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Abstract 

Background 

Genetic analyses of plant root system development require large datasets of extracted 

architectural traits. To quantify such traits from images of root systems, researchers often have 

to choose between automated tools (that are prone to error and extract only a limited number of 

architectural traits) or semi-automated ones (that are highly time consuming).  

Findings 

We trained a Random Forest algorithm to infer architectural traits from automatically-extracted 

image descriptors. The training was performed on a subset of the dataset, then applied to its 

entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract 

meaningful architectural traits based on image descriptors. We also show that these traits are 

sufficient to identify Quantitative Trait Loci that had previously been discovered using a semi-

automated method. 

Conclusions 

We have shown that combining semi-automated image analysis with machine learning algorithms 

has the power to increase the throughput in large scale root studies. We expect that such an 

approach will enable the quantification of more complex root systems for genetic studies. We also 

believe that our approach could be extended to other area of plant phenotyping. 
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Root, plant phenotyping, machine learning, qtl analysis 
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Findings 

Background 

 

Plant root systems have many physiological roles, including the acquisition of water and nutrients, 

making them of critical importance for yield establishment in crops. The improvement of root 

architectural traits will thus be crucial in delivering the yield improvement required to ensure future 

global food security [1, 2]. Unfortunately, root systems are difficult to analyse and quantify: they 

are intrinsically complex due to their highly branched tree structure [3], and their growth in an 

opaque medium (soil) makes them difficult to observe. 

 

For many years, root researchers have used specific experimental setups to observe and quantify 

root system architecture. Among these, the "pouch system" is widely used by the community to 

acquire large number of images of root systems [4–6]. In this approach, plants are grown on the 

surface of paper allowing the root system to be imaged. The analysis of the resulting root images 

can be performed either using semi-automated [7, 8] or fully-automated root image analysis 

software [9,10]. Semi-automated tools require input and validation by an expert user to faithfully 

extract the geometry of the root system. However, such user interaction is time consuming, which 

can strongly hinder the application of such approaches to large datasets (such as those required 

for quantitative genetic studies). Fully automated software tools are faster, but the extracted 

descriptors are prone to unexpected errors and the quantified traits are usually less informative 

[3].  This has led to image analysis being described as a new “bottleneck” in plant phenotyping 

[11]. 

        

Machine learning (an emerging multidisciplinary field of computer science, statistics, artificial 

intelligence, and information theory) encompasses a range of techniques for the automatic 

production of analytical models and has been attracting the interest of the plant science 

community in recent years. Machine learning is breaking new ground in plant science via the 

automation of procedures and experiments that previously required manual curation. These 

automated workflows are catalysing the development of new data driven plant science [12]; 

including remote sensing [13], species identification [14], and phenotyping [15–17]. Recently, a 

new approach utilising machine learning algorithms has been proposed for the identification of 
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root system architectural traits. A Random Forest model was trained on corresponding ground-

truth and image descriptors. The resulting trained model was used to analyse a new set of 

simulated images and was shown to be much more accurate than the direct image descriptors 

[3].  

 

Here, we have evaluated this technique using a similar approach with experimental images, and 

assessed its application to a large scale genetic study. Our rationale was twofold. Firstly, we can 

reasonably expect a certain level of homogeneity within datasets coming from a single genetic 

screening as root systems from a given species share common attributes. Secondly, semi-

automated root image analysis tools can be used to extract the ground-truth on a subset of 

images. Such ground-truths can then be used to train a machine learning algorithm that can then 

be used to analyse the remaining images in the dataset.  

 

We show that such an approach can (i) yield better results than fully automated software analysis, 

(ii) is time-efficient compared to performing a semi-automated analysis on the whole dataset and 

(iii) is able to correctly identify previously found quantitative trait loci (QTL) for root traits.  

Overview of the analysis workflow 

 

The dataset was divided in two (Fig. 1A): a training dataset Dtrain of variable size (between 100 

and 900 images out of 969, see below) and a test dataset Dtest of 1645 images. The test dataset 

consisted of images of 94 members of the winter wheat Savannah x Rialto doubled haploid 

mapping population, previously utilised in [5]. For each dataset, we extracted the ground-truth 

Ttrain ,Ttest using the semi-automated root image analysis tool RootNav [7] and a set of image 

descriptors Itrain ,Itest using a fully automated analysis pipeline, RIA-J [3] (Fig. 1B). We used the 

extracted data (Itrain , Ttrain) to train a Random Forest model  M : I  → T, to predict the different 

ground-truth based on the image descriptors [3] (Fig. 1C,F). The trained Random Forest model  

M  was then applied on the image descriptors Itest  from the test dataset Dtest, to predict the different 

ground-truth Ttest (named Random Forest estimators, Fig. 1D). The accuracy of both the image 

descriptors and the Random Forest estimators were then compared to the ground-truth acquired 

with RootNav.  
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One of the aims of our analysis was to assess the minimal size required for a training dataset. 

Therefore, we used different numbers of images for training: 100, 200, 300, 400, 500, 600, 700, 

800 and 900. For each set, we randomly selected the images out of the 969 images that 

comprised the test dataset, then repeated the training/accuracy procedure described above. To 

account for the fact that the images were randomly selected, for each test size, we repeated the 

procedure 10 times.  

 

For each test dataset size, we used the Random Forest estimators to detect QTL regions 

associated with the different traits quantified (Fig. 1G). The identified QTL regions were then 

compared to those previously identified using RootNav, as well as those identified using the direct 

image descriptors. 

 

 
Figure 1: Overview of the analysis pipeline used in this study. A. We divided the full dataset 

(2614 images) into two: a training set (100 to 900 images) and a test set (1645 images). B. For 

each dataset, all the images were analysed using a semi-automated root image analysis tool 
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(RootNav) to extract the ground-truth, as well as with a fully automated root image analysis tools 

(RIA-J), to extract  image descriptors (see text for details). C. We trained a Random Forest model 

on the image descriptors and the ground-truth from the training dataset. D. We applied the 

Random Forest model on the image descriptors from the test dataset. E. We compared the image 

descriptors and the Random Forest estimators from the test dataset with their corresponding 

ground-truth. F. Comparison of biologically-relevant metrics extracted with the automated 

analysis and the Random Forest analysis. G. QTL were identified and compared using both 

Random Forest estimators and the ground-truth data.  

Random Forest estimators have a greater accuracy and greater 

biological relevance than image descriptors 

 

It has been previously shown that Random Forest estimators are better at predicting the ground-

truth values of various root system metrics compared to direct image descriptors [3]. However, 

such evaluation used only simulated images, rather than a “real” experimental dataset.  

 

Here we show that such an approach can also be used with experimental data yielding better 

results than the direct image descriptors (Fig. 2). We also show that, as expected, increasing the 

size of the training dataset increases the accuracy of the estimated metrics. For our data, we 

observe a strong increase in accuracy up to a dataset size of 500 test images, after which the 

improvement becomes marginal. Our approach also allows for the prediction of new metrics, not 

obtained using the direct image descriptors. For instance, the direct descriptors do not 

differentiate between the different root orders, whereas the Random Forest model does. 

 

We observed a diminution of the range of predicted value as the number of test images increases. 

This may be the result of a greater accuracy of the prediction, but may also be due to the fact that 

the same images are randomly selected for each repetition. As the number of test images 

increases, we expect the number of identical images across repetitions to increase as well (the 

total number of test images being 969).    
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Figure 2: Accuracy of the Random Forest estimators. The r-squared values of the linear 

regression between the Random Forest estimators and the ground-truths were computed for each 

size and repetition of test datasets. The dotted line represents the r-squared value between the 

most closely related image descriptors and the ground-truth.  
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Random Forest estimators identify the correct QTLs 

 

Plant phenotyping studies often use mapping populations to dissect the genetic architecture of 

complex traits by identifying regions of chromosomal DNA that correlate with phenotypic variation 

termed quantitative trait loci (QTL). The images in our test dataset were used in such a study to 

identify several QTL for root traits in wheat seedlings [5]. In addition to testing the accuracy of the 

Random Forest approach in estimating root system parameters, we wanted to know if these 

parameters could be used reliably for the identification of QTL. Since QTL identification had 

already been performed on our test dataset, we could directly assess the performance of our new 

pipeline against the original approach by using the same QTL detection technique on both the 

direct image descriptors and the traits derived from the random forest models. 

 

The Random Forest models, trained on different numbers of images (100:900), were used on the 

image descriptors from the test dataset to predict nine estimators datasets (named EST-100 to 

EST-900) for use in the QTL analysis (see Table 1). This was done to assess the minimum size 

for the training dataset required for reliable QTL detection, which may be lower than that required 

to accurately predict the trait values themselves. The R package R/qtl [18] was used for QTL 

detection on the image descriptor dataset and the nine Random Forest predicted datasets [5]. 

Identified QTL were then directly compared to those found in this paper. 

 

We observed that 12/13 of the expected QTL were correctly identified using the estimators from 

the Random Forest models trained on 600 or more images (EST-600:EST-900). We also 

observed that even using the smallest training set of 100 images (EST-100), most of the QTLs 

were identified (10/12), with 12/13 being identified with the estimators from the model trained with 

300 images (EST-300). We did not observe an increase in the logarithm of odds (LOD) score with 

the increase of images (Table 1). 

 

In addition, 4 extra QTL were identified on chromosomes 4D and 6D. Two of these were identified 

for width and width-depth ratio from EST-300, EST-500 and EST-800 datasets (Table 1). Although 

in this example, these have been labelled as false positives as they were not detected in the 

original study, they both have related QTL co-localising in the same positions (the 4D width QTL 

co-localises with a W/D QTL and the 6D W/D QTL co-localises with both a width and depth QTL 

at the same location). Both QTL were also found using the image descriptors utilised to train the 

Random Forest model, possibly explaining their identification. Two extra QTL for seminal number 
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were identified on chromosomes 6D and 7D from EST-300 to EST-900 datasets. These false 

positives are most likely a result of the Random Forest estimators failing to assign whole numbers 

for seminal root count. This adds noise to the data, masking any genetic variation for seminal 

number, which is limited to between 4 and 6 seminal roots in this dataset. 

  

In the majority of cases, the identified QTL had the same confidence intervals and similar peak 

marker positions as previously reported for all Random Forest models. Interestingly, the 4D QTL 

had a very similar confidence interval (position 0.8-67.6 previously reported vs 0-67.6 here), but 

a different peak marker position (position 4.8 previously reported vs position 30-34 here). It was 

also noted that lateral root QTL found on 7D had a reduced confidence interval compared to those 

previously reported (positions 0-101.8 previously vs 0-62.4 here). 
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Table 1: Results from the QTL comparison for the different estimator datasets: Green is a 
correct identification compared to results obtained using the RootNav pipeline, Red is a miss, 
yellow is a false positive and grey is not comparable.  Numbers represent the significant LOD 
(logarithm of odds) score for each detected QTL generated by R/qtl. Chr: chromosome, GT: 
ground truth, ID: image descriptors, EST-100:900: random forest estimators derived from 100 – 
900 images. 
 

 Trait 

 

ID EST

100 

EST

200 

EST

300 

EST

400 

EST5

00 

EST

600 

EST

700 

EST

800 

EST

900 

GT 

4D Width  2.5     2.7              

 W/D 2.71 2.6 2.2 2.6 2.2 2.2 2.5 2.3 2.9 2.5 2.7 

6D Seminal number      3.6 3.1 4.7 3.3 3.8 3.3 3.1  

 Total root length  17 13.6 15.0 14.4 15.2 14.2 16.0 14.7 16.3 15.3 24 

 Mean sem. length   13.4 13.7 13.8 13.8 13.8 14.0 13.9 13.5 15.6 22.2 

 Lateral number  12.6 19.0 18.2 17.6 18.5 17.0 17.6 16.7 15.4 9.1 

 Tot lateral length  11.2 13.0 14.2 12.0 15.3 12.6 13.3 12.2 11.7 6.4 

 Tot seminal length  13.8 13.1 14.1 14.8 13.7 15.2 14.7 14.7 14.4 25.6 

 Width 13.5 11.9 13.0 14.8 12.9 12.8 13.1 12.5 12.5 12.5 6.4 

 Depth 13.6 14.3 14.3 14.1 14.0 15.6 15.0 15.2 15.8 14.8 22.7 

 W/D          2.2     1.9    

7A Seminal number           2.1 

7D Lateral number  4.3 5.5 5.9 6.6 5.2 5.0 5.3 5.0 4.4 2.4 

 Seminal number        3.8   3.4 3.4 4.0 4.5  

 Tot lateral length  4.4 4.0 6.0 4.6 4.9 4.2 4.9 4.2 4.0 2 

 Tot root length  4.1   2.7 2.5 2.9  3.1 2.9 4.7 3.3 9 

 Tot seminal length      2.9 2.7 2.1 2.8 3.1 2.8 3.2 9.7 

 SUM 6 10 11 14 14 13 14 14 15 14 13 
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Combining semi-automated analysis and machine learning 

techniques increase the throughput of our image analysis pipeline 

 

Extracting meaningful information from images of root systems is a subjective, tedious and often 

time-consuming process. As a general rule, automated techniques can only extract a limited 

amount of biologically relevant metrics and are often limited to young plants. Semi-automated 

tools are able to extract more metrics and with a greater accuracy, but at the expense of user 

interaction time (which makes them unsuited for large-scale genetic studies). As a result, large 

genetic screens targeting root system traits often focus on a set of simple traits that can be 

automatically extracted. 

 

Here we have shown that machine learning techniques can be used to automatically extract a 

large set of root system metrics. To train the machine learning algorithm on our dataset, we 

estimated that 600 root images are needed. Additional images are needed to validate the 

accuracy of the Machine Learning estimators (around 100). These images have to be traced with 

a semi-automated tool to extract the parameters in the first place. Thus, instead of tracing all the 

images (in our case about 2600), only a subset (700) was needed. It was previously estimated 

that tracing one image takes, on average, 2 minutes. In our case, the whole dataset would 

represent a workload of 87 hours. With the combined pipeline, the workload decreased to 23 

hours (27%). 

 

In this example, we used a published dataset, for which the ground-truth data were already 

available [5]. In order to easily apply this approach to future studies, we have created the R 

application PRIMAL (Pipeline of Root Image analysis using MAchine Learning, 

https://plantmodelling.github.io/primal/) (Fig. 3).  We recommend the following analysis strategy: 

  

1.     Use a fully automated tool to extract image descriptors global dataset. 

2.     Use a semi-automated tool to extract the ground-truth for 100 random images (the 

GROUND-TRUTH DATASET). Remove these images from the global dataset. 

3.      Use PRIMAL to train the Random Forest model and analyse the data. 

  

A detailed version of this protocol is available on protocols.io: dx.doi.org/10.17504/protocols.io.h7bb9in 
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Figure 3: Screenshot of PRIMAL. A. Variable to evaluate with the Random Forest algorithm. B. 

Random Forest algorithm parameters. C. Visualisation of the accuracy of the Random Forest 

estimators. D. Accuracy metrics for the different descriptors. 

 

It should be noted that the prediction accuracy of the Random Forest estimation is highly 

dependent on the homogeneity of the data. For example, a Random Forest model trained on 

maize root systems will most likely fail when applied to wheat. However, for large scale genetic 

studies, where only one species is used in the analysis, this should not be an issue. The accuracy 

of the Random Forest estimators is also function of the variability of the direct descriptors in the 

dataset. Using a large set of descriptors, that better discriminate the different images, might help 

increase the accuracy of the Random Forest descriptors. 

Conclusions 

 

Genetic studies on root architecture require large annotated datasets of biologically relevant traits. 

Automated analysis tools can be used to extract descriptors from large libraries of root images. 

Unfortunately, these descriptors are prone to error and their biologically relevancy is not always 
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clear. Alternatively, semi-automated tools enable the retrieval of more precise architectural traits 

but, due to the requirement for skilled user inputs, they are often unsuitable for large datasets.  

 

Here, we used a Random Forest model to predict architectural traits based on automatically-

extracted image descriptors. The model was trained on a subset of the whole dataset that had 

been previously analysed using a semi-automated tool. This strategy allowed us to (i) decrease 

the time required for the analysis by 73% (compared to the semi-automated analysis of the whole 

dataset) and (ii) accurately predict meaningful architectural traits. 

 

In order to make our pipeline available to the community, we have created an application available 

at the following address: https://plantmodelling.github.io/primal/. 

 

Methods 

A detailed version of the protocol described here is available at Protocols.io: 

https://dx.doi.org/10.17504/protocols.io.h7bb9in 

 

 

Availability of supporting source code and 

requirements 

 

- Project name: PRIMAL, Pipeline of Root Image analysis using MAchine Learning 

- Project home page: https://plantmodelling.github.io/primal/  

- Operating system(s): Platform independent 

- Programming language: R 

- Other requirements: - 

- License: GPL 
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