostomum sp. Dev. Genes Evol. 214, 220–239. 

Mouton, S., Willems, M., Braeckman, B.P., Egger, B., Ladurner, P., Schärer, L., and Borgonie, G. 
(2009). The free-living flatworm Macrostomum lignano: A new model organism for ageing research. 
Exp. Gerontol. 44, 243–249. 

De Mulder, K., Kuales, G., Pfister, D., Egger, B., Seppi, T., Eichberger, P., Borgonie, G., and 
Ladurner, P. (2010). Potential of Macrostomum lignano to recover from gamma-ray irradiation. Cell 
Tissue Res. 339, 527–542. 

Niknafs, Y.S., Pandian, B., Iyer, H.K., Chinnaiyan, A.M., and Iyer, M.K. (2016). TACO produces 
robust multisample transcriptome assemblies from RNA-seq. Nat. Methods 14, 68–70. 

Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.-C., Mendell, J.T., and Salzberg, S.L. (2015). 
StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 
33, 290–295. 

Pfister, D., De Mulder, K., Philipp, I., Kuales, G., Hrouda, M., Eichberger, P., Borgonie, G., 
Hartenstein, V., and Ladurner, P. (2007). The exceptional stem cell system of Macrostomum lignano: 
screening for gene expression and studying cell proliferation by hydroxyurea treatment and 
irradiation. Front. Zool. 4, 9. 

Redemann, S., Schloissnig, S., Ernst, S., Pozniakowsky, A., Ayloo, S., Hyman, A.A., and Bringmann, 
H. (2011). Codon adaptation-based control of protein expression in C. elegans. Nat. Methods 8, 250-
U94. 

Rink, J.C. (2013). Stem cell systems and regeneration in planaria. Dev. Genes Evol. 223, 67–84. 

Sato, M., Ohtsuka, M., Watanabe, S., and Gurumurthy, C.B. (2016). Nucleic acids delivery methods 
for genome editing in zygotes and embryos: the old, the new, and the old-new. Biol. Direct 11, 16. 

Scimone, M.L., Kravarik, K.M., Lapan, S.W., and Reddien, P.W. (2014). Neoblast specialization in 
regeneration of the planarian schmidtea mediterranea. Stem Cell Reports 3, 339–352. 

Shaner, N.C., Lambert, G.G., Chammas, A., Ni, Y., Cranfill, P.J., Baird, M.A., Sell, B.R., Allen, J.R., 
Day, R.N., Israelsson, M., et al. (2013). A bright monomeric green fluorescent protein derived from 
Branchiostoma lanceolatum. Nat. Methods 10, 407–409. 

Simanov, D., Mellaart-Straver, I., Sormacheva, I., and Berezikov, E. (2012). The flatworm 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 18, 2017. ; https://doi.org/10.1101/151654doi: bioRxiv preprint 

https://doi.org/10.1101/151654
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

macrostomum lignano is a powerful model organism for ion channel and stem cell research. Stem 
Cells Int. 2012. 

Simao, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E. V., and Zdobnov, E.M. (2015). BUSCO: 
Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 
31, 3210–3212. 

Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J.M., and Kelly, S. (2016). TransRate: reference-
free quality assessment of de novo transcriptome assemblies. 26, 1134–1144. 

Tanaka, E.M., and Reddien, P.W. (2011). The Cellular Basis for Animal Regeneration. Dev. Cell 21, 
172–185. 

Thermes, V., Grabher, C., Ristoratore, F., Bourrat, F., Choulika, A., Wittbrodt, J., and Joly, J.-S. 
(2002). I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech. Dev. 118, 91–98. 

Umesono, Y., Tasaki, J., Nishimura, K., Inoue, T., and Agata, K. (2011). Regeneration in an 
evolutionarily primitive brain - the planarian Dugesia japonica model. Eur. J. Neurosci. 34, 863–869. 

Vezzi, F., Narzisi, G., and Mishra, B. (2012). Reevaluating Assembly Evaluations with Feature 
Response Curves: GAGE and Assemblathons. PLoS One 7. 

Wagner, D.E., Wang, I.E., Reddien, P.W., Evans, M.J., Evans, M.J., Kaufman, M.H., Martin, G.R., 
Wagers, A.J., Sherwood, R.I., Christensen, J.L., et al. (2011). Clonogenic neoblasts are pluripotent 
adult stem cells that underlie planarian regeneration. Science 332, 811–816. 

Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q., 
Wortman, J., Young, S.K., et al. (2014). Pilon: An integrated tool for comprehensive microbial variant 
detection and genome assembly improvement. PLoS One 9. 

Wasik, K., Gurtowski, J., Zhou, X., Ramos, O.M., Delás, M.J., Battistoni, G., El Demerdash, O., 
Falciatori, I., Vizoso, D.B., Smith, A.D., et al. (2015). Genome and transcriptome of the regeneration-
competent flatworm, Macrostomum lignano. Proc. Natl. Acad. Sci. 112, 201516718. 

Van Wolfswinkel, J.C., Wagner, D.E., and Reddien, P.W. (2014). Single-cell analysis reveals 
functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell 15, 326–339. 

Yan, B.W., Zhao, Y.F., Cao, W.G., Li, N., and Gou, K.M. (2013). Mechanism of random integration of 
foreign DNA in transgenic mice. Transgenic Res. 22, 983–992. 

Zadesenets, K.S., Vizoso, D.B., Schlatter, A., Konopatskaia, I.D., Berezikov, E., Sch??rer, L., and 
Rubtsov, N.B. (2016). Evidence for karyotype polymorphism in the free-living flatworm, macrostomum 
lignano, a model organism for evolutionary and developmental biology. PLoS One 11, 1–24. 

Zimin, A. V., Marçais, G., Puiu, D., Roberts, M., Salzberg, S.L., and Yorke, J.A. (2013). The 
MaSuRCA genome assembler. Bioinformatics 29, 2669–2677. 

Zytnicki, M., Akhunov, E., and Quesneville, H. (2014). Tedna: A transposable element de novo 
assembler. Bioinformatics 30, 2656–2658. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 18, 2017. ; https://doi.org/10.1101/151654doi: bioRxiv preprint 

https://doi.org/10.1101/151654
http://creativecommons.org/licenses/by-nc-nd/4.0/

