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Abstract19

Colorectal cancer is the second leading cause of cancer-related death in the United States and is a primary20

cause of morbidity and mortality throughout the world. Colorectal cancer development has been linked to21

differences in colonic bacterial community composition. Viruses are another important component of the22

colonic microbial community, however they have yet to be studied in colorectal cancer despite their oncogenic23

potential. We evaluated the colorectal cancer virome (virus community) in stool using a cohort of 90 human24

subjects with either healthy, adenomatous (precancerous), or cancerous colons. We utilized 16S rRNA gene,25

whole shotgun metagenomic, and purified virus metagenomic sequencing methods to compare the colorectal26

cancer virome to the bacterial community. We identified no detectable difference in viral diversity (alpha or27

beta) between healthy, adenomatous, or cancerous colonic samples, but more sophisticated random forest28

models identified striking differences in the virome. The majority of the cancer-associated virome consisted29

of temperate bacteriophages, suggesting that the community was indirectly linked to colorectal cancer by30

modulating bacterial community structure and function. Our data suggest that the influential phages do31

not exclusively infect influential bacteria, but rather act through the community as a whole. These results32

provide foundational evidence that bacteriophage communities are associated with colorectal cancer and33

likely impact cancer progression by altering the bacterial host communities.34
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Significance Statement35

Colorectal cancer is a leading cause of cancer-related death in the United States and worldwide. Its risk and36

severity have been linked to colonic bacterial community composition. Although viruses have been linked37

to other cancers and diseases, little is known about colorectal cancer virus communities. We addressed38

this knowledge gap by identifying differences in colonic virus communities in the stool of colorectal cancer39

patients and how they compared to bacterial community differences. The results suggested an indirect role40

for the virome in impacting colorectal cancer by modulating their associated bacterial community. These41

findings both support a biological role for viruses in colorectal cancer and provide a new understanding of42

basic colorectal cancer etiology.43

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 20, 2017. ; https://doi.org/10.1101/152868doi: bioRxiv preprint 

https://doi.org/10.1101/152868


Introduction44

Due to their mutagenic abilities and propensity for functional manipulation, human viruses are strongly45

associated with, and in many cases cause, cancer (1–4). Because bacteriophages (viruses that specifically46

infect bacteria) are crucial for bacterial community stability and composition (5–7) and have been implicated47

as oncogenic agents (8–11), bacteriophages have the potential to indirectly impact cancer. The gut virome48

(the virus community of the gut) therefore has the potential to impact health and disease. Altered human49

virome composition and diversity have been identified in diseases including periodontal disease (12), HIV50

(13), cystic fibrosis (14), antibiotic exposure (15, 16), urinary tract infections (17), and inflammatory bowel51

disease (18). The strong association of bacterial communities with colorectal cancer and the precedent for52

the virome to impact other human diseases suggest that colorectal cancer may be associated with altered53

virus communities.54

Colorectal cancer is the second leading cause of cancer-related deaths in the United States (19). The55

US National Cancer Institute estimates over 1.5 million Americans were diagnosed with colorectal cancer56

in 2016 and over 500,000 Americans died from the disease (19). Growing evidence suggests that an57

important component of colorectal cancer etiology may be perturbations in the colonic bacterial community58

(8, 10, 11, 20, 21). Work in this area has led to a proposed disease model in which bacteria colonize the59

colon, develop biofilms, promote inflammation, and enter an oncogenic synergy with the cancerous human60

cells (22). This association also has allowed researchers to leverage bacterial community signatures as61

biomarkers to provide accurate, noninvasive colorectal cancer detection from stool (8, 23, 24). While an62

understanding of colorectal cancer bacterial communities has proven fruitful both for disease classification63

and for identifying the underlying disease etiology, bacteria are only a subset of the colon microbiome.64

Viruses are another important component of the colon microbial community that have yet to be studied in65

the context of colorectal cancer. We evaluated disruptions in virus and bacterial community composition66

in a human cohort whose stool was sampled at the three relevant stages of cancer development: healthy,67

adenomatous, and cancerous.68

Colorectal cancer progresses in a stepwise process that begins when healthy tissue develops into a69
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precancerous polyp (i.e., adenoma) in the large intestine (25). If not removed, the adenoma may develop70

into a cancerous lesion that can invade and metastasize, leading to severe illness and death. Progression to71

cancer can be prevented when precancerous adenomas are detected and removed during routine screening72

(26, 27). Survival for colorectal cancer patients may exceed 90% when the lesions are detected early and73

removed (26). Thus, work that aims to facilitate early detection and prevention of progression beyond early74

cancer stages has great potential to inform therapeutic development.75

Here we address the knowledge gap of whether virus community composition is altered in colorectal cancer76

and, if it is, how those differences might impact cancer progression and severity. We also aimed to evaluate77

the virome’s potential for use as a diagnostic biomarker. The implications of this study are threefold. First,78

this work supports a biological role for the virome in colorectal cancer development and suggests that more79

than the bacterial members of the associated microbial communities are involved in the process. Second, we80

present a supplementary, or even alternative, virus-based approach for classification modeling of colorectal81

cancer using stool samples. Third, we provide initial support for the importance of studying the virome as a82

component of the microbiome ecological network, especially in cancer.83

Results84

Cohort Design, Sample Collection, and Processing85

Our study cohort consisted of 90 human subjects, 30 of whom had healthy colons, 30 of whom had86

adenomas, and 30 of whom had carcinomas (Figure S1). Half of each stool sample was used to sequence87

the bacterial communities using both 16S rRNA gene and shotgun sequencing techniques. The 16S88

rRNA gene sequencing was performed for a previous study, and the sequences were re-analyzed using89

contemporary methods (8). The other half of each stool sample was purified for virus like particles (VLPs)90

before genomic DNA extraction and shotgun metagenomic sequencing. In the VLP purification, cells were91

disrupted and extracellular DNA degraded (Figure S1) to allow the exclusive analysis of viral DNA within92

virus capsids. In this manner, the extracellular virome of encapsulated viruses was targeted.93
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Each extraction was performed with a blank buffer control to detect contaminants from reagents or other94

unintentional sources. Only one of the nine controls contained detectable DNA at a minimal concentration of95

0.011 ng/µl, thus providing evidence of the enrichment and purification of VLP genomic DNA over potential96

contaminants (Figure S2 A). As was expected, these controls yielded few sequences and were almost97

entirely removed while rarefying the datasets to a common number of sequences (Figure S2 B). The high98

quality phage and bacterial sequences were assembled into highly covered contigs longer than 1 kb (Figure99

S3). Because contigs represent genome fragments, we further clustered related bacterial contigs into100

operational genomic units (OGUs) and viral contigs into operational viral units (OVUs) (Figure S3 - S4) to101

approximate organismal units.102

Unaltered Virome Diversity in Colorectal Cancer103

Microbiome and disease associations are often described as being of an altered diversity (i.e., “dysbiotic”).104

We therefore first evaluated the influence of colorectal cancer on virome OVU diversity. We evaluated105

differences in communities between disease states using the Shannon diversity, richness, and Bray-Curtis106

metrics. We observed no significant alterations in either Shannon diversity or richness in the diseased states107

as compared to the healthy state (Figure S5 C-D). There was no statistically significant clustering of the108

disease groups (ANOSIM p-value = 0.4, Figure S5). Notably, there was a significant difference between109

the few blank controls that remained after rarefying the data and the other study groups (ANOSIM p-value110

< 0.001, Figure S6), further supporting the quality of the sample set. In summary, standard alpha and beta111

diversity metrics were insufficient for capturing virus community differences between disease states (Figure112

S5). This is consistent with what has been observed when the same metrics were applied to 16S rRNA113

sequenced and metagenomic samples (8, 23, 24) and points to the need for alternate approaches to detect114

the impact of colorectal cancer disease state on these communities.115
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Altered Virome Composition in Colorectal Cancer116

As opposed to the diversity metrics discussed above, OTU-based relative abundance profiles generated117

from 16S rRNA gene sequences are effective feature sets for classifying stool samples as originating from118

individuals with healthy, adenomatous, or cancerous colons (8, 23). The exceptional performance of bacteria119

in these classification models supports a role for bacteria in colorectal cancer. We built off of these findings by120

evaluating the ability of virus community signatures to classify stool samples and compared their performance121

to models built using bacterial community signatures.122

To identify the altered virus communities associated with colorectal cancer, we built and tested random forest123

models for classifying stool samples as belonging to individuals with either cancerous or healthy colons. We124

confirmed that our bacterial 16S rRNA gene model replicated the performance of the original report which125

used logit models instead of random forest models (Figure 1 A) (8). We then compared the bacterial OTU126

model to a model built using OVU relative abundances. The viral model performed as well as the bacterial127

model (corrected p-value = 0.4), with the viral and bacterial models achieving mean area under the curve128

(AUC) values of 0.793 and 0.796, respectively (Figure 1 A - B). To evaluate the ability of both bacterial and129

viral biomarkers to classify samples, we built a combined model that used both bacterial and viral community130

data. The combined model yielded a modest but statistically significant performance improvement beyond131

the viral (corrected p-value = 0.002) and bacterial (corrected p-value = 0.002) models, yielding an AUC of132

0.816 (Figure 1 A - B). The combined features from the virus and bacterial communities improved our ability133

to classify stool as belonging to individuals with cancerous colons.134

To determine the advantage of viral metagenomic methods over bacterial metagenomic methods, we135

compared the viral model to a model built using OGU relative abundance profiles from bacterial metagenomic136

shotgun sequencing data. This model performed worse than the other models (mean AUC = 0.505) (Figure137

1 A - B). Because the coverage provided by the metagenomic sequencing was not as deep as the equivalent138

16S rRNA gene sequencing, we attempted to compare the approaches at a common sequencing depth.139

This investigation revealed that the bacterial 16S rRNA gene model was strongly driven by sparse and low140

abundance OTUs (Figure S7). Removal of OTUs with a median abundance of zero resulted in the removal141
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of six OTUs, and a loss of model performance down to what was observed in the metagenome-based model142

(Figure S7 A). The majority of these OTUs had a relative abundance lower than 1% across the samples143

(Figure S7 B). Although the features in the viral model also were of low abundance (Figure S9 F), the144

coverage was sufficient for high model performance, likely because viral genomes are orders of magnitude145

smaller than bacterial genomes.146

The association between the bacterial and viral communities and colorectal cancer was driven by a few147

important microbes. Fusobacterium was the primary driver of the bacterial association with colorectal cancer,148

which is consistent with its previously described oncogenic potential (Figure 1 C)(22). The virome signature149

also was driven by a few OVUs, suggesting a role for these viruses in tumorigenesis (Figure 1 D). The150

identified viruses were bacteriophages, belonging to Siphoviridae, Myoviridae, and “unclassified” phage taxa.151

Many of the important viruses were unidentifiable (denoted “unknown”). This is common in viromes across152

habitats; studies have reported as much as 95% of virus sequences belonging to unknown genomic units153

(14, 28–30). When the bacterial and viral community signatures were combined, both bacterial and viral154

organisms drove the community association with cancer (Figure 1 E).155

Shifted Phage Influence Between Cancer Progression Stages156

Because previous work has identified shifts in which bacteria were most important at different stages of157

colorectal cancer (8, 20, 22), we explored whether shifts in the relative influence of specific phages could be158

detected between healthy, adenomatous, and cancerous colons. We evaluated community shifts between159

the two disease stage transitions (healthy to adenomatous and adenomatous to cancerous) by building160

random forest models to compare only the diagnosis groups around the transitions. While bacterial OTU161

models performed equally well for all disease class comparisons, the virome model performances differed162

(Figure S8 A-B). Like bacteria (Figure S8 F-H), different virome members were important between the healthy163

to adenomatous and adenomatous to cancerous stages (Figure S8 C-E).164

After evaluating our ability to classify samples between two disease states, we performed a three-class165

random forest model including all disease states. The 16S rRNA gene model yielded a mean AUC of 0.771166
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and outperformed the viral community model, which yielded a mean AUC of 0.699 (p-value < 0.001, Figure167

S9 A-C). The microbes important for the healthy versus cancer and healthy versus adenoma models were168

also important for the three-class model (Figure S9 D-E). The most important bacterium in the two and three169

class models was the same Fusobacterium (OTU 4) (Figure 1 C, Figure S9 D). The viruses most important170

to the three-class model were identified as bacteriophages (Figure 1 D, Figure S9 E), but not all important171

OVUs were of increased abundance in the diseased state (Figure S9 F).172

Bacteriophage Dominance in Colorectal Cancer Virome173

Differences in the colorectal cancer virome could have been driven directly by eukaryotic viruses or indirectly174

by bacteriophages acting through their bacterial hosts. To better understand the types of viruses that were175

important for colorectal cancer, we identified the virome OVUs as being similar to either eukaryotic viruses176

or bacteriophages. The most important viruses to the classification model were identified as bacteriophages177

(Figure S9). Overall, we were able to identify 78.8% of the OVUs as known viruses, and 93.8% of those178

viral OVUs aligned to bacteriophage reference genomes. It is important to note that this could have been179

influenced by our methodological biases against enveloped viruses (more common of eukaryotic viruses than180

bacteriophage), due to chloroform and DNase treatment for purification.181

We evaluated whether the phages in the community were primarily lytic (i.e. obligately lyse their hosts after182

replication) or temperate (i.e. able to integrate into their host’s genome to form a lysogen, and subsequently183

transition to a lytic mode). We accomplished this by identifying three markers for temperate phages in the184

OVU representative sequences: 1) presence of phage integrase genes, 2) presence of known prophage185

genes, according the the ACLAME (A CLAssification of Mobile genetic Elements) database, and 3) nucleotide186

similarity to regions of bacterial genomes (29, 31, 32). We found that the majority of the phages were187

temperate and that the overall fraction of temperate phages remained consistent throughout the healthy,188

adenomatous, and cancerous stages (Figure S10 E). These findings were consistent with previous reports189

suggesting the gut virome is primarily composed of temperate phages (13, 18, 31, 33).190
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Community Context of Influential Phages191

Because the link between colorectal cancer and the virome was driven by bacteriophages, we hypothesized192

that the influential phages were primarily predators of the influential bacteria, and thus influenced their relative193

abundance through predation. If this hypothesis were true, we would expect a correlation between the relative194

abundances of influential bacteria and phages. Instead, we observed a strikingly low correlation between195

bacterial and phage relative abundances (Figure 2 A,C). Overall, there was an absence of correlation196

between the most influential OVUs and bacterial OTUs (Figure 2 B). This evidence supported our null197

hypothesis that the influential phages were not primarily predators of influential bacteria.198

Given these findings, we hypothesized that the most influential phages were acting by infecting a wide range199

of bacteria in the overall community, instead of just the influential bacteria. In other words, we hypothesized200

that the influential bacteriophages were community hubs (central members) within the bacteria and phage201

interactive network. We investigated the potential host ranges of all phage OVUs using a previously202

developed random forest model that relies on sequence features to predict which phages infected which203

bacteria in the community (Figure 3 A) (34). The predicted interactions were then used to identify phage204

community hubs. We calculated the alpha centrality (measure of importance in the ecological network)205

of each phage OVU’s connection to the rest of the network. The phages with high centrality values were206

defined as community hubs. Next, the centrality of each OVU was compared to its importance in the207

colorectal cancer classification model. Phage OVU centrality was significantly and positively correlated208

with importance to the disease model (p-value = 0.02, R = 0.14), suggesting that phages important in209

driving colorectal cancer also were more likely to be community hubs (Figure 3 B). Together these findings210

supported our hypothesis that influential phages were hubs within their microbial communities and had211

broad host ranges.212
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Discussion213

Because of their propensity for mutagenesis and capacity for modulating their host functionality, many viruses214

are oncogenic (1–4). Some bacteria also have oncogenic properties, suggesting that bacteriophages may215

play an indirect role in promoting carcinogenesis by influencing bacterial community composition and216

dynamics (8–10). Despite their carcinogenic potential and the strong association between bacteria and217

colorectal cancer, a mechanistic link between virus colorectal communities and colorectal cancer has yet to218

be evaluated. Here we show that, like colonic bacterial communities, the colon virome was altered in patients219

with colorectal cancer relative to those with healthy colons. Our findings support a working hypothesis for220

oncogenesis by phage-modulated bacterial community composition.221

Here, we have begun to delineate the role the colonic virome plays in colorectal cancer (Figure 4 A). We222

found that basic diversity metrics of alpha diversity (richness and Shannon diversity) and beta diversity223

(Bray-Curtis dissimilarity) were insufficient for identifying virome community differences between healthy224

and cancerous states. By implementing a more sophisticated machine learning approach (random forest225

classification), we detected strong associations between the colon virus community composition and226

colorectal cancer. The colorectal cancer virome was composed primarily of bacteriophages. These phage227

communities were not exclusively predators of the most influential bacteria, as demonstrated by the lack228

of correlation between the abundances of the bacterial and phage populations. Instead, we identified229

influential phages as being community hubs, suggesting phages influence cancer by altering the greater230

bacterial community instead of directly modulating the influential bacteria. Our previous work has shown that231

modifying colon bacterial communities alters colorectal cancer progression and tumor burden in mice (10,232

20). This provides a precedent for phage indirectly influencing colorectal cancer progression by altering the233

bacterial community composition. Overall, our data support a model in which the bacteriophage community234

modulates the bacterial community, and through those interactions indirectly influences the bacteria driving235

colorectal cancer progression (Figure 4 A). Although our evidence suggested phages indirectly influenced236

colorectal cancer development, we were not able to rule out the role of phages directly interacting with the237

human host (35, 36).238

11

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 20, 2017. ; https://doi.org/10.1101/152868doi: bioRxiv preprint 

https://doi.org/10.1101/152868


In addition to modeling the potential connections between virus communities, bacteria communities, and239

colorectal cancer, we also used our data and existing knowledge of phage biology to develop a working240

hypothesis for the mechanisms by which this may occur. This was done by incorporating our findings into the241

current model for colorectal cancer development (Figure 4 B) (22). We hypothesize that the process began242

with broadly infectious phages in the colon lysing and thereby disrupting the existing bacterial communities.243

This shift led to novel niche space that enabled opportunistic bacteria (such as Fusobacterium nucleatum)244

to colonize. Once the initial influential founder bacteria established themselves in the epithelium, secondary245

opportunistic bacteria were able to adhere to the founders, colonize, and begin establishing a biofilm. Phages246

may have played a role in biofilm dispersal and growth by lysing bacteria within the biofilm, a process247

important for effective biofilm growth (37). The oncogenic bacteria may then have been able to transform248

the epithelial cells and disrupt tight junctions to infiltrate the epithelium, thereby initiating an inflammatory249

immune response. As the adenomatous polyps developed and progressed towards carcinogenesis, we250

observed a shift in the phages and bacteria whose relative abundances were most influential. As the bacteria251

entered their oncogenic synergy with the epithelium, we conjecture that the phages continued mediating252

biofilm dispersal. This process would thereby support the colonized oncogenic bacteria by lysing competing253

cells and releasing nutrients to other bacteria in the form of cellular lysates. In addition to highlighting the254

likely mechanisms by which the colorectal cancer virome is interacting with the bacterial communities, this255

outline will guide future research investigations of the role the virome plays colorectal cancer.256

A notable finding was the poor performance observed using bacterial metagenomic methods compared257

to the performance of models using viral metagenomes or 16S rRNA gene sequences. We believe this258

observation speaks to the importance of sequencing coverage in microbial community studies and the259

advantage of the high coverage of 16S rRNA gene sequencing relative to the lower per OTU coverage260

possible using whole metagenomic shotgun sequencing. To demonstrate this concept, consider that six261

bacterial OTUs drove the performance of the 16S rRNA gene classification model and these OTUs were all262

sparsely present and lowly abundant. Filtration of OTUs with a median relative abundance of zero resulted263

in the removal of the six important OTUs and reduced model performance to being nearly random like264

the bacterial metagenomic model. The bacterial metagenomic OGUs represented only the most abundant265

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 20, 2017. ; https://doi.org/10.1101/152868doi: bioRxiv preprint 

https://doi.org/10.1101/152868


taxa, which was not informative for this application. There has been some success in using shotgun266

metagenomic approaches for stool colorectal cancer classification (24), but this previous approach relied on267

lowly abundant signatures and did not utilize OGU clustering, as done here. In that former case, the models268

only performed as well as the 16S rRNA gene model (24). Thus, the targeted 16S rRNA gene sequencing269

approach, which represented only a fraction of the bacterial metagenomic sequencing depth, was more270

effective for detecting colorectal cancer in stool samples. Despite a loss of enthusiasm for 16S rRNA gene271

sequencing in favor of shotgun metagenomic techniques, 16S rRNA gene sequencing is still a superior272

methodological approach for some important applications.273

In addition to the diagnostic ramifications for understanding the colorectal cancer microbiome, our findings274

suggest that viruses, while understudied and currently under-appreciated in the human microbiome, are275

likely to be an important contributor to human disease. Viral community dynamics have the potential to276

provide an abundance of information to supplement those of bacterial communities. Evidence has suggested277

that the virome is a crucial component to the microbiome and that bacteriophages are important players.278

Bacteriophage and bacterial communities cannot maintain stability and co-evolution without one another (6,279

38). Not only is the human virome an important element to consider in human health and disease (12–18),280

but our findings support that it is likely to have a significant impact on cancer etiology and progression.281

Materials & Methods282

This study was approved by the University of Michigan Institutional Review Board and all subjects provided283

informed consent. A detailed description of protocols used for sample collection, processing, and analysis284

is provided in SI Materials and Methods. All study sequences are available on the NCBI Sequence Read285

Archive under the BioProject ID PRJNA389927. All associated source code is available at the following286

GitHub repository:287

https://github.com/SchlossLab/Hannigan_CRCVirome_PNAS_2017.288
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Figure 1: Results from healthy vs cancer classification models built using virome signatures, bacterial 16S
rRNA gene sequence signatures, whole metagenomic signatures, and a combination of virome and 16S
rRNA gene sequence signatures. A) An example ROC curve for visualizing the performance of each of
the models for classifying stool as coming from either an individual with a cancerous or healthy colon. B)
Quantification of the AUC variation for each model, and how it compared to each of the other models based on
15 iterations. A pairwise Wilcoxon test with a false discovery rate multiple hypothesis correction demonstrated
that all models are significantly different from each other (p-value < 0.01). C) Mean decrease in accuracy
(measurement of importance) of each operational taxonomic unit within the 16S rRNA gene classification
model when removed from the classification model. Mean is represented by a point, and bars represent
standard error. D) Mean decrease in accuracy of each operational virus unit in the virome classification
model. E) Mean decrease in accuracy of each operational genomic unit and operational taxonomic unit in
the model using both 16S rRNA gene and virome features.
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Figure 2: Relative abundance correlations between bacterial OTUs and virome OVUs. A) Pearson correlation
coefficient values between all bacterial OTUs (x-axis) and viral OVUs (y-axis) with blue being positively
correlated and red being negatively correlated. Bar plots indicate the viral (left) and bacterial (bottom)
operational unit importance in their colorectal cancer classification models, such that the most important
units are in the top left corner. B) Magnification of the boxed region in pannel (A), highlighting the correlation
between the most important bacterial OTUs and virome OVUs. The most important operational units are
in the top left corner of the heatmap, and the correlation scale is the same as pannel (A). C) Histogram
quantifying the frequencies of Pearson correlation coefficients between all bacterial OTUs and virome OVUs.
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Figure 3: Community network analysis utilizing predicted interactions between bacteria and phage
operational genomic units. A) Visualization of the community network for our colorectal cancer cohort. B)
Scatter plot illustrating the correlation between importance (mean decrease in accuracy) and the degree of
centrality for each OVU. A linear regression line was fit to illustrate the correlation (blue) which was found to
be statistically significantly and weakly correlated (p-value = 0.0173, R = 0.14).
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Bacterial Community
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A. B.
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Cancer
Cell

Phages alter bacterial community, 
allowing colonization of driver 
bacteria.

Bacteria and phages 
exist in a healthy, 
balanced state.

Passenger bacteria adhere to and begin forming 
bio�lms, which grow with phage-mediated 
dispersal. Epithelial cell transformation, tight 
junction disruption, and bacterial in�ltration 
also occurs.

Bacteria enter an oncogenic synergy with tumor 
cells in which bacteria thrive o� of secreted 
peptides while releasing carcinogenic reactive 
oxygen species (ROS) and polyspermines.

Figure 4: Final model and working hypothesis from this study. A) Basic model illustrating the connections
between the virome, bacterial communities, and colorectal cancer. B) Working hypothesis of how the
bacteriophage community is associated with colorectal cancer and the associated bacterial community.
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Supplemental Information296

Supplemental Materials & Methods297

Analysis Source Code & Data Availability298

All study sequences are available on the NCBI Sequence Read Archive under the BioProject ID299

PRJNA389927.300

All associated source code is available at the following GitHub repository:301

https://github.com/SchlossLab/Hannigan_CRCVirome_PNAS_2017302

Study Design and Patient Sampling303

This study was approved by the University of Michigan Institutional Review Board and all subjects provided304

informed consent. Design and sampling of this sample set have been reported previously (8). Briefly, whole305

evacuated stool was collected from patients who were 18 years of age or older, able to provide informed306

consent, have had colonoscopy and histologically confirmed colonic disease status, had not had surgery,307

had not had chemotherapy or radiation, and were free of known co-morbidities including HIV, chronic viral308

hepatitis, HNPCC, FAP, and inflammatory bowel disease. Samples were collected from four geographic309

locations: Toronto (Ontario, Canada), Boston (Massachusetts, USA), Houston (Texas, USA), and Ann Arbor310

(Michigan, USA). Ninety patients were recruited to the study, thirty of which were designated healthy, thirty311

with detected adenomas, and thirty with detected carcinomas.312

16S rRNA Gene Sequence Data Acquisition & Processing313

The 16S rRNA gene sequences associated with this study were previously reported (8). Sequence (fastq)314

and metadata files were downloaded from http://www.mothur.org/MicrobiomeBiomarkerCRC. The 16S rRNA315
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gene sequences were analyzed as described previously, relying on the mothur software package (v1.37.0)316

(39, 40). Briefly, the sequences were de-replicated, aligned to the SILVA database (41), screened for317

chimeras using UCHIME (42), and binned into operational taxonomic units (OTUs) using a 97% similarity318

threshold. Abundances were normalized for uneven sequencing depth by randomly sub-sampling to 10,000319

sequences, as previously reported (23).320

Whole Metagenomic Library Preparation & Sequencing321

DNA was extracted from stool samples using the PowerSoil-htp 96 Well Soil DNA Isolation Kit (Mo Bio322

Laboratories) using an EPMotion 5075 pipetting system. Purified DNA was used to prepare a shotgun323

sequencing library using the Illumina Nextera XT library preparation kit according to the standard kit protocol,324

including 12 cycles of limited cycle PCR. The tagmentation time was increased from five minutes to ten325

minutes to improve DNA fragment length distribution. The library was sequenced using one lane of the326

Illumina HiSeq4000 platform and yielded 125 bp paired end reads.327

Virus Metagenomic Library Preparation & Sequencing328

Genomic DNA was extracted from purified virus-like particles (VLPs) from stool samples, using a modified329

version of a previously published protocol (29, 31, 43, 44). Briefly, an aliquot of stool (~0.1 g) was330

resuspended in SM buffer (Crystalgen; Catalog #: 221-179) and vortexed to facilitate resuspension. The331

resuspended stool was centrifuged to remove major particulate debris then filtered through a 0.22-µm filter332

to remove smaller contaminants. The filtered supernatant was treated with chloroform for ten minutes333

with gentle shaking, so as to lyse contaminating cells including bacteria, human, fungi, etc. The exposed334

genomic DNA from the lysed cells was degraded by treating the samples with 5U of DNase for one hour335

at 37C. DNase was deactivated by incubating the sample at 75C for ten minutes. The DNA was extracted336

from the purified virus-like particles (VLPs) using the Wizard PCR Purification Preparation Kit (Promega).337

Disease classes were staggered across purification runs to prevent run variation as a confounding factor.338
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As for whole community metagenomes, purified DNA was used to prepare a shotgun sequencing library339

using the Illumina Nextera XT preparation kit according to the standard kit protocol. The tagmentation time340

was increased from five minutes to ten minutes to improve DNA fragment length distribution. The PCR341

cycle number was increased from twelve to eighteen cycles to address the low biomass of the samples, as342

has been described previously (29). The library was sequenced using one lane of the Illumina HiSeq4000343

platform and yielded 125 bp paired end reads.344

Metagenome Quality Control345

Both the viral and whole community metagenomic sample sets were subjected to the same quality control346

procedures. The sequences were obtained as de-multiplexed fastq files and subjected to 5’ and 3’ adapter347

trimming using the CutAdapt program (v1.9.1) with an error rate of 0.1 and an overlap of 10 (45). The FastX348

toolkit (v0.0.14) was used to quality trim the reads to a minimum length of 75 bp and a minimum quality score349

of 30 (46). Reads mapping to the human genome were removed using the DeconSeq algorithm (v0.4.3) and350

default parameters (47).351

Contig Assembly & Abundance352

Contigs were assembled using paired end read files that were purged of sequences without a corresponding353

pair (e.g. one read removed due to low quality). The Megahit program (v1.0.6) was used to assemble contigs354

for each sample using a minimum contig length of 1000 bp and iterating assemblies from 21-mers to 101-mers355

by 20 (48). Contigs from the virus and whole metagenomic sample sets were concatenated within their356

respective groups. Abundance of the contigs within each sample was calculated by aligning sequences357

back to the concatenated contig files using the bowtie2 global aligner (v2.2.1), with a 25 bp seed length and358

an allowance of one mismatch (49). Abundance was corrected for contig reference length and the number of359

contigs included in each operational genomic unit. Abundance was also corrected for uneven sampling depth360

by randomly sub-sampling virome and whole metagenomes to 1,000,000 and 500,000 reads, respectively,361
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and by removing samples with fewer total reads than the threshold. Thresholds were set for maximizing362

sequence information while minimizing numbers of lost samples.363

Operational Genomic Unit Classification364

Much like operational taxonomic units (OTUs) are used as an operational definition of similar 16S rRNA365

gene sequences, we defined closely related bacterial contig sequences as operational genomic units (OGUs)366

and virus contigs as operational viral units (OVUs) in the absence of taxonomic identity. OGUs and OVUs367

were defined with the CONCOCT algorithm (v0.4.0) which bins related contigs by similar tetra-mer and368

co-abundance profiles within samples using a variational Bayesian approach (50). CONCOCT was used369

with a length threshold of 1000 bp for virus contigs and 2000 bp for bacteria.370

Diversity371

Alpha and beta diversity were calculated using the operational viral unit abundance profiles for each sample.372

Sequences were rarefied to 100,000 sequences. Samples with less than the cutoff were removed from the373

analysis. Alpha diversity was calculated using the Shannon diversity and richness metrics. Beta diversity374

was calculated using the Bray-Curtis metric (mean of 25 random sub-sampling iterations), and the statistical375

significance between the disease state clusters was assessed using an analysis of similarity (ANOSIM) with376

a post-hoc multivariate Tukey test. All diversity calculations were performed in R using the Vegan package377

(51).378

Classification Modeling379

Classification modeling was performed in R using the Caret package (52). OTU, OVU, and OGU abundance380

data was preprocessed by removing features (OTUs, OVUs, and OGUs) that were present in less than thirty381

of the samples. This served both as an effective feature reduction technique and made the calculations382

computationally feasible. The binary random forest model was trained using the Area Under the receiver383
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operating characteristic Curve (AUC) and the three-class random forest model was trained using the mean384

AUC. Both were validated using five-fold cross validation. Each training set was repeated five times, and the385

model was tuned for mtry values. For consistency and accurate comparison between feature groups (e.g.,386

bacteria, viruses), the sample model parameters were used for each group. The maximum AUC during387

training was recorded across twenty iterations of each group model to test the significance of the differences388

between feature set performance. Statistical significance was evaluated using a Wilcoxon test between two389

categories, or a pairwise Wilcoxon test with Bonferroni corrected p-values when comparing more than two390

categories.391

Taxonomic Identification of Operational Genomic Units392

Operational viral units (OVUs) were taxonomically identified using a reference database consisting of393

all bacteriophage and eukaryotic virus genomes present in the European Nucleotide Archives. The394

longest contiguous sequence in each operational genomic unit was used as a representative sequence for395

classification, as described previously (53). Each representative sequence was aligned to the reference396

genome database using the tblastx alignment algorithm (v2.2.27) and a strict similarity threshold (e-value <397

1e-25) (54). Annotation was interpreted as phage, eukaryotic virus, or unknown.398

Ecological Network Analysis & Correlations399

The ecological network of the bacterial and phage operational genomic units was constructed and analyzed400

as previously described (34). Briefly, a random forest model was used to predict interactions between401

bacterial and phage genomic units, and those interactions were recorded in a graph database using neo4j402

graph databasing software (v2.3.1). The degree of phage centrality was quantified using the alpha centrality403

metric in the igraph CRAN package. A Spearman correlation was performed between model importance and404

phage centrality scores.405
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Phage Replication Style Identification406

Phage OVU replication mode was predicted using methods described previously (29, 31, 32). Briefly, we407

identified temperate OVUs as representative contigs containing at least one of three genomic markers: 1)408

phage integrase genes, 2) prophage genes from the ACLAME database, or 3) genomic similarity to bacterial409

reference genomes. Integrase genes were identified in phage OVU representative contigs by aligning the410

contigs to a reference database of all known phage integrase genes from the Uniprot database (Uniprot411

search term: “organism:phage gene:int NOT putative”). Prophage genes were identified in the same way,412

using the ACLAME set of reference prophage genes. In both cases, the blastx algorithm was used with an413

e-value threshold of 10e-5. Representative contigs were also identified as potential lysogenic phages by414

having a high genomic similarity to bacterial genomes. To accomplish this, representative phage contigs415

were aligned to the European Nucleotide Archive bacterial genome reference set using the blastn algorithm416

(e-value < 10e-25).417
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Supplemental Figures418
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Figure S1: Cohort and sample processing outline. Thirty subject stool samples were collected from healthy,
adenoma (pre-cancer), and carcinoma (cancer) patients. Stool samples were split into two aliquots, the
first of which was used for bacterial sequencing and the second which was used for virus sequencing.
Bacterial sequencing was done using both 16S rRNA amplicon and whole metagenomic shotgun sequencing
techniques. Virus samples were purified for viruses using filtration and a combination of chloroform
(bacterial lysis) and DNase (exposed genomic DNA degradation). The resulting encapsulated virus DNA
was sequenced using whole metagenomic shotgun sequencing.
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Figure S2: Basic Quality Control Metrics. A) VLP genomic DNA yield from all sequenced samples. Each
bar represents a sample which is grouped and colored by its associated disease group. B) Sequence yield
following quality control including quality score filtering and human decontamination.
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Figure S3: Length and coverage statistics. A) Heated scatter plot demonstrating the distribution of contig
coverage (number of sequences mapping to each contig) and contig length for the virus metagenomic sample
set. B) Scatter plot illustrating the distribution of operational viral unit (OVU) length and sequence coverage for
the virus metagenomic sample set. C) Heated scatter plot demonstrating the distribution of contig coverage
and length for the whole metagenomic sample set. D) Scatter plot illustrating the distribution of operational
genomic unit (OGU) length and sequence coverage for the whole metagenomic sample set.
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Figure S4: Operational genomic unit composition stats. A) Strip chart demonstrating the length and frequency
of contigs within each operational genomic unit of the virome sample set. The y-axis is the operational
genomic unit identifier, and x-axis is the length of each contig, and each dot represents a contig found within
the specified operational genomic unit. B) Density plot (analogous to histogram) of the number of virome
operational genomic units containing the specific number of contigs, as indicated by the x-axis. C-D) Sample
plots as panels C and D, but for the whole metagenomic sample set.
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Figure S5: Diversity calculations comparing cancer states of the colorectal virome, based on relative
abundance of operational genomic units in each sample. A) NMDS ordination of community samples, colored
for cancerous (green), pre-cancerous (red), and healthy (yellow). B) Differences in means between disease
group centroids with 95% confidence intervals based on an ANOSIM test with a post hoc multivariate Tukey
test. Comparisons (indicated on y-axis) in which the intervals cross the zero mean difference line (dashed
line) were not significantly different. C) Shannon diversity and D) richness alpha diversity quantification
comparing pre-cancerous (grey), cancerous (red), and healthy (tan) states.
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between disease group centroids with 95% confidence intervals based on an ANOSIM test with a post hoc
multivariate Tukey test. Comparisons in which the intervals cross the zero mean difference line (dashed line)
were not significantly different.
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Figure S7: Comparison of bacterial 16S rRNA classification models with and without OTUs whose median
relative abundance are greater than zero. A) Classification model performance (measured as area under the
curve) for bacteria models using 16S rRNA data both with and without filtering of samples whose median was
zero. Significance was calculated using a Wilcoxon rank sum test, and the resulting p-value is shown. The
random area under the curve (0.5) is marked with a dashed line. B) Relative abundance of the six bacterial
OTUs removed when filtered for OTUs with median relative abundance of zero. OTU relative abundance
is seperated by healthy (red) and cancerous (grey) samples. Relative abundance of 1% is marked by the
dashed line.
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Figure S8: Transition of colorectal cancer importance through disease progression. A) Virus and B) 16S
rRNA gene model performance (AUC) when discriminating all binary combinations of disease types. Blue
line represents mean performance from multiple random iterations. C-E) Top ten important phage OVUs
when classifying each combination of disease state, as measured by the mean decrease in accuracy metric.
Mean is represented by a point, and bars represent standard error. Disease comparison is specified in the
top left corner of each panel. F-H) Top ten important bacterial 16S rRNA gene OTUs for classifying each
disease state combination.
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Figure S9: ROC curves from A) virome and B) bacterial 16S three-class random forest models tuned on mean
AUC. Each curve represents the ability of the specified class to be classified against the other two classes. C)
Quantification of the mean AUC variation for each model based on 10 model iterations. A pairwise Wilcoxon
test with a Bonferroni multiple hypothesis correction demonstrated that the models are significantly different
(alpha = 0.01). D) Mean decrease in accuracy when virome operational genomic units and E) bacterial 16S
OTUs are removed from the respective three-class classification models. Results based on 25 iterations. F)
Relative abundance of the six most important virome OVUs in the model, with the most important on the right.
Line indicates abundance mean.
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Figure S10: Lysogenic phage relative abundance in disease states. Phage OVUs were predicted to be
either lytic or lysogenic, and the relative abundance of lysogenic phages was quantified and represented as
a boxplot. No disease groups were statistically significant.
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