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A central goal in theoretical neuroscience is to predict the response
properties of sensory neurons from first principles. Several theories
have been proposed to this end. “Efficient coding” posits that neural
circuits maximise information encoded about their inputs. “Sparse
coding” posits that individual neurons respond selectively to spe-
cific, rarely occurring, features. Finally, “predictive coding” posits
that neurons preferentially encode stimuli that are useful for making
predictions. Except in special cases, it is unclear how these theories
relate to each other, or what is expected if different coding objec-
tives are combined. To address this question, we developed a unified
framework that encompasses these previous theories and extends to
new regimes, such as sparse predictive coding. We explore cases
when different coding objectives exert conflicting or synergistic ef-
fects on neural response properties. We show that predictive coding
can lead neurons to either correlate or decorrelate their inputs, de-
pending on presented stimuli, while (at low-noise) efficient coding
always predicts decorrelation. We compare predictive versus sparse
coding of natural movies, showing that the two theories predict qual-
itatively different neural responses to visual motion. Our approach
promises a way to explain the observed diversity of sensory neural
responses, as due to a multiplicity of functional goals performed by
different cell types and/or circuits.

Sensory neural circuits perform a myriad of computations,
which allow us to make sense of, and interact with, our en-

vironment. For example, neurons in the primary visual cortex
encode information about local edges in an image [1], while
neurons in higher-level areas encode more complex features,
such as textures or faces [2, 3]. A central aim of sensory neu-
roscience is to develop a mathematical theory to explain the
purpose and nature of such computations, and, ultimately,
predict neural responses to stimuli from first principles.

Several theories have been proposed about the function that
sensory systems have evolved to perform. The efficient coding
hypothesis posits that sensory circuits transmit maximal in-
formation about their inputs, given internal constraints, such
as metabolic costs and/or noise [4, 5, 6, 7]. Alternatively, the
sparse coding hypothesis posits that individual neurons re-
spond selectively to specific, rarely occurring, features in the
environment [8, 9, 10]. Finally, the more recent predictive cod-
ing hypothesis1 posits that sensory neurons transmit maximal
information about stimuli that are predictive about the future
while discarding non-predictive information [11, 12].

One may ask which, if any, of these objectives are fulfilled
by sensory neural circuits. This question is all the more impor-
tant given that, in many cases, different coding objectives ap-
pear to directly conflict with each other. For example, a classic
result of efficient coding in the low-noise regime is that neurons
should temporally decorrelate their inputs and preferentially
encode fast stimulus features [13, 14, 15, 16]. In contrast, pre-
dictive coding favours the extraction of temporally-correlated,
slow features [17, 18]. Likewise, sparse coding requires that
neurons respond selectively to a single, preferred stimulus fea-
ture. It is unclear if this is compatible with predictive coding,
which requires neurons to respond to stimuli as quickly as
possible.

While a large body of theoretical work exists on efficient
and sparse coding (reviewed in [19, 20]), there is little work
on how neurons could optimally encode stimuli that are pre-

dictive about the future (with the exception of [21, 17]); in
short, the general implications of predictive coding for neural
circuits are still unknown. We also do not understand how dif-
ferent coding objectives relate to each other, or what happens
when they are combined.

Here, we incorporate the three existing theories—sparse
coding, efficient coding, and predictive coding—into a unified
framework. In this framework, a small set of optimisation pa-
rameters determines the functional goals and constraints faced
by sensory neurons. Previous theories correspond to specific
values of these optimisation parameters. As a result, we can
investigate the conditions under which different coding objec-
tives, such as encoding predictive information versus maximis-
ing efficiency, have conflicting or synergistic effects on neural
responses. Further, we can explore qualitatively new coding
regimes, such as neural codes that are both predictive and
sparse. We end by hypothesizing that the observed diversity
of sensory neural responses spans the space of coding tradeoffs
accessible by varying the parameters of our new theory.

A unified framework for predictive and efficient coding
We consider a stimulus, y−∞:t ≡ (. . . , yt−1, yt), giving rise
to a sensory input, xt = yt + nt, where nt represents input
noise. We look for the optimal neural code, p(rt|x−∞:t), such
that neural responses r within a temporal window of length
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trials and modulated by the movie. During movie presentation,
the power of the LFP spectrum was highest at low frequencies
(<4 Hz) and then dropped with increasing frequency (Figure S1
available online). We thus started by considering the behavior
of the phase of LFPs fluctuations in the highest-power band,

namely the 1–4 Hz frequency range (delta band). The single-
trial 1–4 Hz band-passed LFP traces during movie presenta-
tion (Figure 1B) show that 1–4 Hz LFPs too were reliably mod-
ulated by the movie. To extract the instantaneous value of the
phase of the LFP fluctuations in each trial and at each time

Figure 1. Illustration of the Time Course of the LFP Phase and of the Spikes, and of the Difference between the Spike Count and Phase-of-Firing Code

These data were recorded from electrode 2 in monkey A98 in response to a movie.
(A) LFP traces from five presentations of a 12-s-long movie extract. Traces were displaced on the vertical axis so that they could be made distinguishable.
(B) Time courses of the 1–4Hz (delta band) band-passed LFP to five presentations of the same 12-s-longmovie extract as in (A). Traces were again displaced
on the vertical axis. The color of the line at each time denotes to which of the four phase quadrants the instantaneous LFP phase belongs to (the color code
for phase quadrants is shown in [G] and [H]).
(C) Time course of the phases of the 1–4Hz (delta) LFP over 30 repetitions of themovie extract. Phase valueswere color coded into quadrants as illustrated in
(G). The bottom five trials in (C)–(E) correspond to the five trials in (A)–(B).
(D) Raster plot of spike times (indicated by dots) resulting from 30 repeated presentations of the selected 12 s movie extract.
(E) Raster plot of the same spike times as in (D) but with the dots representing the spikes color coded according to the 1–4Hz LFP phase quadrant at which
they were emitted. These colored spike times illustrate the phase-of-firing code, whereas the colorless spike times in (D) illustrate the spike-count code.
(F) Spike rate, averaged over all 30 trials and computed in 4-ms-long sliding time bins, during the 12 s movie extract. The green star and the blue circle in-
dicate movie points that elicit similar spike rate responses but different and reliable phase values. These twomovie points can bemuch better discriminated
from each other by consideration of the phase at which spikes were emitted rather than just the counting of spikes.
(G) The sinusoidal convention used for phase, plotted with the color code chosen to label phase quadrants. With this sinusoidal convention, the phase
values p/2 and 3p/2 correspond respectively to the peak and trough of the oscillation.
(H) The probability distribution of the LFP phases at spike times. The curve (plotted with the same color code as in [G]) is normalized as probability per unit
angle (its integral across all angles equals one).
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Fig. 1. Schematic of modeling framework. (a) A stimulus

(above) elicits a response in a population of neurons (below). We look for optimal

codes, where the responses within a time window of length τ maximise information

encoded about the stimulus at lag ∆, subject to a constraint on the information about

past inputs, C. (b) For a given stimulus, the optimal code depends on three param-

eters: τ , ∆, and C. Previous work on efficient temporal coding looked at τ > 0,

and ∆ < 0 (blue shade). Previous work on predictive coding looked at ∆ > 0 and

τ ∼ 0 (red shade). Our theory is valid in all regimes, but we focus in particular on

∆ > 0 & τ > 0 (black shade). (c) We further explore how optimal codes change

when there is a sparse latent structure in the stimulus (natural image patch, right) vs

when there is none (filtered gaussian noise, left).

1The term ‘predictive coding’ has been used previously to describe several different approaches. In
our work, we use the definition given by [11], where neurons encode maximal information about
the future, given information encoded about the past. Alternative definitions are described in the
discussion.
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τ encode maximal information about the stimulus at time lag
∆, given a fixed amount of information encoded about past
inputs, C (Fig a).

This problem can be formalised using the information bot-
tleneck (IB) framework [22], in which one seeks a code,
p(rt|x−∞:t), that maximises the objective function:

Lp(rt|x−∞:t) = I (Rt−τ :t;Yt+∆)− γI (Rt−τ :t;X−∞:t) , [1]

where the first term is the mutual information between re-
sponses Rt−τ :t and stimulus Yt+∆, to be maximised, and the
second term denotes the mutual information between Rt−τ :t

and X−∞:t, to be constrained (which we call the channel ca-
pacity, C). A constant, γ, determines the strength of this
constraint, and thus, the tradeoff between coding fidelity and
compression. When γ = 0 the optimal solution is to encode
the input perfectly; when γ = 1 the optimal solution is to
encode zero information about the input.

In general, it is impossible to exactly maximise the objec-
tive function in Eq (1). We previously presented an approx-
imate method that instead maximizes the information about
the stimulus which can be recovered from neural responses us-
ing a specific type of decoder (e.g., a linear decoder); formally,
this amounts to a variational approximation that maximizes
a lower bound on L [23], as described in SI Section 1. To re-
cover efficient coding in the limit where X ≈ Y , we replaced
Rt−τ :t in the second term of Eq (1) with the instantaneous re-
sponse, Rt. With this modification, maximising L for ∆ < 0
is equivalent to minimising the redundancy in the responses,
as in efficient coding (see Table 1 and SI Section 1).

Equation (1) clearly shows that the optimal coding strategy
depends on three factors: the decoding lag, ∆, the code length,
τ , and the channel capacity, C (determined by γ). Previous
theories of neural coding correspond to specific regions within
the three-dimensional parameter space spanned by ∆, τ , and
C (Fig b). For example, efficient coding investigated how, at
low noise, neurons transmit maximal information about past
inputs (∆ < 0) by minimising temporal redundancy in their
responses [13, 14]. This strategy is optimal when the stimu-
lus can be read-out by integrating neural responses over time,
i.e., when τ > 0 (blue region in Fig b). In contrast, predic-
tive coding (∆ > 0) looked exclusively at near-instantaneous
codes, where τ ∼ 0 (red region in Fig b)2 [12, 21, 17]. Be-
low, we investigate the relation between these previous works
and focus on the (previously unexplored) case of neural codes
that are both predictive (∆ > 0) and temporal (τ > 0; grey
region in Fig b). To specialize our theory to the biologically-
relevant case, we further investigate predictive coding of natu-
ral stimuli. A hallmark of natural stimuli is their sparse struc-
ture [19, 20, 8, 24]: stimulus fragments can be constructed
from a set of primitive features (e.g., image contours), each of
which occurs rarely (Fig c). By incorporating sparsity into our
information-theoretic framework, we explore the relationship
between sparse and predictive coding.

Results
Dependence of neural code on coding objectives. Our initial
goal was to understand the influence of different coding objec-
tives in the simplest scenario, where a single neuron linearly
encodes a 1-d input. In this model, the neural response at
time t is:

rt =

τw∑
k=0

wkxt−k + ηt, [2]

where w = (w0, . . . , wτw ) are the linear coding weights and ηt
is a gaussian noise with unit variance.

With stimuli that have gaussian statistics, the objective
function takes a very simple form:

L = −1

2
log

〈(
yt+∆ −

τ∑
k=0

ukrt−k

)2〉
− γ 1

2
log
〈
r2
t

〉
[3]

where u = (u0, . . . , uτ ) are the optimal linear read-out weights
used to reconstruct the stimulus at time t + ∆ from the re-
sponses between t−τ and t. Thus, the optimal code is the one
that minimises the mean-squared reconstruction error at lag
∆, constrained by the variance of the neural response (relative
to the noise variance).

Initially, we investigated “instantaneous” predictive coding,
where τ = 0, so that the stimulus at time t + ∆ is estimated
from the instantaneous neural response at time t (Fig 2a). We
considered three different stimulus types, shown in Fig 2b.
With a “Markov” stimulus, whose future trajectory depended
on the current state, yt, only (Fig 2b, top panel; see SI Section
2.1), to predict the stimulus at a future time, yt+∆, neurons
only needed to encode the current state yt. Thus, when τ = 0,
we observed the trivial solution where rt ∝ yt, irrespective of
the decoding lag, ∆ (Fig 2c-d, top panels).

With a “two-timescale” stimulus, constructed from two
Markov processes that vary over different timescales (Fig 2b,
middle panel), the optimal solution was a low-pass filter, to
selectively encode the predictive, slowly varying, part of the
stimulus. The strength of the low-pass filter increased mono-
tonically with the decoding lag, ∆ (Fig 2c-d, middle panels).

Finally, with an “inertial” stimulus, whose future trajectory
depended on the previous two states, yt, and yt−1 (Fig 2b,
lower panel), the optimal solution was a high-pass filter, so as
to transmit information about velocity. The strength of the
high-pass filter also increased monotonically with the decoding
lag, ∆ (Fig 2c-d, lower panels).

With an instantaneous code, varying the channel capacity,
C, only rescales responses (relative to the noise amplitude), so
as to alter their signal-to-noise ratio. However, the response
shape is left unchanged (regardless of the stimulus statistics;
Fig 2d). In contrast, with temporally extended codes, where
τ > 0 (so the stimulus at time t + ∆ is estimated from the
integrated responses between time t − τ and t; Fig 2a) the
optimal neural code varies with the channel capacity, C. In
common with classical efficient coding, at high C (i.e. high
signal-to-noise ratio) neurons always decorrelated their input,
regardless of both the stimulus statistics and decoding lag, ∆.
Also in common with classical efficient coding, decreasing C
always led to more correlated responses [7]. However, unlike
efficient coding, at low to intermediate values of C (i.e. in-
termediate to low signal-to-noise ratio) the optimal code was
qualitatively altered by varying the decoding lag, ∆. With
the Markov stimulus, increasing ∆ had no effect; with the
two-timescale stimulus it led to low-pass filtering; and with
the inertial stimulus it led to stronger high-pass filtering.

Taken together, “phase diagrams” for optimal, temporally-
extended codes show how regimes of decorrelation/whitening
(high-pass filtering) and of smoothing (low-pass filtering) are
preferred depending on channel capacity, C, and decoding lag,
∆. We verified that a qualitatively similar transition from low-
to high-pass filtering is also observed with higher dimensional
stimuli, and/or more neurons. Importantly, we show that
these phase diagrams depend in an essential way on the stim-
ulus statistics already in the linear, gaussian case. We next
examined what happens for non-gaussian, high-dimensional
stimuli.

2 In other words, previous efficient coding models maximised the encoded information rate at time
t, while previous predictive coding models maximised the total encoded information at time t.
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Fig. 2. Dependence of optimal code on decoding lag, ∆, code length, τ , and channel capacity, C. (a) We investigated two types

of code: instantaneous codes, where τ = 0 (panels c-d), and temporally extended codes, where τ > 0 (panels e-f). (b) Training stimuli used in our simulations. Markov

stimulus: the future only depends on the present state. Two-timescale stimulus: sum of two Markov processes that vary over different timescales (shown at right). Inertial

stimulus: future depends on stimulus at previous two time-steps. (c) Neural responses to probe stimulus (dashed line) after optimising code with varying ∆, and τ = 0.

Responses are normalised by the final, steady state value. (d) Correlation index after optimisation with varying ∆ & C. Correlation index measures the correlation between

neural responses at adjacent timesteps, normalized by the stimulus correlation at adjacent timesteps, i.e., 〈rtrt+1〉 /
〈
r2
t

〉
divided by 〈xtxt+1〉 /

〈
x2
t

〉
. Values greater /

smaller than 1 indicate that neurons temporally correlate (red) / decorrelate (blue) their input. Filled circles show the parameter values used in panel c. (e-f) Same as c-d,

but with code optimised for τ � 0. Plots in panel e correspond to responses to probe stimulus (dashed line) at varying channel capacity & fixed decoding lag (i.e., ∆ = 3,

indicated by dashed line in panel f).

Predictive versus efficient coding of naturalistic stimuli. Nat-
ural stimuli exhibit a strongly non-gaussian statistical struc-
ture which is essential for human perception [25, 24]. A large
body of work has investigated how neurons could efficiently
represent such stimuli by encoding their non-redundant, or in-
dependent, components [19]. Under fairly general conditions,
this is equivalent to finding a sparse code, where each neu-
ron responds selectively to a single, rarely occurring, stimulus
feature. For natural images this leads to neurons selective for
spatially localised image contours, qualitatively similar to the
receptive fields (RFs) of V1 simple cels [8, 26]. For natural
movies this leads to neurons selective for a particular motion
direction, again similar to observations in area V1 [27].

However, an independent (sparse) temporal code has only
been shown to be optimal when: (i) the goal is to maximise
information about past inputs, i.e, ∆ < 0; (ii) at low noise,
i.e., at high capacity, C � 0. We were interested, therefore, in
what happens when these two criteria are violated; for exam-
ple when neural responses are optimised to encode predictive
information, i.e., for ∆ ≥ 0.

To explore these questions we modified the objective func-
tion of Eq (3) to deal with multi-dimensional stimuli and non-
gaussian statistics of natural images. To achieve this, we gen-
eralized the second term of our objective function to allow
optimization of the neural code with respect to higher-order

(i.e., beyond covariance) response statistics. Crucially, this
modification, described in SI Section 1 and [23], permits—but
does not enforce by hand—the sparsity of neural responses.
For non-sparse, gaussian stimuli the modification automati-
cally recovers the results of the previous section; for natural
stimuli it replicates previous sparse coding results in the limit
∆ < 0 and C � 0 (see SI Fig 3), without introducing any new
tuneable parameters.

We investigated how the optimal neural code for natural
stimuli varied with the decoding lag, ∆, while keeping chan-
nel capacity, C, and code length, τ , constant. Stimuli were
constructed from 10×10 pixel patches drifting stochastically
across static natural images (Fig 3a & SI Fig 1; see SI Sec-
tion 2.2). Neural encoding weights were optimised with two
different decoding lags: for ∆ = −6 the goal was to efficiently
encode the past, while for ∆ = 1 the goal was to predict the
near future. Figure 3b confirms that the codes indeed are op-
timal either for efficiency (∆ = −6) or prediction (∆ = 1), as
desired.

After optimisation at both values of ∆, individual neurons
were selective to local oriented edge features (Fig 3c-d) [8].
Varying ∆ qualitatively altered the temporal features encoded
by each neuron, while having little effect on their spatial selec-
tivity. Consistent with previous results in the efficient coding
regime [27], single cells at ∆ = −6 were responsive to stim-
uli moving in a preferred direction, as evidenced by spatially
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Fig. 3. Efficient versus predictive coding of natural stimuli. (a) Movies were constructed from a 10×10 pixel patch (red square) which drifted

stochastically across static natural images. (b) Information encoded by neural responses about the stimulus at varying lag, after optimization with ∆ = −6 (blue) and

∆ = 2. (c) Spatio-temporal encoding filters, for 4 example neurons, after optimisation with ∆ = −6. (d) Same as panel c, for ∆ = 1. (e) Directionality index of neural

responses, after optimisation with ∆ = −6 and ∆ = 1. The directionality index measures the percentage change in response to a grating stimulus moving in a neuron’s

preferred direction, versus the same stimulus moving in the opposite direction.

displaced encoding filters at different lags (Fig 3c & SI Fig 4a-
c), and a high “directionality index” (Fig 3e). In contrast,
for predictive coding setup at ∆ = 1, cells responded equally
to stimuli moving in either direction perpendicular to their
encoded stimulus orientation. This was evidenced by spatio-
temporally separable receptive fields (SI Fig 4d-f) and direc-
tionality indexes near zero. This qualitative difference between
the efficient and predictive code for natural movies was highly
surprising, and we sought to understand its origins.

Trade-off between sparsity and predictive power. To gain an
intuitive understanding of how the optimal code varies with
decoding lag ∆, we constructed artificial stimuli from over-
lapping “gaussian bumps” which drifted stochastically along a
single spatial dimension (Fig 4a; SI Section 2.3). While simple,
this stimulus captured two key aspects of the natural movies:
first, the gaussian bumps drifted smoothly in space, resembling
the stochastic global motion over the image patches; second,
the stimulus also had a sparse latent structure.

We optimised the neural code with ∆ ranging from −2 to 2,
holding the channel capacity, C, and code length, τ , constant.
Fig 4b confirms that highest performance was achieved when
the reconstruction performance was evaluated at the same lag
for which each model was trained. This simpler setup reca-
pitulated the surprising result we obtained with naturalistic
stimuli: namely, that when ∆ < 0 neurons were selective to a
single preferred motion direction, while when ∆ ≥ 0 neurons
responded equally to stimuli moving from either direction into
their receptive field (Fig 4c-d).

Predicting the future state of the stimulus requires estimat-
ing its current motion direction and speed. How is it possible,
then, that an optimal predictive code (∆ > 0) results in neu-
rons being unselective to motion direction? This paradox is
resolved by realising that it is the information encoded by the
entire neural population that counts, not the information en-
coded by individual neurons. Indeed, when we looked at the
information encoded by the neural population, we did find
what we had originally expected: when optimised with ∆ > 0,
the neural population as a whole encoded significantly more
information about the stimulus velocity than its position (rel-
ative to when ∆ < 0), despite the fact that individual neurons
were unselective to motion direction (Fig 4e-f).

The change in coding strategy that is observed as one goes
from efficient (∆ < 0) to predictive coding (∆ ≥ 0) is in
part due to a tradeoff between cells maintaining sparse re-
sponses (which is efficient) and responding quickly to stimuli

within their RF (which helps predictions). Intuitively, to be
efficient and respond with greatest selectivity, the neuron first
has to wait to process and recognize the “complete” stimulus
feature; unavoidably, however, this entails a processing delay
and leaves no information to be encoded predictively. This
can be seen in Fig 4g-h, which shows how both the response
sparsity and delay to stimuli within a cell’s RF decrease with
∆. In SI section 3.4 we describe in detail why this trade-off
between efficiency and prediction leads to direction selective
filters when ∆ < 0, but not when ∆ > 0 (SI fig. 5).

Beyond the effects on the optimal code of various factors ex-
plored in detail in the main paper, our framework further gen-
eralises previous efficient and sparse coding results to factors
listed in Table 1 and discussed in SI Section 3.5. For example,
decreasing the capacity, C (while holding ∆ constant at −2)
resulted in neurons being unselective to stimulus motion (SI
fig 6a), with a similar result observed for increased input noise
(SI fig 6b). Thus, far from being generic, traditional sparse
temporal coding, in which neurons responded to local motion,
was only observed in a specific regime (i.e., ∆ < 0, C � 0 and
low input noise, n ∼ 0).

Discussion
Efficient coding has long been considered a central principle
for understanding early sensory representations [4, 5], with
well-understood implications and generalizations [9, 28]. It has
been successful in predicting many aspects of neural responses
in early sensory areas directly from the low-order statistics of
natural stimuli [7, 29, 30, 31, 24], and has even been extended
to higher-order statistics and central processing [32, 33]. How-
ever, a criticism of the theory is that it implicitly treats all
sensory information as equal, despite empirical evidence that
neural systems prioritise behaviourally relevant (and not just
statistically likely) stimuli [34]. To overcome this limitation,
Bialek and colleagues proposed an alternative theory, called
predictive coding, which posits that neural systems encode
maximal information about future inputs, given fixed infor-
mation about the past [11, 12]. This theory is motivated by
the fact that stimuli are only useful for performing actions
when they are predictive about the future.

Compared to efficient coding, predictive coding has re-
mained relatively unexplored (though see later for alternative
definitions of predictive coding, which have recieved more at-
tention). Existing work only considered the highly restrictive
scenario where neurons maximise information encoded in their
instantaneous responses [12, 21, 17]. In this case (and sub-
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Fig. 4. Efficient versus predictive coding of a “gaussian-bump” stimulus. (a) Stimuli consisted of gaussian-bumps that drifted stochastically

along a single spatial dimension (with circular boundary conditions). (b) Information encoded by neural responses about the stimulus at varying lag, ∆test, after optimization

with varying ∆train. Black dots indicate the maximum for each column. (c) Response of example neuron to a test stimulus (above), after optimisation with ∆ = −2
(blue), ∆ = 0 (green), and ∆ = 2 (red). (d) Spatio-temporal encoding filters for an example neuron, after optimisation with different ∆. (e) Circular correlation between

the reconstructed speed of a moving gaussian blob and its true speed, versus the circular correlation between the reconstructed position and its true position, obtained from

neural responses optimised with ∆ = ±2 (red and blue curves). Curves were obtained by varying γ in Eq (3), to find codes with different channel capacities. (f) Linear

reconstruction of the stimulus trajectory, obtained from neural responses optimised with ∆ = ±2 (red and blue curves). The full stimulus is shown in grayscale. While

coding capacity was chosen to equalize the mean reconstruction error for both models (vertical dashed line in panel e), the reconstructed trajectory was much smoother for the

predictive (red) than for the efficient (blue) coding model. (g) Response sparsity (defined as the negentropy of neural responses), versus ∆ (dots = individual neurons; line

= population average). (h) Delay between stimulus presented at a neuron’s preferred location and each neuron’s maximum response, versus ∆.

ject to some additional assumptions, such as gaussian stimulus
statistics and instantaneous encoding filters), predictive cod-
ing is formally equivalent to slow feature analysis [18]. This is
the exact opposite of efficient coding, which (at low noise/high
capacity) predicts that neurons should temporally decorrelate
their inputs [14].

To clarify the relation between efficient and predictive cod-
ing, we developed a unified framework that can treat both
theories [22, 11, 23]. We investigated what happens when the
neural code is optimised to be both predictive and temporally
efficient (Fig b). In this case, the optimal code depends criti-
cally on the channel capacity (i.e. signal-to-noise ratio), which
describes how much information the neurons can encode about
their input. At high capacity (i.e. low-noise), neurons always
temporally decorrelate their input. At finite capacity (i.e. mid-
to high-noise), however, the optimal neural code varies qual-
itatively depending on whether the goal is to reliably predict
the future or efficiently reconstruct the past.

When we investigated predictive coding of natural stimuli,
we found solutions that are qualitatively different from known
sparse coding results, in which individual neurons are tuned to
directional motion of local edge features [27]. In contrast, we
found that neurons optimised for predictive coding are selec-
tive for motion speed but not direction (Fig 3 and SI Fig 4).
Surprisingly, however, the neural population as a whole en-
codes motion even more accurately than before (Fig 4e). We
show that these changes are due to an implicit trade-off be-
tween maintaining a sparse code (which is efficient) and re-

Table 1. List of factors determining the optimal neural code. The first three

factors are explored in detail in the main text.

Factor Control parameter Effect
Coding capacity C Fig 2
Decoding window τ Fig 2
Decoding lag ∆ Fig 2-4
Input noise magnitude noise n, added to stim. y SI 3.5.1
Temp. corr. in spiking 2nd term in Eq (1) SI 3.5.2
Stim. prediction window Y(t+∆1:t+∆2) in Eq (1) SI 3.5.3
Encoding model parametric form of p(r|x) SI 3.5.4

sponding quickly to stimuli within each cell’s RF (which aids
predictions; Fig 4g-h).

It is notable that, in our simulations, strikingly different
conclusions are reached by analysing single neuron responses
versus, the responses of the entire neural population. Specifi-
cally, looking only at single neurons responses would lead one
to conclude that when performing predictive coding, neurons
did not encode motion direction; looking at the neural popu-
lation responses reveals that the opposite is true. This illus-
trates the importance of population-level analyses of neural
data, and how, in many cases, single neuron responses can
give a false impression of which information is represented by
the population.

A major challenge in sensory neuroscience is to derive the
observed cell-type diversity in sensory areas from a norma-
tive theory. For example, in visual area V1, one observes a
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range of different cell-types, some of which are have spatio-
temporally seperable RFs, and others which do not [35, 36].
The question arises, therefore, whether the difference between
cell-types emerges because different subnetworks fulfill quali-
tatively different functional goals. One hypothesis, suggested
by our work, is that cells with seperable RFs have evolved to
encode predictive information, while cells with non-seperable
RFs evolved to optimise coding efficiency. More generally, the
same hypothesis could explain the existence of multiple cell-
types in the mammalian retina [37], with each cell-type mosaic
implementing an optimal code for a particular choice of opti-
misation parameters, e.g., channel capacity or prediction lag.

Testing such hypotheses rigorously against quantitative
data would require us to generalise our work to nonlinear en-
coding and decoding models (Table 1, final row). Here we
focused on a linear decoder to lay a solid theoretical founda-
tion and permit direct comparison with previous sparse cod-
ing models, which also assumed a linear decoder [27, 8, 26].
In addition, a linear decoder forces our algorithm to find a
neural code for which information can be easily extracted by
downstream neurons performing biologically plausible opera-
tions. While the linearity assumptions simplify our analysis,
the framework can easily accommodate non-linear encoding
and decoding. For example, we previously used a “kernel”
encoding model, where neural responses are described by a
non-parametric & non-linear function of the input [23]. Oth-
ers have similarly used a deep convolutional neural network as
an encoder [38].

In the future it would be interesting to investigate how our
ideas relate to sensory processing in a hierarchy. Hierarchical
processing has long been discussed in the context of efficient
coding [24], where neurons at each layer are assumed to re-
move residual statistical dependencies in their inputs [39, 19].
In contrast, hierarchical predictive coding, in which neurons

at each layer encode maximal information about their future
inputs, has not yet been explored.

“Predictive coding” has been used to describe different ap-
proaches. Here, we understood the term in information-
theoretic context, implying that neurons preferentially encode
stimuli that carry information about the future [11]. How-
ever, predictive coding has also been used to imply that neu-
rons encode “surprising” stimuli, i.e., those not predictable
from past inputs [4, 40, 41]. Elsewhere, predictive coding de-
scribes a particular type of hierarchical processing, in which
feed-forward projections encode an error signal, equal to the
difference between bottom-up sensory inputs and top-down
predictions from higher sensory areas [42, 43]. These alterna-
tive definitions of predictive coding are not equivalent. For
example, sensory stimuli can be surprising based on past in-
puts, but not predictive about the future [44]. Likewise, pre-
vious theories of hierarchical predictive coding do not address
which sensory information should be preferentially encoded or
alternatively, discarded. Clarifying the relationship between
these inequivalent definitions of predictive coding and link-
ing them mathematically to coding efficiency provided one of
the initial motivations for our work. In past work, alternative
coding theories are often expressed using very different mathe-
matical frameworks, impeding comparison between them, and
sometimes leading to confusion. In contrast, by using a sin-
gle mathematical framework to compare different theories—
efficient, sparse and predictive coding—we were able see ex-
actly how they relate to each other, the circumstances under
which they make opposing or similar predictions, and what
happens when they are combined.
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