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Abstract 
 
Combining molecular network information with cancer genome data can complement 
gene-based statistical tests to identify likely new cancer genes. However, it is 
challenging to experimentally validate network-based approaches at scale and thus 
to determine their real predictive value. Here, we developed a robust network-based 
statistic (NetSig) to predict cancer genes and designed and implemented a large-
scale and quantitative experimental framework to compare the in vivo tumorigenic 
potential of 23 NetSig candidates to 25 known oncogenes and 79 random genes. 
Our analysis shows that genes with a significantly mutated network induce tumors at 
rates comparable to known oncogenes and at an order of magnitude higher than 
random genes. Informed by our network-based statistical approach and 
tumorigenesis experiments we made a targeted reanalysis of nine candidate genes 
in 242 oncogene-negative lung adenocarcinomas and identified two new driver 
genes (AKT2 and TFDP2). Together, our combined computational and experimental 
analyses strongly support that network-based approaches can complement gene-
based statistical tests in cancer gene discovery. We illustrate a general and scalable 
computational and experimental workflow that can contribute to explaining cancers 
with previously unknown driver events.  
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Introduction 

Cancers are initiated when somatic mutations, copy number alterations, or genomic 
fusion events of specific genes (hereafter, we will refer to these as driver genes or 
cancer genes) confer a selective advantage to the corresponding cell thus promoting 
tumorigenesis. Identifying the driver genes in tumors of individual cancer patients 
provides key diagnostic and therapeutic insight. Therefore, it is a central aim of 
oncology to provide a complete catalogue of genes underlying human cancers1–6. 

 
The recent revolution of cancer genome analyses has enabled the statistical 
identification of cancer genes in an unbiased manner based on somatic mutations or 
copy number changes using gene-based statistical test such as MutSig, Oncodrive, 
GISTIC and RAE7–10. These methods have identified most of the genes mutated or 
amplified at high frequencies (>20%) in tens of tumor types11, but the statistical signal 
of driver genes mutated at intermediate (2-20%) or low (<2%) frequencies in tumors 
is weakened by noise due to the many mutations and genomic copy number 
changes that occur during cancer progression11. For that reason, there is a long tail 
of genes with inconclusive mutations in cancer genomes and a large number of 
biologically or clinically relevant driver genes remain to be discovered.  
 
Many existing methods have been used to highlight network modules (based on 
functional genomics data) that are significantly mutated in tumors12–18. These 
analyses have been valuable for illuminating the biological processes and pathways 
involved in cancers (reviewed in Creixall et al.19). However, the evidence from 
network-based approaches comes from aggregating weak genetic signals in a set of 
genes connected into a network and not from an overwhelming mutation signal in 
any individual gene itself. This means that there is no strong direct link between 
specific genes in a significantly mutated module and the cancer in question. 
Additionally, since most network-based methods are only retrospectively evaluated 
through benchmarks, or by rigorously following up on only a few new genes, it is 
impossible determine how much ‘knowledge contamination’ (i.e., the notion that 
genes are more studied because they are cancer genes) introduces circularity and 
biases the outcomes towards more well established, or classic, cancer networks. 
These issues could be addressed by executing a systematic large-scale comparison 
of the tumorigenic potential of tens of genes embedded in a significantly mutated 
network versus a large number of known cancer genes (positive controls) and 
random genes (random controls), but such an analysis is lacking. Together this 
means that, if the aim is specifically to expand cancer gene discovery in the long tail 
of genes with inconclusive mutations from existing cancer genomes, the real 
predictive value of network-based approaches still remains unclear. 

Towards this aim, we developed a statistic (NetSig) that combines tumor-sequencing 
information and functional genomics network data to expand cancer gene discovery 
from tumor genomes. With NetSig we had a particular focus on addressing the 
effects of ‘knowledge contamination’ and on designing a method that is independent 
of gene-based statistical tests like MutSig, Oncodrive, GISTIC and RAE so that it can 
seamlessly complement these approaches in any tumor genome analysis pipeline. 
To test the predictive power of NetSig, we developed an in vivo quantitative 
experimental framework that enabled us to compare the tumorigenic potential of 23 
genes with a significant NetSig score to that of 25 known cancer genes and 79 
random genes across more than 140 mouse experiments. Based on the network 
analysis and in vivo experiments nine candidates were particularly relevant to lung 
adenocarcinoma. We made a targeted reanalysis of 660 patients with that tumor type 
to find that several of our candidates have a significantly higher copy number in 
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patients without established genomic driver events compared to patients with 
mutations and amplifications in known oncogenes. 

 

Results 

Design and properties of the NetSig statistic 

NetSig, combines data from existing cancer genomes (spanning 21 tumor types and 
4,742 tumor genomes) and InWeb (a human protein-protein interaction network that 
has been used in the 1000 Genomes Project20) to calculate the mutation signal in a 
genes’ functional protein-protein interaction network. Since we specifically wanted to 
test the predictive power of mutations in a gene’s network, we excluded mutation 
information on the gene itself in the calculation of the NetSig statistic (for all details 
see Methods).  

To benchmark NetSig and to understand the effect of ‘knowledge contamination’ on 
the statistic, we defined a set of ‘Cosmic classic’ (i.e., very well established) cancer 
genes from the Cosmic database (http://cancer.sanger.ac.uk/cosmic) and a set of 
‘recently emerging cancer genes’ from recent sequencing studies (Methods, 
Supplementary Table 1). To test for cryptic confounders we also defined a set of 
random genes (Methods, Supplementary Table 1). We confirmed that the ‘Cosmic 
classic’ and ‘recently emerging’ sets can be classified based on their NetSig score 
with an area under the receiver operating characteristics curve (AUC) of 0.86, and 
0.75, respectively (Fig. 1a, adj. P < 0.05 for each of these AUCs, using permuted 
networks, Supplementary Figure 1). As expected the random control genes fit the 
null hypothesis and cannot be distinguished from other genes represented in InWeb 
(Fig. 1a, AUC 0.49, P = 0.8). We further show that NetSig can accurately classify 
cancer genes in ~ 60% of the tumor types for which we have data (Methods and 
Supplementary Note 1, Supplementary Figure 2), illustrating the potential of our 
statistic to inform many different individual tumor types.  

The majority of genes scored by NetSig fit the null hypothesis and lie on the diagonal 
in a quantile-quantile plot, but there is an overall genomic inflation (lambda = 1.29) of 
the significances assigned to genes (Supplementary Figure 3). This could be due to 
‘knowledge contamination’, the inherent polygenic nature of cancers, or a 
combination. To dissect this phenomenon, we removed the effect of well-studied 
cancer genes from our analysis (Methods, Supplementary Note 2). The ability to 
predict ‘Cosmic classic’ cancer genes is reduced (Fig. 1b, from an AUC of 0.86 to 
0.79) indicating some ‘knowledge contamination’ of this set, but effect on ‘recently 
emerging’ cancer genes is much less pronounced (Fig. 1b, from an AUC of 0.75 to 
0.73). Consistent with these observations, we see that removing the effect of the 
‘Cosmic classic’ gene set reduces the lambda from 1.29 to 1.09 in the quantile-
quantile plot and that it only changes slightly to 1.07 when the impact of the ‘recently 
emerging’ set is also removed (Supplementary Figure 3). Furthermore, running 
NetSig on random networks results in a non-inflated quantile-quantile plot as 
expected (Supplementary Figure 3). We also show that NetSig adequately 
normalizes for the amount of interactions a gene has at the protein level 
(Supplementary Figure 4).  

Together, these analyses show that there is some ‘knowledge contamination’ in the 
protein-protein interaction data specifically of the ‘Cosmic classic’ set and that this 
leads to a significantly inflated AUC in the benchmark if it is not taken into 
consideration. Conversely, there is almost no ‘knowledge contamination’ of genes 
emerging from the newest sequencing studies. This means that  when predicting 
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new cancer genes from existing cancer genomes, ‘knowledge contamination’ should 
not have any major influence on the NetSig method when applied to protein-protein 
interaction data from InWeb. 

 

Predicting NetSig candidates from 4,742 tumor genomes 

To test if NetSig can predict new likely driver genes from existing cancer genome 
data we calculated NetSig scores of all genes that had at least one high-confidence 
protein interaction in InWeb and adjusted the result of this analysis for multiple 
hypothesis testing. We calculated NetSig scores both using the pan-cancer cohort of 
4,742 tumors and using mutation data from each of the individual 21 tumor types 
represented in11 (Methods). We declared genes with a false discovery rate (FDR) Q 
≤ 0.1 using the pan-cancer data significant (Fig. 1c) and also declared genes with a 
Q ≤ 0.1 in each of the individual 21 tumor types significant.  
 
The pooled set (named NetSig5000, Supplementary Table 2) contains all unique 
genes that were significant in the pan-cancer analysis or in at least one of the 21 
tumor types. Our NetSig5000 set comprises 62 genes, of which we divided into five 
groups based on their known connection to cancer. Groups 1 (n = 12) and 2 (n = 9) 
contain genes already known to be involved in cancers based on significant point 
mutations or gene fusion events, respectively. These groups serve as a positive 
control that NetSig can identify known cancer genes. Groups 3 (n = 24) and 4 (n = 
13) contain genes that have been speculated to be causal in cancers based on 
evidence from model systems or from gene expression analyses. Group 5 (n = 4) 
have never been linked to cancer (see Supplementary Table 3 and Supplementary 
Note 3 for more information about genes in the NetSig5000 set and Supplementary 
Figure 5 for examples of NetSig networks). All results can be accessed and 
visualized at www.lagelab.org/resources/. 
 
 
Comparing the tumorigenic potential of 23 NetSig candidates, 25 oncogenes, 
and 79 random controls 

We tested the tumorigenic potential of 23 genes from the NetSig5000 set 
(Supplementary Table 4, for selection criteria of these 23 genes see Methods), 79 
different patient-derived mutations of 25 known driver genes (positive control, 
Supplementary Table 5) and 79 random genes (random control, Supplementary 
Table 6) using a massively parallel in vivo tumorigenesis assay leading to data from 
144 mouse experiments (Fig. 2a and Methods). The assay transduces and 
overexpresses barcoded cDNA constructs of candidate genes (and alleles 
representing patient-derived mutations) into activated small-airway epithelial cells 
[SALE-Y cells21] or activated immortalized kidney epithelial cells [HA1E-M cells21–24]. 
For each cell model (SALE-Y or HA1E-M) all genes (or alleles) to be tested are 
pooled, grown, and injected subcutaneously into immunocompromised animals at 
three injection sites per animal. In animals that develop tumors, driver genes can be 
identified by homogenizing tumors in the animals and by sequencing the barcodes 
found in the tumor cells (Methods).  

To compare the tumorigenic potential of the three gene sets across multiple cell 
models we developed a quantitative analytical framework that defines a gene as 
tumorigenic based on both in vivo proliferation rate of the tumor cells and the 
significance of the relative growth of the tumors (Methods).  Our analysis showed 
that many of the tested NetSig5000 genes (11/23 or 48%) are indeed capable of 
driving tumorigenesis (Fig. 2b and c, Supplementary Table 7). Specifically, we 
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discover ten high confidence tumor-inducing genes (AKT2, BLK, FER, FRK, MOS, 
PIK3CG, PTK6, RASGRP1, RASGRP3, and TFDP2) as well as one additional gene 
at the lower confidence cut-off (BMX, for a comprehensive literature review of these 
genes see Supplementary Notes 4). In comparison, the proportion of known driver 
genes from the positive control set that induced tumors is 9/25 or 36% (Fig. 2d, see 
Methods for details) and the proportion of random genes that induce tumors is 4/79 
or 5% (Fig. 2d). We note that the two random genes that induced tumors at a high 
confidence are NTRK1 (encoding a tyrosine kinase with established tumorigenic 
properties) and STRADA (an interactor of the STK11 tumor suppressor at the protein 
level), suggesting that these could be real driver genes that remain to be discovered 
and that the false positive rate of the experimental and analytical framework is very 
low and lies somewhere between 1 and 4%. 

 

Significant copy number gains of TFDP2 and AKT2 in lung adenocarcinoma 
patients 

Nine NetSig5000 genes (AKT2, FER, FRK, MOS, PIK3CG, PTK6, RASGRP1, 
RASGRP3, and TFDP2) validated with high confidence in a cell model  (SALE-Y) 
that is particularly relevant for exploring genes that can induce lung 
adenocarcinomas21. Based on this observation we hypothesized that a subset of 
these nine genes may be responsible for driving lung adenocarcinomas in oncogene 
negative patients [meaning patients that do not have a known oncogenic driver event 
in the RAS/RAF/receptor tyrosine kinase (RTK) pathway as previously described25]. 

To test these hypotheses we used a dataset of 660 lung adenocarcinomas from 
TCGA and related studies25–27 . We first tested for copy number differences between 
the oncogene negative patients (n = 242) and the oncogene positive patients (n = 
418) showing that the nine genes as a set have a significantly higher copy number in 
the former group (P  = 7.0e-3, using Fisher’s exact test, Fig. 3a) and that TFDP2 and 
AKT2 are individually found at higher copy numbers (FDR < 0.1 for each gene, Fig. 
3a). Through an in-depth analysis of the surrounding genomic regions, we ruled out 
that adjacent potential oncogenes are driving the signal we see (Figs 3b and c and 
Supplementary Note 5) and we also confirmed that there is no general difference in 
copy numbers between the two patient groups (Supplementary Figure 6). The 
genomic events observed for AKT2 and TFDP2 are not high-level amplifications. 
Rather, 3 and 4% percent of the oncogene negative patients have two extra copies 
of AKT2 and TFDP2, respectively; and 4 and 14% have one extra copy of AKT2 and 
TFDP2, respectively (Figs 3d and e). In the nine genes we also tested whether there 
is evidence for increased rates of gain-of-function single nucleotide variants (SSNVs) 
or insertions or deletions (indels) in the oncogene negative versus positive group, 
which is not the case. 
 
Given the dominating effect of the RAS/RAF/RTK pathway in lung adenocarcinoma, 
a more straightforward approach to gene discovery would be to make a targeted 
analysis of mutations or copy number gains in genes in the extended RAS/RAF/RTK 
pathway (defined here as genes that have at least one protein interaction to a 
RAS/RAF/RTK pathway member in InWeb). We compared the degree of copy 
number gains, and activating SSNVs / indels, in our set of nine genes to 100 
matched sets of nine RAS-affiliated genes, showing that the set of nine genes 
identified through our approach are significantly more enriched for oncogenic copy 
number gains (P = 0.04, using permutation tests, Supplementary Figure 7). This 
analysis confirms that combining NetSig with tumorigenicity experiments is a better 
approach to identifying driver genes and events in lung adenocarcinomas than 
naïvely choosing genes in the extended RAS/RAF/RTK pathway.  
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To allow further exploration of pathway relationships relevant to lung 
adenocarcinomas the NetSig networks of AKT2 and TFDP2 are plotted in Figs 3f 
and g. 
 

Discussion 
 
Overall our integrated computational and experimental analyses firmly establish 
network-based approaches can contribute to expanding gene discovery from existing 
cancer genomes. Not only do the genes in the NetSig5000 set point to new genes in 
well established oncogenic pathways (e.g., AKT2, PIK3CB, PIK3CG, RASGRP1, 
RASGRP3, Supplementary Note 6 and Supplementary Figure 8), but our results 
also point to potential new cancer pathways (e.g., TFDP2 and MYO7A, 
Supplementary Note 7, Supplementary Figures 9 and 10, Supplementary Tables 
8 and 9). For details about the differences between NetSig and other network-based 
methods, see Supplementary Note 8. 
 
An important feature of NetSig is that it is explicitly designed to disregard any 
mutation information on the gene being tested so that the signal comes from the 
genes network alone. This ensures that NetSig P values are fully independent of 
those from existing gene-based statistical test such as MutSig, Oncodrive, GISTIC 
and RAE (in fact, the MutSig and NetSig P values of the same genes are only 
modestly correlated, Pearson correlation coefficient = 0.05, data not shown). This 
design choice means that NetSig can be seamlessly combined with (and thus 
complement) gene-based statistical tests in any computational cancer genome 
analysis workflow (Supplementary Note 9 and Supplementary Figure 11). 

Due to the large set of experiments we executed it is possible to provide an estimate 
of how well the NetSig statistic predicts real cancer genes. We calculated the 
sensitivity and specificity of the tumorigenesis assay based on the positive control set 
and the random control set suggesting that the sensitivity to detect cancer genes of 
the HA1E-M model is 24% and the SALE-Y model is 28% (Methods) and that the 
the specificity of both assays is > 95% (Methods). Based on the sensitivity and 
specificity of the assay and NetSig FDR of 0.1 (meaning that we expect up to 10% of 
the predictions to be false positives), five NetSig5000 genes should induce tumors in 
the HA1E-M model and six in the SALE-Y model. We observe eight (HA1E-M) and 
nine (SALE-Y) such genes, respectively. So, the validation rate of NetSig candidates 
in the individual cell models is higher than our expectation (160% and 150% for the 
HA1E-M and SALE-Y model, respectively). We believe this is i) due to the way they  
were selected for validation and ii) that there is an upper limit to how many of the 
positive control genes can induce tumors when pooled together in our experimental 
workflow leading to an underestimate of the sensitivity of the assay (described in 
detail in Methods). This is supported by the observation that when both cell models 
are considered together the sensitivity of the assay increases almost 10% (to 36%) 
(Methods) and the validation rate of 11 out of 23 NetSig is closer to the theoretical 
expectation (138%) while being almost ten fold higher than for the random genes 
(Fig. 2d). 

There are several limitations to our study. First, the assays we use rely on 
overexpressing gene constructs, a design which is more optimized for identifying 
oncogenes than tumor suppressors. Second, the HA1E-M and SALE-Y models are 
primed for tumorigenesis via the PI3K/NFKB pathway22 and the EGFR/MAPK 
pathway21, respectively. Real oncogenes exerting their effect through other pathways 
may not induce tumors in these models. Third, the tumorigenic potential of driver 
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mutations depends on genetic background and a subset of known oncogenes (and 
NetSig candidates that are real cancer genes), may not induce tumors on the genetic 
background of the cell models we use here. However, due to the quantitative 
analytical framework we developed for this work it is straightforward to include more 
cell models in the workflow as they become available in the future28. The value of 
combining multiple cell modes, and thus testing genes across several different 
genetic backgrounds, is reflected in the observation that the sensitivity of our in vivo 
tumorigenesis assay increases with ~10% (to 36% overall) when both cell models 
are used in parallel to test the same set of genes (Fig. 2d and Methods). 

Our work identifies TFDP2 and AKT2 as having significantly more copy numbers in 
the oncogene negative compared to oncogene positive lung adenocarcinoma patient 
population. Since these genes have not already been identified in the largest cancer 
exome analyses11 or the largest analysis of mutations and amplifications of lung 
adenocarcinoma patients25, our expectation is that genomic driver events in these 
genes are intermediate to low frequency and therefore would only be seen in < 20% 
of tumors. This is consistent with the our findings that show 3 and 4% percent of the 
oncogene negative patients have two extra copies of AKT2 and TFDP2, respectively; 
and 4 and 14% have one extra copy of AKT2 and TFDP2, respectively (Figs 3d and 
e). Even though these are not high-level amplifications the statistical signal is robust 
(Q < 0.1 for both AKT2 and TFDP2). While we did not observe any evidence for gain-
of-function single nucleotide variants (SSNVs) or insertions or deletions (indels) 
across these two genes, it is our expectation that with more samples in the future 
these genes will be enriched for such events. This is consistent with the observation 
that NetSig5000 set overall is enriched for genes with lower MutSig P values in the 
Lawrence et al, 2014 set (P = 0.04 using a nonparametric two-sample Kolmogorov-
Smirnov test). Together, our results strongly suggest that many genes in the 
NetSig5000 set are likely real intermediate or low frequency driver genes that will 
reach significance in gene-based statistical tests with more tumor genomes in the 
future. 

NetSig is flexible and can work with many different types of functional genomics 
network data (Supplementary Note 9 and Supplementary Figure 12). Interestingly, 
the average genomic inflation when NetSig is run on different sets of transcriptional 
networks29 (i.e., based on data that cannot be effected by ‘knowledge contamination’) 
is 1.14 and 1.11, respectively (Supplementary Figures 13 and 14). This is 
comparable to the lambda in the protein-protein interaction data when the effect of 
‘Cosmic classic’ genes are removed from the analysis (1.09), suggesting that our 
approach to removing ‘knowledge contamination’ is efficient in canceling out that 
effect. This strongly suggests that the remaining inflation is due to polygenicity of 
cancers and not due to any bias or confounders of the NetSig statistic or network 
data.  
 
We expect that with more data in the future the approach we describe here will 
become increasingly powerful for biological discovery in cancers, for an extended 
discussion of our results see Supplementary Note 10. We make all results and 
algorithms available from www.lagelab.org/resources as a resource for the 
community. 
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Methods 

 
Calculating the network mutation burden. For a given index gene, NetSig statistic 
is formalized into a probabilistic score that reflects the index-gene-specific composite 
mutation burden [i.e. the aggregate of single-gene MutSig suite Q values from11] 
across its first order biological network and is calculated via a three-step process: 
First, we identify all genes it interacts with directly at the level of proteins, only 
including high-confidence quality-controlled data from the functional human network 
InWeb30,31 (where the vast majority of connections stem from direct physical 
interaction experiments at the level of proteins). Second, the composite mutation 
burden across members of the resulting network is quantified by aggregating single-
gene MutSig suite Q values from11 into one value ϕ using an approach inspired by 
Fisher’s method for combining p-values: 
 

𝜙~ − 2 ln( 𝑞𝑖)
+

,-.

 

 
Where pi is the MutSig suite Q value for gene i, and k is the amount of genes in the 
first order network of the index gene (i.e. the index gene’s degree). Third, by 
permuting the InWeb network using a node permutation scheme, we compare the 
aggregated burden of mutations ϕ to a random expectation. In this step, the degree 
of the index gene, as well as the degrees of all genes in the index gene’s network is 
taken into careful consideration. The final NetSig score of an index gene is therefore 
an empirical P value that reflects the probability of observing a particular composite 
mutation burden across its first order physical interaction partners (at the level of 
proteins) normalized for the degree of the index gene as well as the degrees of all of 
its first order interaction partners. Because we are interested in estimating the 
mutation burden independent of the index gene (so that the NetSig results are fully 
independent of gene-based statistical tests such as MutSig, Oncodrive, GISTIC and 
RAE), this gene is not included in the analysis and it does not affect the NetSig 
calculation. This also means that for any given gene MutSig suite significances are 
independent of NetSig significances (i.e., the Cancer5000 gene set and the 
NetSig5000 gene set are independently predicted).  
 
Classifying cancer genes. For each gene represented in InWeb (12,507 or 67% of 
the estimated genes in the genome), we used the gene-specific NetSig probability to 
classify it as a cancer candidate gene or not. True positive genes were a set of 
‘Cosmic classic’ genes and a set of ‘recently emerging cancer genes’. Specifically, 
the Cosmic classic set consists of 38 established (or classic) cancer genes from the 
Catalogue of Somatic Mutations in Cancer (Cosmic, 
http://cancer.sanger.ac.uk/cosmic, e.g., TP53, BRCA1, and BRAF, Supplementary 
Table 1). The ‘recently emerge cancer genes’ contains 61 genes that have been 
recently identified as cancer genes from the Sanger Gene Census dataset 
(http://cancer.sanger.ac.uk/census/, e.g., MLL2, CDK12, and GATA2, 
Supplementary Table 1). The gene set for the purposes of the benchmarking 
analysis is a set of 87 random genes (Supplementary Table 1). True negatives 
were defined as all genes in InWeb that were not in these three sets which is likely 
conservative as many of these might be yet undetected cancer genes. We used the 
NetSig probability as the classifier and calculated the AUC for each gene set.  
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Using NetSig to classifying driver genes across 21 tumor types: For each tumor 
type we calculated tumor-type-specific NetSig scores and classified the 
corresponding tumor-specific driver genes. For example, we assembled a set of 
driver genes from breast tumors (BRCA) by identifying genes significantly mutated in 
this tumor type in11. We used mutation data from this tumor type to derive NetSigBRCA 
scores and measured their classification performance on the BRCA driver genes, 
which they could accurately distinguish with an AUC = 0.76. We compared this result 
to the results using NetSig scores derived using the pan-cancer dataset. The pan-
cancer NetSig score increased the ability to accurately classify BRCA driver genes 
slightly to an AUC of 0.77 (for more information see Supplementary Note 1, 
Supplementary Figure 2). 
 
Testing the robustness of the NetSig approach: To test the robustness of the 
NetSig approach, we tried several alternative permutation methods and calculated 
the composite mutation burdens of gene networks using both Q and P values from 
the Lawrence et al. 2014 paper.  Specifically, to generate the null distribution of 
network mutation burdens used to assess the significance of observations in the 
actual data, we both used a node permutation scheme and a full network 
permutation scheme. Where the node permutation scheme permutes nodes that 
have similar degree has the advantage of being much faster than the network 
permutation scheme [explained in detail in32], the architecture of the original network 
is more precisely mirrored in the random networks using the latter method. We ran 
the full analysis using both approaches and compared the quantile-quantile plots (not 
shown), and classification of Tiers 1-5 genes. This analysis confirmed that the choice 
of permutation scheme does not have a major influence on the overall results 
(Supplementary Figure 1). In addition to using q values from11 for step 2 in the 
NetSig calculation (above), we also tried using unadjusted P values. For this latter 
approach the quantile-quantile plots (not shown) as well as the classification of 
‘Classic’ and ‘Recently emerging’ cancer genes similar to the results we report in the 
main text (Supplementary Figure 1). 

Generating the NetSig5000 set. We used a node permutation scheme to create 106 
permuted networks. NetSig probabilities were determined for every gene in InWeb 
that was covered by interaction data. The FDR Q values were calculated as 
described by Benjamini and Hochberg33 based on the nominal P values controlled for 
12,507 hypotheses. We performed NetSig analyses with the pan-cancer Q values, as 
well as Q values from each of the 21 tumor types for which they were available. As it 
is a technical limitation of the NetSig approach that it is currently not possible to 
make 5.5 x 106 network permutations we could not create a dataset where we correct 
for all 12,500 x 22 hypotheses tested in the NetSig5000 set. For that reason our work 
does not have the equivalent of the Cancer5000-S (the stringent) set from Lawrence 
et al.11, where the authors control for all hypotheses is carried out simultaneously. 

A multiplexed in vivo tumor formation screen in mice. We used the SALE-Y cell 
model previously described in (Berger et al., 2016) and the HA1E-M cell model 
previously described in (Kim et al., 2016). Specifically, our earlier work revealed that 
immortalized small-airway epithelial cells harboring an activating YAP1 variant are 
rendered tumorigenic via activation of the EGFR/MAPK pathways [SALE-Y cells21] 
and immortalized kidney epithelial cells harboring an activating MAPK1 variant are 
rendered tumorigenic via activation of the PI3K/YAP/NFKB pathways [HA1E-M 
cells21–24]. Briefly, for any set of genes we wished to test we inserted into barcoded 
cDNA clones and these clones were transduced into SALE-Y and HA1E-M cells in 
96 well plates. The cells were selected with puromycin, expanded, and pooled. Two 
million cells per pool per site were injected subcutaneously into immunocompromised 
mice in three sites (interscapular area and left and right flanks) per mouse and tumor 
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formation monitored. When tumor length exceeded 1 cm the animals were killed. 
Tumors were homogenized and genomic DNA was extracted and sequenced to 
determine the relative proportion of each inserted DNA barcode. The relative 
proportions of each barcode serves as a proxy indicating the gene driving a tumor. 
To deal with data from deploying multiple cell models in parallel on a large set of 
positive controls, random controls and NetSig candidates we developed a new 
quantitative analytical framework (below).  

A quantitative analytical framework to compare the tumorigenic potential of 
NetSig5000 genes to known oncogenes and random genes:  We measured the 
reproducibility and magnitude of the oncogenic signal of the individual gene sets by 
developing and calculating two complementary metrics: maximum in vivo 
proliferation rate and significance of relative growth: 
 
Calculating max proliferation rates: To determine a metric for growth doubling time of 
cells injected with NetSig5000 genes in the in vivo tumors, we calculated the 
proportion of reads in a tumor normalized to tumor volume and compared to the 
proportion of reads in the pre injection cell pool where volume for all pooled cells was 
set to 1 cubic mm (which roughly corresponds to 2 million cells). This was done for 
all tumors and for each tumor we divided the growth rate with the day the tumor was 
harvested to normalize for tumor age. This leads to an estimate of the doubling time 
of the in vivo tumor growth for cells driven by overexpression of a particular NetSig 
candidate. We call this metric max proliferation rate per gene, which is plotted on the 
x-axis of Fig. 2b.  
 
Calculating the significance of relative growth: To calculate the significance of 
relative growth of cells in each cell type (SALE-Y and HA1E-M, respectively) 
transduced with a particular cDNA clone we plotted the distribution of relative reads 
in the tumors and compared to the pre injection value. Significances were calculated 
using a t-test and reported as false discovery rates. We call this metric significance of 
proliferation rate and plotted the maximum significance (after iterative removal of 
dominant effects - see below) on the y-axis of Fig. 2b.  
 
Computational detection of dominant and subjugated oncogenic clones in tumors: 
When many oncogenic clones are pooled and injected into mice, a single clone often 
outcompetes other oncogenic clones to dominate the tumor through a highly 
stochastic process. We refer to outcompeted, but real, oncogenic clones in the 
tumors as ‘subjugated oncogenic clones’. It is possible to detect subjugated 
oncogenic clones by iteratively removing dominant clones from the cell pools and 
repeating the experiments. However, this is very labor intensive. We developed a 
computational approach where we iteratively removed genes that accounted for 
more than 50% of the reads in a tumor and repeated the significance of relative 
growth analysis described above. In Fig. 2b we report the best FDR after zero, one 
or two iterations. We confirmed that the subjugated oncogenic clones detected 
computationally were indeed driver clones by comparing the results from our 
computational approach to results from the iterative experimental removal of 
dominant clones and repetition of the injection of experimentally reduced cell pools 
into mice from the Berger et al., paper21. This analysis showed that genes 
determined to be significant through our computational iterations also became 
dominant clones when other dominant clones were first removed from the 
experimental assay.  
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Calculating the sensitivity and specificity of the experimental tumorigenesis 
assay:  
 
Sensitivity: We determined how many of the 25 positive control genes were correctly 
classified as tumor inducing at z-scores of one and two, in both the HA1E-M and 
SALE-Y model. In the HA1E-M model, 6 genes were classified as tumor inducing at 
a z score of one and 2 at a z score of two (see Supplementary Table 7 for details). 
As we tested a total of 25 genes this gives a sensitivity of 6/25 = 0.24 and 2/25 = 
0.08, respectively (Fig. 2b). In the SALE-Y model, 7 genes were classified as tumor 
inducing at a z score of one and 6 at a z score of two giving a sensitivity of 7/25 = 
0.28 and 6/25 = 0.24, respectively (Fig. 2b). When combining the two assays 
together the sensitivity increases to 9/25 = 0.36, which is likely because we are 
testing the tumorigenic potential of genes across several genetic backgrounds. 
Analogous calculations can be seen for constructs in Supplementary Table 7. 
 
Specificity: We determined how many of the random genes constructs were correctly 
classified as non-tumor-inducing at z-scores of one or two (see above), in both the 
HA1E-M and SALE-Y model. In the HA1E-M model, three genes (STRADA, ZNF346, 
and DRD4) were classified as tumor inducing at a z score of 1, and one gene 
(STRADA) was classified as tumor inducing at a z-score of two. As we tested a total 
of 79 genes this gives a specificity of 76/79 = 0.96, and 78/79 = 0.99, respectively 
(Fig. 2b). In the HA1E-M model, one gene (NTRK1) was classified as tumor inducing 
at a z-score of 1 and z-score of 2, respectively. As we tested a total of 79 genes this 
gives a sensitivity of 78/79 = 0.99% at both thresholds (Fig. 2b). Analogous 
calculations can be seen for constructs in Supplementary Table 7. 
 

Choosing 25 genes for the validation experiment: We selected the genes based 
on a number of biological (not being known cancer genes) and technical (available 
high quality reagents) criteria: First, we selected a set of genes that were either in 
group 3,4 or 5 of our literature curation groups (meaning they have not already been 
shown to be cancer genes in humans). Second, we chose the subset of genes for 
which there were already reagents (meaning open reading frame [ORF] constructs) 
available from the Genetic Perturbation Platform at the Broad Institute. Third, we 
chose the set of genes where the ORF constructs had been sequenced and i) did not 
have any mutations [i.e., that the sequence of the cDNA corresponded to the wild 
type] and ii) where the sequence of the ORF passed a high quality sequence cutoff 
to avoid testing ORFs where the sequence of the clone was ambiguous and could 
have unknown mutations. Fourth, the cell models are optimized for perturbations in 
certain pathways (i.e., the SALE-Y cells are rendered tumorigenic via activation of 
the EGFR/MAPK pathways and the HA1E-M cells are rendered tumorigenic via 
activation of the PI3K/YAP/NFKB pathways). We hypothesized that choosing a set of 
genes that linked to the pathways activated in each cell model would likely increase 
the chance to induce tumors in these models. We tested this hypothesis by choosing 
the 25 genes so, when possible, they interacted directly with members of the 
pathway activated in the HA1E-M model, but not in the SALE-Y model. However, we 
see similar validation rates in the two models so it does not seem to have an effect 
that we are ‘fitting’ the candidates specifically to the HA1E-M model (Supplementary 
Note 10). It is likely that the higher validation rates observed for Netsig candidates 
(138% of the theoretical expectation, Discussion) when using both cell models in 
parallel is due to a combination of these selection criteria (available reagents and 
connection to known cancer pathways in the HA1E-M model) and underestimates of 
the sensitivity of the assay because there is an upper limit to how many true positive 
oncogenes in a cell pool can induce tumors based on the issues with subjugated 
clones mentioned above). 
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Analysis of oncogene negative lung adenocarcinoma patients: Segmentation 
was performed using the Circular Binary Segmentation algorithm followed by 
Ziggurat Deconstruction to infer the length and amplitude of each segment. 
Recurrent peaks for focal somatic copy number alteration were identified using 
GISTIC 2.08. A peak was considered to be focally amplified or deleted within a tumor 
if the GISTIC 2.0–estimated focal copy number ratio was greater than 0.1 or less 
than −0.1, respectively. Purity and ploidy were estimated using ABSOLUTE34. Two 
peaks were considered the same across tumor types if (i) the known target gene of 
each peak was the same or (ii) the genomic location of the peaks overlapped after 
adding 1 mega base to the start and end locations of each gene. For the second 
criterion, only peaks that contained fewer than 25 genes and were smaller than 10 
Mb were considered [for more details see Campbell et al., 2016)]. Because we are 
executing a a case-control analysis of the copy numbers of genes that induce tumors 
in the SALE-Y model relevant for lung adenocarcinoma our analysis normalizes out 
any potential effects of, for example gene size, amount of protein-protein interactions 
a gene has and so forth). 
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Figure Legends: 
 
Figure 1 | NetSig predicts true cancer genes. a) Areas under the receiver 
operating characteristics curve (AUCs) for genes in the ‘Cosmic classic’ and ‘recently 
emerging’ sets are 0.86 and 0.75, respectively (adj. P < 0.05). Genes from the 
random set fit the null hypothesis (AUC 0.49, nominal P = 0.75). b) Removing the 
effect of very well established cancer genes has a significant impact on the ‘Cosmic 
classic’ set, but the effect is less pronounced on the ‘recently emerging’ set (AUCs = 
0.79 and 0.73, respectively) and there is no effect on the random set. c) Genes with 
a significant (FDR <= 0.1) NetSig score.  Genes are represented as individual dots 
and plotted along the x-axis by the NetSig Q value from the most significant of 21 
tumor types, and on the y-axis by the NetSig Q value when 4,724 tumors are 
analyzed as a combined pan-cancer cohort. Significance at FDR Q <= 0.1 is 
indicated on each axis by grey lines. Genes above the horizontal line are significant 
in the pan-cancer analysis. Genes to the right of the vertical line are significant in at 
least one tumor type with the most significant tumor type indicated by the node color. 
Genes in the upper right quadrant are significant in both the pan-cancer data and in 
an individual tumor type. 
 
 
Figure 2 | In vivo tumor formation of NetSig5000 and control sets. a) 
Experimental design. b) Tumorigenic potential of 23 NetSig5000 genes (NetSig 
candidates), 25 known oncogenes (Positive control), and 79 random genes (Random 
controls) across 144 in vivo mouse tumorigenesis experiments. We plotted maximum 
proliferation rate (x-axis) and maximum significance of enrichment in tumors relative 
to pre-injection samples (y-axis) for both cell models. Dark grey boxes indicate one 
standard deviation from the median (lower confidence) and light grey boxes two 
standard deviations from the mean (high confidence). c) At the high confidence 
threshold ten NetSig5000 genes induce tumors across the two models. At the lower 
confidence threshold one additional gene induces tumors. d) Proportion of the 
NetSig5000 candidate set, positive control set, and random control set, respectively, 
that induced tumors in mice. Left three histograms indicate the results at the level of 
genes; right three histograms indicate the results at the level of cDNA constructs. 
 
 
Figure 3 | Targeted re-analysis of oncogene negative lung adenocarcinoma 
patients. a) Amplification of the nine genes that induce tumors in the lung 
adenocarcinoma-relevant cell model. As a group the genes are significantly amplified 
(P = 7.0e-3) and AKT2 and TFDP2 are individually significantly amplified (FDR Q  < 
0.1). b), c) In depth view of the amplified regions surrounding AKT2 and TFDP2, 
respectively. d), e) The proportion of oncogene positive or negative patient with a 
certain copy number of AKT2 or TFDP2 . f), g) NetSig networks of AKT2 and TFDP2. 
Nodes other than AKT2 and TFDP2 are colored by the significance of the pan-cancer 
Q value of the corresponding gene, where light grey represents Q close to 1 and red 
Q << 1, with darker red representing more significant Q values as indicated below 
the relevant node. 
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