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ABSTRACT 
When presented with the same sensory stimuli and performing the same task, people do not 
always make the same response. Such behavioral variability can have different causes, including 
sensory noise, decision noise, and guessing. In addition, recent work has proposed that the 
precision of sensory encoding is itself variable, both driven by the stimulus (heteroskedasticity) 
and independent of the stimulus. We analyzed data of 3 published and 8 new visual decision-
making tasks with a single relevant feature, orientation. In modeling each experiment, we 
considered four factors: guessing (lapses), decision noise, orientation-dependent variable 
precision (oblique effect), and orientation-independent variable precision (inspired by visual 
working memory models). Modern computational power allows us to test all combinations of 
these factors; in a given model, each factor could be present or absent. To quantify the 
importance of each factor in explaining the data, we introduce three metrics: factor knock-in, 
factor knock-out and factor posterior probability. Across all experiments, we found strong 
evidence for guessing and for orientation-dependent variable precision. We found evidence for 
decision noise in only one experiment, and for orientation-independent variable precision only 
when distractors are variable across trials. On a methodological note, the factor importance 
metrics can be applied widely in factorial model comparison. 
 
Keywords: visual perception, computational modeling, noise, variable precision, Bayesian 
inference 
 
 
INTRODUCTION 
When presented with the same stimuli in the same perceptual task, human observers do not 
always make the same response. The factors that affect such trial-to-trial behavioral variability 
have been investigated almost since the birth of psychophysics. A productive way to identify 
potential factors that affect behavioral variability is by following the standard schema of a 
perceptual process model: encoding, decision, and action (Fig. 1A). Encoding is the mapping 
from the stimulus to the internal representation. This mapping is known to be noisy at the neural 
level (Faisal, Selen, & Wolpert, 2008; London, Roth, Beeren, Häusser, & Latham, 2010; 
Tolhurst, Movshon, & Dean, 1983), and has long been modeled as noisy in behavioral models 
(Fechner, 1860; Green & Swets, 1966; Thurstone, 1927). It is common to assume that such 
sensory or encoding noise follows a zero-mean Gaussian distribution in the stimulus space 
(Green & Swets, 1966), or a Von Mises distribution when the stimulus variable is circular 
(Wilken & Ma, 2004; Zhang & Luck, 2008). Noise might also occur in the mapping from the 
internal representation to the decision; this is sometimes called decision noise (Mueller & 
Weidemann, 2008). Model mismatch (Orhan & Jacobs, 2013), statistical inefficiency (Burgess, 
Wagner, Jennings, & Barlow, 1981; Liu, Knill, & Kersten, 1995), or systematically suboptimal 
inference (Beck, Ma, Pitkow, Latham, & Pouget, 2012) could mimic decision noise. Decision 
noise has been modeled using a softmax function (Daw, O’Doherty, Dayan, Seymour, & Dolan, 
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2006; Soltani, 2006), as Gaussian noise on the log posterior ratio (Drugowitsch, Wyart, 
Devauchelle, & Koechlin, 2016; Keshvari, van den Berg, & Ma, 2012, 2013), or as Gaussian 
noise on the decision criterion (Mueller & Weidemann, 2008). Finally, there could be noise in 
the mapping from the decision to the motor action. This noise includes the motor noise 
(Trommershäuser, Maloney, & Landy, 2003a, 2003b; Wolpert & Landy, 2012) and lapses of 
attention that occasionally produce random responses (Wichmann & Hill, 2001). 

Previous studies have tried to discriminate between different factors that affect behavioral 
variability. Using signal detection theory, some work focused on distinguishing “internal noise” 
and “statistical inefficiency” (Burgess et al., 1981; Liu et al., 1995; Pelli & Farell, 1999). These 
experiments were designed such that both factors would have qualitatively different effects on a 
psychometric curve, such as a threshold-versus-contrast curve. However, their approach has 
limitations: a) internal noise could include both sensory and decision components; b) the 
experiments were not set up to estimate variability in precision. Nowadays, these limitations can 
be overcome using quantitative model comparison, which allows one to further break down 
factors that affect behavioral variability. However, this approach requires much more 
computational power: for example, the main model fitting done for the present paper (11 
experiments, 48 total subjects, 215400 total trials, 16 models fitted per experiment and per 
subject) took approximately 30×24×25 processor hours on a cluster of 3.2 GHz processors. 
Assuming Moore’s law (Moore, 1998), the same code would have taken approximately 711 
years to complete at the time of the Pelli & Farell paper. Basically, the kind of modeling we do 
here would not have been possible at that time.  

One recent study took full advantage of this computational power to revisit the factors 
that affect behavioral variability (Drugowitsch et al., 2016). Using a paradigm that contains 
sensory encoding, accumulation of evidence, and binary choice, they were able to separate noise 
in the sensory, inference, and decision stages, and found that noise in the inference stage was 
most important to explain the data. The current study uses a similar quantitative model 
comparison approach, but is different in the following three aspects: 

1) We consider variability in encoding precision. In recent years, a number of studies 
have found evidence for variability in encoding precision. The idea is that the encoding precision 
– the inverse of the variance of the sensory noise – is itself a random variable. Variable-precision 
models have been used to model visual short-term memory (Devkar & Wright, 2015; Fougnie, 
Suchow, & Alvarez, 2012; Keshvari et al., 2012, 2013; Salahub & Emrich, 2016; van den Berg, 
Awh, & Ma, 2014; van den Berg, Shin, Chou, George, & Ma, 2012) and visual attention data 
(Bhardwaj, Van Den Berg, Ma, & Josic, 2016; Mazyar, van den Berg, & Ma, 2012; Mazyar, 
Berg, & Seilheimer, 2013). A related concept appears in the beta-binomial model for the 
psychometric curve (Schütt, Harmeling, Macke, & Wichmann, 2016), where an extra parameter 
is used to capture variability in the probability of a binary response. At the neural level, variable 
precision has a parallel in double stochasticity in neural spike counts (Churchland et al., 2011; 
Goris, Movshon, & Simoncelli, 2014).  
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Variability in precision could be driven by variations in the stimulus itself or be 
independent of the stimulus. Stimulus-dependent variable precision is also called 
heteroskedasticity (unequal variances across the stimulus space). For example, cardinal 
orientations (horizontal or vertical) are encoded with higher precision than oblique orientations, 
which is also called the “oblique effect” (Appelle, 1972; Girshick, Landy, & Simoncelli, 2011; 
Pratte, Park, Rademaker, & Tong, 2017). Heteroskedasticity has also been characterized in color 
perception and color visual short-term memory (Bae, Olkkonen, Allred, & Flombaum, 2015; 
Bae, Olkkonen, Allred, Wilson, & Flombaum, 2014).  

Stimulus-dependent variable precision could be due to the non-uniform distribution of the 
preferred stimuli of visual cortical neurons (Li, Peterson, & Freeman, 2003), which in turn could 
be related to efficient coding (Ganguli & Simoncelli, 2014; Wei & Stocker, 2015). Stimulus-
independent contributions to variability in precision could be due to fluctuations in attention 
(Adam, Mance, Fukuda, & Vogel, 2015; Cohen & Maunsell, 2009; Luck, Chelazzi, Hillyard, & 
Desimone, 1997) or stochastic memory decay (Fougnie et al., 2012). Although the interpretations 
of the two factors that affect precision variability are quite different, only one paper has 
attempted to separate them (Pratte et al., 2017). However, this was in the realm of visual short-
term memory, not perception. In color perception and visual working memory, stimulus-
dependent variable precision can mimic stimulus-independent variable precision (Bae et al., 
2014), but the factors have not been disentangled. Moreover, to our knowledge, no studies have 
tried to distinguish either form of variability in precision from guessing and decision noise. 

 2) We examine the importance of different behavioral variability factors in a factorial 
way. Different from Drugowitsch et al. (2016), in which only models with single factors are 
tested and compared, we test models with all combinations of behavioral variability factors, and 
also introduce three metrics to evaluate the importance of each factor: factor knock-in, factor 
knock-out, factor posterior probability. These approaches hopefully provide a more 
comprehensive characterization of the importance of each behavioral variability factor. 

3) We examine task dependency of the importance of different behavioral variability 
factors. Most of the studies trying to identify different sources of variability focused on one or 
two tasks, but the importance of different behavioral variability factors might vary depending on 
the stimulus context and features of the task. Here we vary the experimental design 
systematically and try to link the importance of different behavioral variability factors to explain 
the data to the features in stimulus context and task type. We analyzed data of 11 perceptual 
experiments (8 new and 3 previously published by our lab), and tested the following behavioral 
variability factors in all these experiments: stimulus-dependent variable precision, stimulus-
independent variable precision, decision noise and lapses (guessing).  

 
 
TASKS 
We conducted eight new target discrimination (categorization) experiments to distinguish the 
possible factors that might account for behavioral variability, and analyzed the results of three 
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previously published experiments (Table 1). The previously published experiments are numbered 
Experiment 7 (was Experiment 1 in Shen & Ma, 2016), Experiment 8 (was Experiment 2 in 
Mazyar et al., 2013), and Experiment 11 (was Experiment 1 in Mazyar et al., 2013). 
 

All experiments were identical in the following aspects: 
• Stimuli were Gabors, with orientation the only relevant feature. 
• Presentation times was brief (50 or 83 ms). 
• None required visual short-term memory: there was little or no delay between the 

stimulus display and the response. 
• Subjects fixated and all stimuli were presented at the same eccentricity (5° of visual 

angle). 
• The task was a binary choice. 
• There were no intertrial dependencies. 

 
The experiments differed in: 
• task type (discrimination versus detection),  
• set size,  
• set size context (a single set size or multiple set sizes in the experiment), 
• distractor context (homogeneous or heterogeneous). 

 
Apparatus and stimuli. Subjects were seated at a viewing distance of approximately 60 cm. 

All stimuli were displayed on a 21-inch LCD monitor with a refresh rate of 60 Hz and a 
resolution of 1280×1024 pixels. The stimulus displays were composed of Gabor patches shown 
on a grey background. In Experiments 1-7, 9, and 10, background luminance was 29.3 cd/m2, 
and the Gabors had the following settings: peak luminance 35.2 cd/m2, spatial frequency 3.1 
cycles per degree, standard deviation of the Gaussian envelope 8.2 pixels, phase 0 for the cosine 
pattern. Settings were different in Experiments 8 and 11 (see Mazyar et al., 2013), background 
luminance was 33.1 cd/m and the Gabors had the following settings: peak luminance 122 cd/m2, 
spatial frequency 1.6 cycles per degree, standard deviation of the Gaussian envelope 10 pixels, 
phase 0 for the cosine pattern.  

Experimental procedure. Each trial started with a fixation dot on a blank screen (500 ms), 
followed by a stimulus display (50 ms in Experiments 1-7, 9, and 10; 83 ms in Experiments 8 
and 11). Then, a blank screen was shown until the subject made a response by pressing a button. 
Response time was not limited. Experiments 1-7, 9, and 10 were visual discrimination tasks. In 
these experiments, except in Experiment 2, the subject reported whether the target 
stimulus/stimuli was/were tilted to the left or to the right relative to vertical. In Experiment 2, the 
subject reported whether the target stimulus was tilted clockwise or counterclockwise relative to 
a simultaneously presented, randomly drawn reference. Experiments 8 and 11, the subject 
reported whether a vertical target was present or not. After the response, correctness feedback 
was given through a change of color of the fixation dot (green for correct, red for incorrect, 500 
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ms; Figs. 3-13A). The nature of the distractors differed across experiments and is described in 
detail in Results (Figs. 3-13A and B).  

Experiments 1-7, 9, and 10 each consisted of three sessions on different days. Each session 
consisted of five blocks, and each block contained 200 trials, for a total of 3×5×200=3000 trials 
per subject. In Experiments 8 and 11, each subject completed 1400 trials (for detailed session 
and block information, see Mazyar et al., 2013).  
 
Experiment Number of 

subjects 
Number 
of stimuli 

Number 
of targets 

Task Distractors 

1 6 1 1 Target discrimination 
relative to vertical 

None 

2 5 2 1 Target discrimination 
relative to reference 
(stimulus on the right) 

None 

3 6 4 all Target discrimination 
relative to vertical 

None 

4 6 1, 2, 4, 8 all Target discrimination 
relative to vertical 

None 

5 6 4 1 Target discrimination 
relative to vertical 

Vertical 

6 6 1, 2, 3, 4 1 Target discrimination 
relative to vertical 

Vertical 

7 10 4 1 Target discrimination 
relative to vertical 

Homogeneous, 
variable 

8 13 1, 2, 4, 8 0, 1 Target detection, vertical 
target 

Homogeneous, 
variable  

9 6 4 1 Target discrimination 
relative to vertical 

Heterogeneous, 
variable 

10 11 1, 2, 4, 8 1 Target discrimination 
relative to vertical 

Heterogeneous, 
variable 

11 6 1, 2, 4, 8 0, 1 Target detection, vertical 
target 

Heterogeneous, 
variable 

 
Table 1: Overview of experiments. For distractors, we use “homogeneous” and “heterogeneous” 
to indicate that the distractors were identical to (or different from, respectively) each other within 
a display; we use “variable” to indicate variability across trials. Experiment 7 was previously 
published as Experiment 1 in Shen & Ma (2016). Experiments 8 and 11 were previously 
published as Experiments 2 and 1 in Mazyar et al. (2013), respectively.  
 
THEORY 
We build Bayesian models for the data (Fig. 1A). A Bayesian model consists of three main steps, 
and different contributors to behavioral variability appear in each step: 

1. The generative model, which is a statistical description of both the noisy internal 
measurements of the stimuli and of what the observer believes about how the stimuli 
were generated (which may or may not be how they were actually generated). The part of 
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the generative model describes the noisy measurements. We consider two kinds of 
variability in the precision of measurement noise in this step: orientation-dependent 
variable precision (O) and orientation-independent variable precision (V). 

2. The observer’s decision model. We assume an optimal decision rule, which produces a 
decision rule by inverting the generative model. We allow for the outcome of this 
decision rule to be corrupted by decision noise (D). Systematic suboptimality in the 
decision rule might also cause variability in behavior (Beck et al., 2012), but such 
suboptimality will be very task-dependent and therefore we do not consider it as a general 
model factor. As an example, we explore suboptimal rules for Experiment 7 in Results. 

3. Predictions for subject responses on a trial-by-trial basis. We consider the guessing (G) in 
this step. 
 

We first describe the measurement component of the generative model, since it is shared across 
all experiments. We then describe the experiment-specific component of the generative model, 
and finally derive the observer’s decision rules. 
 
Step 1a: Generative model: Noisy measurements and variability in precision 
We assume that the observer makes a noisy measurement xi of each physical orientation si, where 
i =1,…, N labels the stimuli in a given display (N is the set size). We denote the vector of 
physical orientations of the stimuli by s and the vector of orientation measurements by x. 
Throughout, we will assume that the measurements are independent given the stimuli, 
 

 p x s( ) = p xi si( )
i=1

N

∏ .   

 
We assume that the distribution of xi given si is either Gaussian, 
 

 p xi si( ) =
1

2πσ i
2

e
−

xi −si( )2

2σ i
2

,   

  
 
 or Von Mises (circular Gaussian), 
 

 p xi si( ) = 1

2π I0 κ i( ) eκ i cos2 xi −si( ),   (1) 

 
where I0 is the modified Bessel function of the first kind of order 0. Noise level or precision is 
controlled by the standard deviation σi (Gaussian) or by the concentration parameter κi (Von 

Mises). The factor 2 in the exponent is present because orientation space is [0, π) instead of [0, 
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2π). In the limit of large κi, the Von Mises distribution converges to the Gaussian distribution, 

with κ i = 1

4σ i
2 . We use the Gaussian distribution when the range of orientations (Experiments 

other than Experiment 2) or the orientation difference (Experiment 2) in the experiment was 
small compared to the full range [0, π) (in Experiments 1 to 8), and Von Mises otherwise (in 
Experiments 9 to 11). 
 We consider the variability of the measurement noise, that is, the parameter that 
characterizes the precision, σi or κi, is also variable. This variability can be orientation-dependent 
or orientation-independent.  

The main characteristic of orientation-dependent precision variability is that encoding 
noise is less for cardinal (horizontal or vertical) orientations (Appelle, 1972; Girshick et al., 
2011). For Gaussian noise, the standard deviation of the noise can be modeled as a rectified sin 
function of the stimulus orientation:  

 

 σ i = σ 0 1+ β sin 2si( )( ),    
  
where σ0 is the baseline noise level and β is the amplitude parameter of orientation dependence. 
σi  is fixed when β is equal to 0. Therefore, we obtain for precision Ji  (Fig. 1B): 
 

 

Ji = 1

σ 0
2 1+ β sin 2si( )( )2

= J0

1+ β sin 2si( )( )2 ,

  (2) 

 
where J0 is the baseline precision. We use the latter equation also for Von Mises noise. 

For orientation-independent precision variability, one successful empirical description of 
behavior has used Fisher information as a starting point (Cover & Thomas, 2005). Fisher 
information, denoted by J, is related to the precision parameters through  

 

 

J =
1

σ 2  Gaussian( )

J =
4κ I1 κ( )

I0 κ( )  Von Mises( ),
  (3) 

 
where I1 is the modified Bessel function of the first kind of order. It is then assumed that J 
follows a Gamma distribution:  
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 p J( ) = Gamma J;
J

τ
,τ

⎛

⎝⎜
⎞

⎠⎟
,  (4) 

 

where is the mean precision, and τ is called the scale parameter (Fig. 1C). 
In previous work (Keshvari et al., 2012; Mazyar et al., 2012; Mazyar et al., 2013; van den 

Berg et al., 2012), we did not include the factor of 2 in Eq. (1) and the factor of 4 in Eq. (3), but 
instead rescaled orientations from [0, π) to [0, 2π) before doing any analysis. This rescaling is 
mathematically equivalent to inserting those factors, but here, we opted against the rescaling, so 
that we can compare the results of Gaussian-based analysis to those of Von Mises-based analysis 
with minimal confusion (e.g. in Fig. 16). 
 In all experiments, we tested all four combinations of the two factors for precision 
variability: base model with fixed precision (Base), orientation-dependent variable precision only 
(O), orientation-independent variable precision only (V), and a combination of orientation-
dependent and independent variable precision (OV). For the base model with fixed precision, Ji 
is the same across all i and across all trials. For the O model, Ji is computed from Eq. (2). For the 
V model, Ji is drawn independently across i and across trials from a gamma distribution with the 

mean J  and the scale parameter τ (Eq. (4)). For the OV model, we first computed J  from Eq. 

(2), then draw J from a gamma distribution with J  and the scale parameter τ.  

 In experiments with multiple set sizes, we allowed J (fixed-precision models), J0, or J  
(variable-precision models) to vary with set size; we did not impose a parametric form but fitted 
the parameter independently at each set size. 
 
Step 1b: Generative model: Experimental statistics 
The generative model of an experiment consists not only of the distribution p(xi|si), which we 
discussed in Step 1a, but also of the experimental statistics. Relevant variables are category 
(target tilted left or right in the discrimination experiments, target present or absent in the 
detection experiments), and the stimuli on a given trial. We specify their joint distribution. This 
distribution is determined by the experimental design, with two exceptions:  

• The two categories were always presented with probability 0.5. However, we did not 
assume that subjects would believe this probability to be exactly 0.5. Instead, we used a 
free parameter to characterizing the observer’s prior probability that the stimulus was 
tilted right (pright) in the discrimination experiments, or that the stimulus was present 
(ppresent) in the detection experiments. 

• In Experiments 1, 3, 4, 5, 6, we used discrete stimulus values, e.g. 19 values spaced 
linearly between -15° and 15° (Experiments 1 and 3), between -5° and 5° (Experiment 4), 

between -20° and 20° (Experiments 5 and 6). We did not assume that subjects had 
detailed knowledge of these values, but we instead assumed that the observers believed 
this distribution was Gaussian with the same mean and standard deviation as the actual 
distribution. In the cases that we examined, the model predictions only depend weakly on 

J
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the assumed stimulus distribution, and our eventual results are similar between the actual 
distribution and the Gaussian approximation. 

 
Step 2: Decision model: Bayesian observer and decision noise 
The Bayesian observer “inverts” the generative model to obtain a probability distribution over 
the variable of interest (here category, C=1 or C=-1 given the noisy measurements x on a given 
trial. The Bayesian decision variable, denoted by d, is the log of the ratios of the probabilities of 
C=1 and C=-1 given x: 
 

 d = log
p C = 1 x( )

p C = −1 x( ) .   

 
The Bayesian observer reports C=1 if d is positive. The derivations of the Bayesian 

decision rules for all experiments are given in Appendix 1. 
We test models with decision noise (D), where on each trial, the actual decision variable 

 is drawn from a Gaussian distribution with a mean of d and a standard deviation of σd. The 

observer then instead reports C=1 if  is positive.  
Even without decision noise, the Bayesian observer is not strictly optimal, because we 

made two modifications in Step 1b (for a detailed distinction between the terms Bayesian and 
optimal, see Ma, 2012). An additional deviation from optimality is hidden in our assumption that 
in orientation-dependent models, the subject knows the noise, but does not know the relationship 
between the noise and the orientation and therefore does not infer the orientation from the noise. 
In practice, this means that we assumed σ to be known in Step 2, and we do not take its s 
dependence into account when marginalizing over s. 
 
Step 3: Predictions: Sampling of measurements and guessing rate 

Step 2 produces a mapping from a set of measurements, x, to an estimate of category, . 
However, we are ultimately interested in the probability that on a given trial, the observer will 

make either category response, that is, p Ĉ s( ), where s are the physical stimuli on that trial. This 

distribution is obtained as an average (marginalization) over measurement vectors x: 
 

 p Ĉ s( ) = p Ĉ x( ) p x s( )dx.∫   (5)  

   

Here, p Ĉ x( )  is deterministic and given by Step 2, and p(x|s) is given by the 

measurement distributions in Step 1a. To approximate this integral, we sampled, for each trial in 
the experiment, a large number of measurement vectors x based on the physical stimuli s on that 
trial. For each x, we applied the decision rule from Step 2, and counted the outcomes. The 

��Ĉ
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proportions of either category response serve as our approximation of p Ĉ s( ). The number of 

samples of x needs to be sufficiently large for the approximation to be good. Based on an earlier 
test that showed convergence near 256 samples in a similar task (van den Berg et al., 2012, 
Appendix), we chose 2000 samples. 

We allowed for the possibility that the subject guesses on some proportion of trials. To 

this end, we introduced a guessing rate λ, so that the probability of reporting Ĉ  given s becomes 
 

 pwith lapse Ĉ s( ) = 0.5λ + 1− λ( ) p Ĉ s( ).  (6)  

 
Thus, in each experiment, we tested a total of 16 models, in a factorial manner (van den Berg et 
al., 2014). We will denote the factors by G, D, O, and V (see Table 2). 
 

Notation Added factor 
Base None (Base model: no guessing, no decision noise, fixed precision) 
G Guessing (lapse rate) 
D Decision noise 
O Orientation-dependent precision 
V Orientation-independent variable precision 
Full All (Full model: contains all factors) 

 
Table 2: Notation for the model factors that we consider. 
 
 
MODELING METHODS 
 
Model fitting 
We fitted each model to each individual subject’s data using maximum-likelihood estimation. 
The log likelihood of a given parameter combination is the logarithm of the probability of all of 
the subject’s responses given the model and each parameter combination: 
 

 

log LM parameters( ) ≡ log p data M ,  parameters( )
= log p Ĉ j s j , M ,  parameters( )

j=1

N trials

∏

= log p Ĉ j s j , M ,  parameters( )
j=1

N trials

∑

  

 
where j is the trial index, Ntrials is the number of trials, sj is the set of orientations presented on the  

jth trial, Ĉ j  is the subject’s response on the jth trial, and we have assumed that there are no 

sequential dependencies between trials. The probability of the subject response, 
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p Ĉ j s j , M ,  parameters( ) , is obtained from Eqs. (5) or (6). To find the values of parameters that 

maximize log LM(parameters), we used a novel Bayesian optimization algorithm named Bayesian 
Adaptive Direct Search (BADS, Acerbi & Ma, 2017). We initialized BADS with random initial 
values. After BADS returned a parameter combination, we recomputed the log likelihood 10 
times with that combination and took the mean, to reduce sampling noise. We performed this 
process for 10 different initializations and took the maximum of the log likelihoods as the 
maximum log likelihood for the model, LLmax(M). 
 
Model comparison metrics 
We used Alkaike Information Criterion (AIC) as a measure of goodness-of-fit that takes into 
account differences in number of parameters between the models (Akaike, 1974): 

 where kM is the number of parameters of the given model. 

Another metric is the Bayesian Information Criterion (BIC; Schwarz, 1978), 

 AIC penalizes each parameter by 2 points, while BIC 

penalizes each parameter by 8.0 points in Experiments 1-7, 9, and 10, and by 7.2 points in 
Experiment 8 and 11. We use the AIC as the main metric because it has been argued to be a good 
metric for model selection (Burnham & Anderson, 2002, Chapter 2.2). We also show the 
summary results using BIC in the Appendix (Fig. A1). Choosing BIC does not change our major 
conclusions in this study. 
 
Model comparison and quantification of factor importance 
We have four model factors, each with two levels, for a total of 16 models. We first compared 
the goodness-of-fit of each model to the full model, which contains all factors (all from full, Fig. 
2A).  

In addition, we would also like to draw conclusions about the importance of each factor 
regardless of model. In van den Berg et al. (2014), this was done by calculating the proportion of 
subjects for whom all models in a given model family are rejected (according to the AIC), as a 
function of the rejection criterion. This method has two disadvantages: a) it works at the 
population level and cannot be applied when the number of subjects is small; b) it outputs a 
curve (function) rather than a number. Therefore, we here introduce three new methods: factor 
knock-in analysis, factor knock-out analysis, and factor posterior probabilities. We expect these 
methods to be useful in any study that performs factorial model comparison. 

We can use a graphical representation to illustrate our model comparison and factorial 
analysis methods (Fig. 2). In the graph, each dimension represents a factor and each vertex 
represents a model. For example, if we consider 3 factors that can each be absent or present, we 
get 8 models in total, which are represented by the 8 vertices of a cube. In the actual analysis, we 
have 4 factors and 16 models. 
 
Factor knock-in analysis 

AIC M( ) = 2kM − 2LLmax M( ),

BIC M( ) = log N trials( )kM − 2LLmax M( ).
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In the factor knock-in analysis, we compute by how much the AIC of a model decreases 
(goodness-of-fit improves) when adding one factor at a time (Fig. 2B). Specially, we estimate the 
“value” of factors guessing (G), decision noise (D), orientation-dependent variable precision (O), 
orientation-independent variable precision (V), or both O and V, by comparing AICs of models 
G, D, O, V, OV with the Base model. Drugowitsch et al. (2016) applied a similar analysis. 
 
Factor knock-out analysis 
In the factor knock-out analysis, we quantify the contribution of each factor by comparing the 
AIC of the full model that contains all four factors (GDOV) with the models that lack a certain 
factor (DOV, GOV, GDV, or GDO), or both O and V (GD) (Fig. 2C). This method shows how 
“necessary” a factor is to explain the data. 
 
Factor posterior probabilities 
Finally, we quantify the importance of a factor by estimating the posterior probability of its 
existence given the data, p(F=1|data), which we will refer to as the factor posterior probability 
(FPP). This quantity is the most principled one we can compute, as it reflects most objectively 
the degree of belief in the factor (Van Horn, 2003), but in practice, additional assumptions are 
needed. First, the computation involves marginalizing (averaging) over all models that contain 
the factor F; here, we assume that the 8 models we have per factor value (F=1 or -1) are 
representative of that model space. Second, we have to assume priors over factor values and 
models; here, we assumed that both values of each factor and all models for a given factor are a 
priori equally probable. Third, we approximate the log marginal likelihood of a given model by -
0.5 times the AIC of that model (Burnham and Anderson, 2002, Chapter 2.9). Combining the 
assumptions, we find the marginal likelihood of a factor to be: 
 

 

p data F = 1( ) = p data M( ) p M F = 1( )
M
∑

= 1
2NF=1

p data M( )
M :F=1
∑

= 1
2NF=1

e−0.5AIC M( )

M :F=1
∑ ,

 

 
where NF=1 denotes the number of models that contains factor F. The posterior ratio is the ratio of 
the marginal likelihoods times the prior ratio, but according to our assumption, the latter is 1. 
Thus, 
 

 
p F = 1 data( )

p F = −1 data( ) =
e−0.5 AIC M( )

M :F=1
∑

e−0.5AIC M( )

M :F=−1
∑

.   
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Then the FPP becomes: 
 

 p F = 1 data( ) =
e−0.5AIC M( )

M :F=1
∑

e−0.5AIC M( )

M :F=1
∑ + e−0.5AIC M( )

M :F=−1
∑

.  (7) 

 
We now discuss an important special case. If a factor is completely “neutral”, which 

means that the model containing the factor has the exact same LLmax as the corresponding model 
without that factor, the its FPP is: 
 

 

p F = 1 data( ) =
eLLmax M( )−kM

M :F=1
∑

eLLmax M( )−kM

M :F=1
∑ + eLLmax M( )−kM

M :F=−1
∑

= e−1

e−1 +1
= 0.27.

  (8) 

 
The fact that this is lower than 0.5 is due to the AIC penalty for the extra parameter. If we use -
0.5BIC as an approximation of log marginal likelihood, this number would become 0.018 for 
Experiments 1-7, 9 and 10, and 0.027 for Experiments 8 and 11. Adding a factor would have to 
afford a substantially better fit for the posterior probability of the existence of the factor to cross 
0.5. In theory, the FPP of a factor should always be higher than 0.27, but in practice, it is 
possible to be slightly lower because of the simulation noise. We mark this baseline as reference 
in all plots showing the FPPs in Results. 
 
 
RESULTS 
 
We are interested in how different factors that affect behavioral variability in different perceptual 
tasks. To answer this question, we tested models varying in four factors: guessing (G), decision 

noise (D)，orientation-dependent variable precision (O), and orientation-independent variable 

precision (V). We test all combinations of the above factors, for a total of 16 models.  
Below, we describe the details of each of the 11 experiments. Whenever we write 

“randomly”, we mean “randomly from a uniform distribution over the possible values”. For the 
angular positions of the stimuli on the screen, we use the positive horizontal axis as 0º, and 
positive values are counterclockwise (as is convention for polar coordinates). For stimulus 
orientations, we use the vertical orientation as 0º, and positive values are clockwise; this is most 
natural given our stimulus distributions. 
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Experiment 1: Single stimulus, four possible locations 
The subject reported the tilt with respect to vertical (0°) of a single oriented stimulus (Fig. 3A). 
On each trial, a single stimulus appeared in one of four angular positions: -135º, -45º, 45º, and 
135º. Stimulus orientation was drawn randomly from 19 values equally spaced between -15º and 
15º (Fig. 3B). 

Models that contain guessing (G), orientation-dependent variable precision (O), 
orientation-independent variable precision (V), or a combination of these factors fit the data best 
and have nearly equal AICs amongst each other, with mean differences across subjects being less 
than 5.3. AICs of the models with none of the factors G, O, or V (Base and D) are higher than 
those best-fitting models, for example by 59 ± 28 (mean ± s.e.m.), 62 ± 28, relative to GDOV, 
respectively (Fig. 3C).  

Knocking in factors G, O, or V decreases the AIC of the Base model by 63 ± 27, 60 ± 28, 
and 62 ± 28, respectively, but knocking in decision noise (D), yields no benefits, with a slight 
increase in AIC of 2.57 ± 0.49 (Fig. 3D). Knocking out any individual factor barely affects the 
AIC of the “full” (GDOV) model, with mean increases across subjects being less than 1, 
suggesting that none of the factors is necessary to explain the data (Fig. 3E). The factor posterior 
probabilities (FPPs) of factors G, D, O, and V are 0.66 ± 0.12 and 0.243 ± 0.011, 0.455 ± 0.085, 
and 0.49 ± 0.10, respectively, indicating some evidence for G, and little or no evidence for D, O 
or V (Fig. 3F). Consistent with the FPP of factor G, the G model fits the psychometric curves 
better than the Base model (Fig. 3G). 

We also examine the importance of the combination of factors O and V. Starting with the 
Base model, knocking in factors O and V together decreases the AIC by 61 ± 28, which is 
similar to the effect of knocking in factors G, O, or V (Fig. 3D). Knocking out both factors 
hardly affects the AIC (Fig. 3E). The FPP of both factors is 0.41 ± 0.14, suggesting little or no 
evidence for the combination of factors O and V (Fig. 3F). The model fits of GD and GDOV 
models are equally good, consistent with the AIC results and factor importance analyses (Fig. 
3G). 

In summary, in this simple orientation discrimination task, knocking in any factors G, O 
or V improves the Base model, but none of the factors is necessary to explain the data. There is 
substantial evidence for factor G. 
 
Experiment 2: Discrimination of a single target with respect to a variable reference 
orientation 
In Experiment 1, the subject reported the tilt relative to vertical. We then wondered whether 
making the reference orientation variable would change the importance of the four factors. In 
Experiment 2, the stimulus display consisted of two stimuli, placed on the horizontal axis left 
and right to the fixation (Fig. 4A). The stimulus on the right was the reference stimulus, whose 
orientation sref was drawn from a uniform distribution over the entire orientation space. The 
stimulus on the left was the target stimulus, whose orientation was drawn from a Von Mises 
distribution centered at sref with a concentration parameter of 10 (Fig. 4B). The subject reported 
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whether the target was oriented clockwise or counterclockwise with respect to sref. Experiment 2 
was different from Experiment 1 in two aspects: first, the reference orientation in Experiment 2 
was variable; second, the stimulus range covered the entire space of orientation. We expect to 
find evidence for factor O in this experiment according to similar experiments in previous 
literature (Andrews, 1967; Girshick et al., 2011). 

Indeed, models that contain factor O (O, GO, DO, GDO, OV, GOV, DOV, GDOV) have 
small or moderate differences in AIC amongst each other, with mean differences across subjects 
being less than 8.0. The AICs of models without factor O (Base, G, D, GD, V, GV, DV, GDV) 
are higher, for example by 34 ± 11, 35 ± 11, 26 ± 11, 28 ± 10, 27 ± 10, 30 ± 10, 28 ± 10, and 30 
± 10 relative to GDOV, respectively (Fig. 4C).  

Knocking in factor O decreases the AIC of the Base model by 33 ± 11, indicating that 
factor O is very beneficial. Knocking in factors G or V decreases the AIC by 8.3 ± 2.0, or 6.6 ± 
1.7, respectively, while knocking in factor D yields no benefits, with a slight increase in AIC of 
1.29 ± 0.18 (Fig. 4D). Knocking out factor O from GDOV increases its AIC by 30 ± 10, while 
knocking out any other factor does not increase the AIC, indicating that factor O is the only 
factor that is necessary to explain the data (Fig. 4E). The FPPs of factors G, D, O, V are 0.671 ± 
0.095, 0.269 ± 0.019, 0.86 ± 0.14, 0.392 ± 0.064, respectively, indicating strong evidence for 
factor O, some evidence for factor G, and little or no evidence for factors D or V (Fig. 4F). In all 
three analyses, the combination of factors O and V has similar effects as factor O by itself (Fig. 
4D-F). 

Although there is strong evidence for factor O or a combination of factors O and V, there 
are no visible differences in model fits to the psychometric curves – proportion of reporting 
“clockwise” versus orientation of target relative to the reference – between model O and Base, or 
between models GDOV and GD (Fig. 4G). However, if we plot the accuracy as a function of the 
reference orientation, there is a clear “oblique effect” in the subject data (Fig. 4H). That is, the 
accuracy is higher for cardinal orientations (0° and 90°) than oblique orientations (45° and 135°). 
These results are similar to the literature (Andrews, 1965, 1967). Consistent with the high FPP of 
factor O, and of a combination of factors O and V, the models O and GDOV fit very well to the 
data, while models Base and GD clearly deviate (Fig. 4H).  

In summary, adding factor O largely improves the Base model, and factor O is also the 
only factor that is necessary to explain the data. Consistently, there is strong evidence for factor 
O, some evidence for factor G, and little or no evidence for factors D or V. These results suggest 
that when the stimulus orientation covers a wide range of the orientation space, there is evidence 
for orientation-dependent variable precision. 

 
Experiment 3: Discrimination with all stimuli being targets 
In Experiment 1 and 2, there was one target. We wondered how the importance of the four 
factors would change with a larger number of targets. In Experiment 3, we test this idea using an 
orientation discrimination task with four identical stimuli shown on each trial; both the angular 
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positions and the stimulus orientation were the same as in Experiment 1 (Fig. 5A and B). All 
four stimuli were targets, and the subject reported the tilt of their common orientation.  

All results are quite similar to those in Experiment 1. Models that contain factor G, O, V, 
or a combination of these factors have small or moderate differences in AIC amongst each other, 
with mean differences across subjects being less than 6.7. The AICs of the models with none of 
the factors G, O or V (Base and D) are higher than the AICs of the above models, for example by 
67 ± 28, 69 ± 28 relative to GDOV, respectively (Fig. 5C). Knocking in factors G, O, or V 
decreases the AIC of the Base model by 65 ± 23, 67 ± 28, and 68 ± 27, respectively, but 
knocking in D yields no benefits, with a slight increase in the AIC of 2.17 ± 0.37 (Fig. 5D). 
Knocking out any individual factor barely affects the AIC, with mean increases in AIC across 
subjects being less than 0.11, suggesting that none of the factors is necessary to explain the data 
(Fig. 5E). The FPPs of factors G, D, O, and V are 0.64 ± 0.12, 0.273 ± 0.009, 0.0523 ± 0.092, 
and 0.511 ± 0.070, respectively, indicating there is some evidence for factor G, little or no 
evidence for factors D, O, or V (Fig. 5F). Consistent with the FPP of factor G, the G model fits 
the psychometric curves better than the Base model (Fig. 5G).  

Knocking in both factors O and V has similar effect as adding any factors G, O or V (Fig. 
5D). Knocking out both factors hardly affects the AIC of the GDOV model (Fig. 5E). The FPP 
of both factors is 0.51 ± 0.12 (Fig. 5F). Consistently, the model fits of GD and GDOV are almost 
identical, showing that there is little evidence for variability in precision (Fig. 5G). 

In summary, the results of this experiment are quite similar to those of Experiment 1: 
adding any of the factors G, O or V improves the Base model; none of the factors is necessary to 
explain the data, although there is substantial evidence for factor G or factor V. These results 
suggest that having multiple targets does not change the importance of the four factors we test. 

 
Experiment 4: Discrimination with all stimuli being targets and multiple set sizes 
We next tested how the importance of different factors change when the set size varied across 
trials – perhaps, this would make attentional allocation less stable. Experiment 4 had the same 
paradigm as Experiment 3, but the set size was 1, 2, 4, or 8, drawn randomly on each trial. At set 
size 8, we used all 8 angular positions. At set sizes 1, 2, and 4, we placed the first stimulus at a 
random angular position. At set size 2, we placed the second stimulus diametrically opposite to 
the first. At set size 4, we placed the remaining stimuli at every other position. Stimulus 
orientation was drawn randomly from 19 values equally spaced between -5º and 5º; we chose 
this range narrower than in Experiment 2 because we were concerned that the task would 
otherwise be too easy at set size 8 (Fig. 6A and B). 
 In each model, we treat precision or mean precision at a given set size as a free 
parameter; we do the same in later experiments that use multiple set sizes. We assume that all 
other parameters (prior, guessing rate, orientation dependence of noise, and scale parameter of 
the gamma distribution) are shared among all set sizes.  

All models have small or moderate differences in AIC amongst each other, with mean 
differences across subjects being less than 8.2 (Fig. 6C). Knocking in factors G, O, or V slightly 
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decreases the AIC of the Base model by 5.8 ± 2.9, 3.1 ± 2.7, and 3.6 ± 2.2, respectively, and 
knocking in factor D yields no benefits, with a slight increase in AIC of 2.34 ± 0.54 (Fig. 6D). 
Knocking out any individual factor barely affects the AIC, with mean increases in AIC across 
subjects being less than 0.089, suggesting that none of the factors is necessary to explain the data 
(Fig. 6E). The FPPs of factors G, D, O, and V are 0.61 ± 0.13, 0.239 ± 0.041, 0.370 ± 0.085, and 
0.379 ± 0.081, respectively, indicating there is some evidence for factor G, little or no evidence 
for factors D, O, or V (Fig. 6F). Differences in the model fits to the psychometric curves between 
Base and G models are hardly visible (Fig. 6G), consistent with the fact that knocking in factor G 
only slightly decreases the AIC of the Base model. There is no evidence of the combination of 
factors O and V in any of the three analyses (Fig. 6D-F). Consistently, the model fits of GD and 
GDOV are almost identical (Fig. 6G). 

Different from Experiments 1 and 3, knocking in factor G does not improve the Base 
model either in AIC (Fig. 6D) or the model fits (Fig. 6G). This might be because the range of 
stimuli (-5º to 5º) was narrower than in the previous two experiments (-15º to 15º). Therefore, in 
Experiments 1 and 3, a mistake on an easy trial (tilts close to 15º) is very harmful to the 
goodness-of-fit of the Base model. 

In summary, in this experiment with multiple targets and multiple set sizes, we found no 
strong evidence for any of the factors. 

 
Experiment 5: Discrimination of a single target with a fixed number of vertical distractors 
In Experiments 3 and 4, although multiple stimuli were presented simultaneously, all stimuli 
were targets. We next examine whether replacing targets by distractors – in other words, adding 
a visual search component to the discrimination task – changes the importance of different 
factors. Experiment 5 was an orientation discrimination task  (Fig. 7A). Set size was 4 and the 
angular positions were the same as in Experiment 1. Three of the stimuli were vertical; these 
were the distractors. The fourth stimulus, whose position was drawn randomly, was the target. 
Target orientation was drawn randomly from 19 values equally spaced between -20º and 20º 
(Fig. 7B). 

Models that contain factor G, O, V, or a combination of these factors have small or 
moderate differences in AIC amongst each other, with mean differences across subjects being 
less than 12. AICs of the models with none of the factors G, O, or V (Base, and D) are much 
higher than the above models, for example by 44 ± 12, 46 ± 13 relative to GDOV, respectively 
(Fig. 7C). Knocking in factors G, O, or V decreases the AIC of the Base model by 49 ± 12, 39 ± 
10, and 44 ± 11, respectively, but knocking in D yields no benefits, with a slight increase in AIC 
of 2.2 ± 1.6 (Fig. 7D). Knocking out any individual factor barely affects the AIC of the GDOV 
model, with mean increases in AIC across subjects being less than 3.0, suggesting that none of 
the factors is necessary to explain the data (Fig. 7E). The FPPs of factors G, D, O, and V are 
0.844 ± 0.074, 0.316 ± 0.035, 0.311 ± 0.022, and 0.374 ± 0.046, respectively, indicating strong 
evidence for factor G and little or no evidence for other factors (Fig. 7F). Consistent with the 
high FPP of factor G, the G model fits the psychometric curves better than the Base model (Fig. 
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7G). Knocking in both factors O and V decreases the AIC of the Base model by 42 ± 11 (Fig. 
7D), but knocking out both factors hardly affects the AIC of the GDOV model (Fig. 7E). The 
FPP of the combination of both factors is 0.215 ± 0.038 (Fig. 7F), indicating no evidence for the 
combination of factors O and V. Consistently, the model fits of models GD and GDOV are 
almost identical, showing that there is no evidence for variable precision (Fig. 7G). 

The evidence for factor G is higher than that in Experiments 1, 3, and 4 (Fig. 7F). This 
might be because the stimulus range used in experiment is wider, from -20° to 20°. Therefore 
there are more easy trials than in previous experiments. Factor G is the best factor to explain the 
mistakes in those easy trials, and is less replaceable by other factors here than in Experiments 1, 
3 and 4. 

In summary, in this experiment with vertical distractors, adding any of the factors G, O, 
or V improves the Base model; although none of the factors is necessary to explain the data, we 
found strong evidence for factor G, and little or no evidence for the other factors. 
 
Experiment 6: Discrimination of a single target with a variable number of vertical 
distractors 
We next tested how the conjunction of distractors and variable set sizes across trials would 
change the importance of factors. Experiment 6 was identical to Experiment 5, except for the 
following differences (Fig. 8A). The set size was 1, 2, 3, or 4, drawn randomly on each trial. 
Angular positions were drawn randomly. Target orientations were drawn randomly from 19 
values equally spaced between -20° and 20° (Fig. 8B).  

All models with factor G (G, GD, GO, GDO, GV, GDV, GOV, GDOV) fit the data best, 
and have very similar AICs amongst each other, with mean differences across subjects being less 
than 5.2. The AICs of the remaining models (Base, D, O, DO, V, DV, OV, GOV, DOV) are 
higher than those of the best-fitting models, for example by 65 ± 21, 68 ± 22, 15.4 ± 8.6, 15.6 ± 
8.1, 10.2 ± 7.9, 12.3 ± 7.2, 10.3 ± 6.8, and 9.8 ± 5.6, relative to GDOV, respectively (Fig. 8C). 
Among these models, models with factors O, V, or both are better than the remaining models.  

Knocking in factors G, O, or V decreases the AIC of the Base model by 69 ± 21, 50 ± 17, 
and 55 ± 18, respectively, but knocking in D yields no benefits, with a slight increase in AIC of 
2.83 ± 0.85 (Fig. 8D). Knocking out factor G increases the AIC of the GDOV model by 9.8 ± 
5.6, while knocking out other factors barely affects the AIC, suggesting that factor G, but not 
other factors, is necessary to explain the data (Fig. 8E).  The FPPs of factors G, D, O, and V are 
0.910 ± 0.070, 0.388 ± 0.065, 0.347 ± 0.044, and 0.398 ± 0.096 respectively, indicating strong 
evidence for factor G and little or no evidence for other factors (Fig. 8F). Consistent with the 
high FPP of factor G, the G model fits the psychometric curves better than the Base model (Fig. 
8G). Knocking in both factors O and V decreases the AIC of the Base model by 55 ± 19 (Fig. 
8D), but knocking out both factors hardly affects the AIC of the GDOV model (Fig. 8E). The 
FPP of the combination of both factors is 0.32 ± 0.12 (Fig. 8F), indicating little evidence for the 
combination of factors O and V. Consistently, the model fits of models GD and GDOV are 
almost identical, showing that there is no evidence for variable precision (Fig. 8G). 
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Similar to Experiment 5, the evidence for factor G is strong in this experiment. Factor G 
is even necessary to explain the data. This might be because the range of target stimulus -20° to 
20° is wide and there are a decent number of easy trials, especially when the set size is small. 
The mistakes on those easy trials could be well explained by factor G and is not replaceable by 
other factors. 

In summary, we found in this experiment with vertical distractors and multiple set sizes, 
that adding any of the factors G, O or V improves the Base model, but factor G is the only factor 
that is necessary to explain the data. There is strong evidence for factor G and little evidence for 
the other factors. 
 
Interim conclusion from Experiment 1-6: 
So far, we found that in the experiment with stimulus orientations covering the entire orientation 
space (Experiment 2), there is strong evidence for factor O. In all other experiments, we found 
little or no evidence for factors D, O, or V, but the evidence for factor G is correlated with the 
proportion of easy trials. In Experiment 4 with few easy trials (stimulus range from -5° to 5°), the 
evidence for factor G is weak. In Experiments 1 and 3 with wider stimulus range (-15° to 15°) 
and more easy trials than in Experiment 4, the evidence for factor G is stronger. In Experiments 
5 and 6, with even wider stimulus range (-20° to 20°) and more easy trials than Experiments 1 
and 3, the evidence for factor G is even stronger. This is intuitive because the strongest evidence 
for guessing comes from errors on easy trials. Consistently, replacing factor G by O or V 
produces a worse fit in Experiment 6, but an almost equally good one in Experiments 1, 3, and 5. 
Taking factor G as a priori more probable than factor O or V, we did not find convincing 
evidence for factor O or V. We also did not find any convincing evidence for factor D in any of 
the experiments above. 
 
Experiment 7: Discrimination of a single target with a fixed number of homogeneous 
distractors 
We next tested the importance of the factors in a task where distractors are not just present, but 
also vary from trial to trial. We used the published data from an experiment in which distractors 
were identical within a trial but varied across trials (Shen & Ma, 2016; Fig. 9A). The set size was 
4 and the angular positions were the same as in Experiment 1. Each stimulus display contained 
one target and three distractors; target position was drawn randomly. On each trial, the target 
orientation and the common distractor orientation were drawn independently from the same 
Gaussian distribution, which had a mean of 0° and a standard deviation of 9.06°. Subjects 
reported the tilt of the target (the unique stimulus) (Fig. 9A and B).  
 Different from Experiments 1-6, the GV, GDV, GOV, DOV, and GDOV models fit the 
data best, with AICs similar amongst each other (mean differences across subjects less than 2.8) 
(Fig. 9C). Four of these models contain both factors G and V. All other models are worse than 
the above models, but to varying degrees. The second-best models are models GO, DO, GDO 
and DV, with AICs higher than those of the besting-fitting models, for example by 11.4 ± 4.7, 
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16.1 ± 4.3, 12.3 ± 5.2, 11.1 ± 5.4 relative to GDOV, respectively. The next best models are G, 
GD, V and OV, with AICs higher than those of the best-fitting models, for example by 30 ± 11, 
31 ± 11, 39 ± 24, and 39 ± 23 relative to GDOV, respectively. These models contain either factor 
G or factor V, but not both. The AICs of the remaining models – Base, D and O – are higher than 
those of the above models, for example by 106 ± 19, 73 ± 11, and 66 ± 23, relative to GDOV, 
respectively.  

Knocking in factors G, O, or V decreases the AIC of the Base model by 76 ± 26, 33 ± 20, 
40 ± 11, and 67 ± 11, respectively (Fig. 9D). Knocking in factors G or V causes larger 
improvements in AIC than knocking in factors O or D. Knocking out factor V increases the AIC 
of the GDOV model by 12.3 ± 5.2, while knocking out other factors barely affects the AIC, 
suggesting that factor V, but not other factors, is necessary to explain the data (Fig. 9E). 
Although factor G is also important in our knock-in analysis, it could be replaced by a 
combination of factors D, O and V, since the DOV model has an AIC as low as that of the 
GDOV model. The FPPs of factors G, D, O, and V are 0.59 ± 0.11, 0.44 ± 0.10, 0.327 ± 0.075, 
and 0.870 ± 0.063 respectively, indicating strong evidence for factor V, some evidence for factor 
G, and little or no evidence for factors D or O (Fig. 9F).  

Knocking in both factors O and V decreases the AIC of the Base model by 55 ± 19, 
similar to knocking in V only, indicating that adding factor O on top of factor V does not yield 
more benefits (Fig. 9D). Knocking out both factors O and V increases the AIC of the GDOV 
model by 31 ± 11, larger than knocking out factor V only (Fig. 9E). This is because the GD 
model is worse than the GDO model. The FPP of factors O and V is 0.868 ± 0.080, similar to 
that of factor V only (Fig. 9F). 

Consistent with the knock-in analysis, models G, D, O, V fit the psychometric curve 
better than the Base model. Among these models, G fits the best. A combination of factors G and 
V provides even better fits than the G model, and is as good as the full model GDOV. Consistent 
with the strong evidence we found for combination of factors O and V, the GD model fits worse 
than the full model GDOV (Fig. 9G).  
 In summary, in this experiment with distractors that vary across trials, we found that 
adding any of the four factors could improve the Base model, and models with different 
combinations of factors can fit the data equally well. We found strong evidence for factor V and 
some evidence for factor G, but V seems to be the only factor that is necessary to explain the 
data.  
 
Experiment 8: Detection of a single target with a variable number of homogeneous 
distractors 
We next examined the effect of task type on the importance of different factors. We reanalyzed 
data from a published experiment (Experiment 2 from Mazyar et al., 2013), which used the same 
stimuli as Experiment 6, but within a detection rather than a discrimination task (Fig. 10A).  

The set size was 1, 2, 4, or 8, drawn pseudorandomly on each trial. At set size 8, all 
angular positions were used. At set sizes 1, 2, and 4, the first stimulus was placed at a random 
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angular position, and the remaining stimuli were placed at adjacent positions. The target 
orientation was vertical. Trial type was “target present” or “target absent”, drawn 
pseudorandomly on each trial. On target-absent trials, all stimuli were distractors. On target-
present trials, one stimulus was the target stimulus and the remaining stimuli were distractors; 
the position of the target stimulus was drawn randomly. The common orientation of the 
distractors was drawn from a Von Mises distribution centered at vertical, with a concentration 
parameter of 32 (Fig. 10B). The original study (Mazyar et al., 2013) only tested the Base and V 
models and focused on effects of set size on precision. 
 The AICs of models with factor V (V, GV, DV, OV, GOV, DOV, GDOV) are the lowest 
among all models, and almost identical to each other, with mean differences across subjects 
being less than 4.7. The AICs of other models (Base, G, D, GD, O, GO, DO, GOV) are higher, 
for example by 14.5 ± 4.1, 12.1 ± 4.6, 14.5 ± 4.1, 13.2 ± 4.2, 5.3 ± 3.1, 8.8 ± 3.7, 11.1 ± 3.4, 8.5 
± 2.9 relative to GDOV, respectively (Fig. 10C).  

Knocking in factors O, or V decreases the AIC of the Base model by 9.2 ± 3.3, and 13.3 
± 4.4, respectively, while knocking in factors G or D hardly affects the AIC (Fig. 10D). This 
result is similar to that of Experiment 7, but knocking in factor G does not affect the AIC. The 
reason might be similar to what we mentioned in the Interim Conclusion of Experiments 1-6: the 
concentration parameter in Experiment 7 is 10, and that in Experiment 8 is 32, which means that 
Experiment 8 is more difficult. In Experiment 7, models without the factor G are penalized 
heavily on easy trials with incorrect responses. Knocking out factor V increases the AIC of the 
GDOV model by 8.5 ± 2.9, while knocking out other factors barely affects the AIC, suggesting 
that factor V, but not other factors, is necessary to explain the data (Fig. 10E). The FPPs of 
factors G, D, O, and V are 0.378 ± 0.068, 0.367 ± 0.067, 0.466 ± 0.064, and 0.786 ± 0.074 
respectively, indicating strong evidence for factor V, and little or no evidence for other factors 
(Fig. 10F). Consistent with the low evidence for factor G and the high evidence for factor V, the 
G and Base models fit the psychometric curves similarly to each other, but worse than the V 
model (Fig. 10G). 

Knocking in both factors O and V decreases the AIC of the Base model by 17.9 ± 3.9 
(Fig. 10D). Knocking out both factors O and V increases the AIC of the GDOV model by 13.2 ± 
4.2 (Fig. 10E). The FPP of both factors O and V is 0.803 ± 0.080 (Fig. 10F). In all three 
analyses, the evidence for the combination of factors O and V is slightly higher than that of 
factor V by itself. Consistently, GD and GDOV show clear differences in their fits to the 
psychometric curves (Fig. 10G).  

In summary, we found that adding factors O or V improves the Base model, but factor V 
is the only factor that is necessary to explain the data. There is strong evidence for factor V and 
little or no evidence for the other factors.  

 
Interim conclusion from Experiments 7 and 8 
Experiments 7 and 8 show that with the same distractor context (homogeneous within a display 
but variable across trials), there is strong evidence for V in both discrimination and detection 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/153650doi: bioRxiv preprint 

https://doi.org/10.1101/153650
http://creativecommons.org/licenses/by-nc/4.0/


 23

tasks. A consistent explanation of the results of Experiment 1-8 would be that variability of 
distractors across trials causes orientation-independent variable precision (V). This would be 
consistent with effects of context or configuration on precision in visual short-term memory 
(Brady & Alvarez, 2016). 
 
Experiment 9: Discrimination of a single target with a fixed number of heterogeneous 
distractors 
We further examined the importance of the four factors in tasks with a more complex stimulus 
context. In Experiments 9 to 11, the stimulus display contained heterogeneous distractors 
variable both across trials and within a single trial. Experiment 9 and 10 were orientation 
discrimination tasks and Experiment 11 was a detection task. 

In Experiment 9, the set size was 4 and the angular positions were the same as in 
Experiment 1 (Fig. 11A). Each stimulus display contained one target and three distractors; target 
position was drawn randomly. Target orientation was drawn from a Von Mises distribution with 
a mean of 0 and a concentration parameter of 10. Distractor orientations were drawn 
independently from a uniform distribution over the entire orientation space (Fig. 11B). The tasks 
in this experiment contain ambiguity, meaning that the correct answer was not clear to the 
subject even when there was no sensory noise; nevertheless, the subjects still did the task with 
reasonable performances (71.7 ± 1.6%). 

Among all models we tested, DO, GDO, DOV and GDOV fit the data the best. Their 
AICs are similar amongst each other, with mean differences across subjects being less than 5.1. 
Models O, GO, V, GV, DV, GDV, OV and GOV are slightly worse than those best-fitting 
models, for example by 7.5 ± 7.7, 9.6 ± 7.9, 13 ± 11, 15 ± 11, 9.3 ± 6.0, 9.4 ± 5.7, 2.8 ± 7.3, and 
5.2 ± 7.4 relative to GDOV, respectively. Note that the variability in AIC across subjects is high; 
this could mean that different subjects follow different models, but we do not have enough 
subjects to test for that. The other models that contain neither factor O nor factor V (Base, G, D, 
GD), are worse than the above models, with AICs higher than those of the best-fitting models, 
for example by 78 ± 26, 69 ± 21, 68 ± 19, and 54 ± 18 relative to GDOV, respectively (Fig. 
11C). 

Knocking in factors G, D, O, or V decreases the AIC of the Base model by 9.0 ± 6.5, 10 
± 12, 70 ± 21, and 65 ± 18, respectively (Fig. 11D). Knocking in factors O or V has a larger 
effect than knocking in factors G or D. Knocking out factors G or V barely affects the AIC of 
GDOV, with decreases of 1.76 ± 0.60 and 2.2 ± 1.3, respectively, indicating that these factors are 
not necessary to explain the data. Knocking out factor D decreases the AIC of GDOV by 5.2 ± 
7.4, which we cannot conclude anything from. Knocking out factor O increases the AIC of 
GDOV by 9.4 ± 5.8 (Fig. 11E). The FPPs of factors G, D, O and V are 0.260 ± 0.028, 0.54 ± 
0.12, 0.64 ± 0.16, and 0.44 ± 0.15, respectively (Fig. 11F), indicating there are some evidence for 
factors D and O, and little or evidence for factors G and V. Evidence for any of the factors is not 
very strong, because different combinations of factors could explain the data equally well. The 
evidence for factor O is intuitive because the distractor orientations cover the entire orientation 
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space, and are highly relevant to the task. In other words, every item provides important 
information to the subject about whether it is the target and whether the answer to the trial is 
“left” or “right”.  

Knocking in both factors O and V decreases the AIC of the Base model by 75 ± 22, 
slightly larger than knocking in factor O or factor V only (Fig. 11D). Knocking out both factors 
O and V from GDOV increases the AIC by 54 ± 18, much larger than knocking out either factor 
O or factor V only (Fig. 11E). The FPP of factors O and V is 0.85 ± 0.15, higher than the FPP of 
any of the factors only (Fig. 11F). These results reflect some trade-off between factors O and V, 
and a strong evidence of the combination of factors O and V. 

Consistent with the knock-in analysis, models O, V, and OV fit the psychometric curve 
better than models Base, G and D. Consistent with the strong evidence we found for combination 
of factors O and V, the GD model fits worse than the full model GDOV (Fig. 11G). 

In this experiment, in contrast to Experiments 1 to 7, the probability of reporting “right” 
no longer monotonically increases with the target orientation (Fig. 11G). This makes sense 
because the task is relative easy when the tilt of target stimulus was neither too large nor too 
small: Obviously, when the target tilt is close to zero, the performance is close to chance. But 
also, when the target tilt is large, subjects are likely to mistake the target for a distractor, thereby 
reducing performance.  
  In summary, in this experiment in which distractors are both heterogeneous within a 
stimulus display and variable across trials, a number of different combinations of factors could 
explain the data equally well. We found some evidence for factor O and strong evidence for the 
combination of factors O and V. Besides, we found higher evidence for D than in previous 
experiments, suggesting suboptimalities in decision-making in this more complex experiment 
(Beck et al., 2012). 
 
Experiment 10: Discrimination of a single target with a variable number of heterogeneous 
distractors 
The design of Experiment 10 was identical to Experiment 9, except that the set size was 1, 2, 4, 
or 8, drawn randomly on each trial. The stimulus placement was the same as in Experiment 4 
(Fig. 12 A and B). This experiment combines distractors that are variable both within and across 
trials with multiple set sizes. Again, this experiment has ambiguity when the set size is greater 
than 1, and therefore does not allow for perfect performance. Subject accuracy was 72.6 ± 1.7%. 

Models that contain factor O, or V, or both fit the data best, and have small or moderate 
differences in AICs amongst each other, with mean differences in AIC across subjects being less 
than 8.7. AICs of the models with neither factor O nor factor V (Base, G, D, GD) are higher than 
those of the best-fitting models, for example by 51 ± 12, 33.5 ± 9.4, 38.9 ± 8.4, and 23.3 ± 6.1, 
relative to GDOV, respectively (Fig. 12C).   

Knocking in factors G, D, O, or V decreases the AIC of the Base model by 17.9 ± 4.3, 
12.5 ± 5.1, 44 ± 10, and 51 ± 12, respectively (Fig. 12D). Knocking in factors O or V has a larger 
effect than knocking in factors G or D. Knocking out any factors G, D, O, or V barely affects the 
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AIC of the GDOV model, with an increase in AIC being less than 4.4, indicating that these 
factors are not necessary to explain the data, because a combination of different factors fit the 
data equally well (Fig. 12E). The FPPs of factors G, D, O and V are 0.392 ± 0.078, 0.47 ± 0.11, 
0.69 ± 0.10, and 0.54 ± 0.11, respectively (Fig. 12F), indicating there are some evidence for 
factor O, and little or no evidence other factors. The strong evidence for factor O is consistent 
with Experiment 9 and might have the same explanation as in that experiment. 

Knocking in both factors O and V decreases the AIC of the Base model by 52 ± 12, 
slightly larger than knocking in factor O or factor V only (Fig. 12D). Knocking out both factors 
O and V increases the AIC of the GDOV model by 23.3 ± 6.1, much larger than knocking out 
either factor O or factor V only (Fig. 12E). The FPP of factors O and V is 0.894 ± 0.089, higher 
than the FPP of any of the factors only (Fig. 12F). These results reflect some trade-off between 
factors O and V, and a strong evidence of the combination of factors O and V. 

Consistent with the knock-in analysis, models O, V, and OV fit the psychometric curve 
better than models Base, G and D. Consistent with the strong evidence we found for combination 
of factors O and V, the GD model fits worse than the full model GDOV (Fig. 12G). 
 In summary, in this experiment with multiple set sizes and distractors being 
heterogeneous both within a stimulus display and across display, we found the results to be very 
similar to the previous experiment: a number of different combinations of factors could explain 
the data equally well; although none of the factors is necessary to explain the data, there is some 
evidence for factor O, and strong evidence for the combination of factors O and V. 
 
Experiment 11: Detection of a single target with a variable number of heterogeneous 
distractors 
In this last experiment, we examined the importance of different factors in a detection task with 
similar distractor context as the previous two experiments. We reanalyzed a target detection task 
published in a previous paper (Mazyar et al., 2013, Experiment 1). The basic paradigm was the 
same as in Experiment 8, except that the distractors were heterogeneous (Fig. 13A). Each 
distractor was independently drawn from a uniform distribution over the entire orientation space, 
which is the same as in Experiments 9 and 10 (Fig. 13B). This experiment was different from 
Experiment 9 and 10 not only in the type of task, but also in the absence of ambiguity: the 
stimulus statistics do not preclude perfect performance. 
 Models with factor D, factor V, or both fit the data best, and have small or moderate 
differences in AIC amongst each other, with mean differences across subjects being less than 
8.0. The AICs of the remaining models – Base, G, O and GO – are much higher, for example by 
67 ± 14, 37.9 ± 9.0, 66 ± 14, and 37.7 ± 8.3 relative to GDOV, respectively (Fig. 13C). 

Knocking in factors G, D, O, or V decreases the AIC of the Base model by 28.8 ± 7.3, 60 
± 15, 1.0 ± 3.7, and 64 ± 14, respectively (Fig. 13D). Knocking in factors D or O improves the 
Base model a lot, having a larger effect than factor G. Knocking in factor O barely improves the 
Base model. Knocking out factor D increases the AIC of GDOV model by only 6.0 ± 1.8, while 
knocking out other factors causes even smaller increases in the AIC, indicating that none of the 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/153650doi: bioRxiv preprint 

https://doi.org/10.1101/153650
http://creativecommons.org/licenses/by-nc/4.0/


 26

factors is necessary to explain the data (Fig. 13E). Posterior probabilities of factors G, D, O and 
V are 0.536 ± 0.098, 0.75 ± 0.10, 0.427 ± 0.093, and 0.48 ± 0.14, respectively, indicating 
relatively strong evidence for factor D and little or no evidence for factors G, O, or V (Fig. 13F). 
Consistent with the results of the knock-in analysis, model D and V fit the psychometric curve 
much better than the Base model (Fig. 13G).  

Knocking in (Fig. 13D) or knocking out (Fig. 13E) both factors O and V have similar 
effect as knocking in or knocking out factor V only, but the FPP of factors O and V is 0.65 ± 
0.19, higher than that of factor O or factor V individually (Fig. 13F). These results indicate that 
although factor D by itself can explain the data well, a combination of factors O and V can 
explain the data equally well. Consistent with these results, there are no difference between 
model fits of GDOV and GD, and both of them fit the psychometric curves well (Fig. 13G). 

In summary, in this experiment, we found that a number of different combinations of 
factors could explain the data equally well. Although none of the factors is necessary to explain 
the data, we found strong evidence for factor D, and some evidence for a combination of factors 
O and V. Strong evidence for factor D might indicate suboptimality in the decision rule (Beck et 
al., 2012). To our surprise, models with factor O but without D, V (O, GO) fit the data almost as 
bad as the Base model, which is very different from what we found in Experiment 9 and 10. One 
possible explanation is that distractors with large tilts are less relevant to the task in this 
experiment than in the previous two, so the informative stimuli are weighted less in the decision 
rule, either because of the nature of the task (optimal decision rule, Appendix 1, Experiment 11) 
or because subjects only pay attention to stimuli that are close to vertical and ignore the stimuli 
with large tilts. The latter reason is consistent with previous findings that the oblique effect is 
weaker when the stimulus is not attended (Kelly & Matthews, 2011; Takács, Sulykos, Czigler, 
Barkaszi, & Balázs, 2013). Both reasons make factor O hard to detect in this task. 
 
Interim summary from Experiment 9-11 
The importance of different factors becomes more complex in these three experiments. The data 
could be explained equally well by different combinations of parameters. This might be because 
the stimulus displays are very complex in these experiments, and different factors start to 
intermingle with each other. We found evidence for factor D in Experiment 9 and 11, indicating 
potential suboptimalities in these experiments (Beck et al., 2012). But we still found evidence for 
the combination of factors O and V, suggesting that with heterogeneous distractor contexts that 
are variable across trials, precision is likely to be variable. 
 
Interpretation of factor importance metrics 
We have used three metrics for quantifying the importance of a factor. We observed that they are 
usually, but not always consistent with each other. Before we discuss the overall results across 
experiments, we need to reflect on the interpretation of the metrics, especially when they are not 
consistent with each other. 
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Inconsistency between factor knock-in and knock-out 
While the knock-in and knock-out metrics have a relatively straightforward interpretation by 
themselves, the question arises what inconsistency between them means. 

Case 1: A factor is important in knock-in but not in knock-out. For example, in 
Experiments 9 to 11, factor V is important in the knock-in analysis, but not in the knock-out 
analysis. This could be an indication of a “trade-off” between factors: a change in one factor can 
be compensated by changes in other factors to yield an equally good fit. Such a “trade-off” 
between factors is an example of model mimicry (Wagenmakers, Ratcliff, Gomez, & Iverson, 
2004) and would go away in the limit of infinite data.  

Case 2: A factor is important in knock-out but not in knock-in. The opposite is also 
possible: a factor is important in the knock-out analysis, but not in the knock-in analysis. This 
could be an indication of an “interaction” between factors: neither factor by itself is sufficient but 
their combination is, similar to finding an interaction without main effects in ANOVA. This case 
we have not encountered in our analyses. Factor posterior probabilities would be high for both 
factors. 
 
Relation between factor posterior probabilities, knock-in, and knock-out 
We expect in general that factor posterior probabilities are more closely related to knock-out than 
to knock-in. This is because FPPs average exponentiated negative half AICs within a model 
family (with factor or without factor). The exponentiation is similar to a max operation. Thus, the 
with-factor and without-factor family likelihoods will be dominated by their respective best 
family members. Starting from Eq. (7), 
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  (9)  

 
The lowest-AIC family member is usually the most highly parameterized member. When that is 
the case, the FPP becomes a monotonic function of the factor knock-out AIC difference. 
 
Group effects in FPPs 
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We computed FPP for each individual subject, and reported the mean and s.e.m of these 
quantities. Alternatively, we could use sums of AICs across subjects in the computation of FPP. 
The advantage of this alternative is that we obtain stronger beliefs when there are more subjects. 
However, this method is based on an underlying assumption that all subjects follow the same 
model, which is not necessarily true. As a result, the presence of an outlier would dramatically 
change the FPP of a factor. Consider the FPP in an experiment with 5 subjects. If for all 5 
subjects, the models with a factor fit exactly the same as the corresponding models without that 

factor, we would obtain a FPP equal to 
1

1+ e5 = 0.0067 , which would indicate a very low 

evidence for that factor. We know from Eq. (9) in the previous section that the FPP is dominated 
by the best member of the model family. If for one of the subjects, the best model with a factor 
fits a bit better than the best model without a factor, say by 7 in LLmax, then the FPP is 

approximately 
1

1+ e5−7 = 0.88 , indicating a strong evidence for that factor. A small difference in 

LLmax would potentially cause dramatic difference in the FPP, making it hard to interpret the 
results. We therefore decided to compute the FPPs for each individual subject and report the 
mean and s.e.m. With this method, the results are more stable and also comparable across 
different experiments. 
 An ideal way of analyzing the importance of a factor would take into account potential 
heterogeneity in the population: not every subject might be best-fitted by the same model. To 
account for this, a full hierarchical Bayesian model is available, which returns the probability 
that a model is the most common one (Stephan, Penny, Daunizeau, Moran, & Friston, 2009). 
However, this method usually requires large number of subjects, while our subject numbers 
range from 5 to 13. 
 
Classification of factor posterior probabilities 
Many of our conclusions are derived from FPPs. The number by itself already represents the 
strength of evidence for the factor, but usually an extra step is taken to verbally classify the 
number based on cut-offs, say 0.2 and 0.8. This would lead to a ternary division: 

• FPP > 0.8: evidence for the presence of a factor; 
• FPP between 0.2 and 0.8: inconclusive; 
• FPP < 0.2: evidence for the absence of a factor. 

When compared with the truth (factor absent or present), this division can lead to four types of 
“errors”: 

• Type I: factor absent, declared present, “false positive”. 
• Type Ii: factor absent, declared inconclusive;  
• Type II: factor present, declared absent, “false negative”. 
• Type IIi: factor present, declared inconclusive. 

Strictly speaking, our Type Ii and Type IIi errors are not errors, only failures to determine 
absence or presence, but calling them an error is in line with frequentist statistics; conventional 
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Type II errors are Type IIi in our classification. This classification of errors will help us explain 
several caveats in the interpretations of our FPPs.  

First caveat: Lack of informative trials leads to inconclusiveness. The first caveat is a 
simple and general one. Assume for the moment that the calculation of FPPs is exactly correct 
and that the with-factor model is true. Then the value of the FPP will depend on the number of 
trials: with 10 trials, the FPP might be 0.53, whereas with 1000 trials, it might be 0.99. Taking 
this one step further, FPP depends on the number of informative trials. For example, easy trials 
on the ends of the psychometric curve tend to be very informative about the presence of guessing. 
Thus, the choice of stimuli, e.g. having too few “easy” trials if we are interested in guessing, can 
prevent us from “detecting” the factor. This would be a Type IIi error: there is an effect but the 
experiment is declared inconclusive. This problem can only be solved by running a larger 
number of informative trials. Therefore, if we find task differences in the classified FPP, they 
could be “real” or due to an inconclusiveness-problem. For example, although we found different 
evidence for guessing and orientation-dependent variable precision across different experiments, 
we would not expect them to be task-dependent based on previous lit to these factors. However, 
it is less clear about whether decision noise and orientation-independent variable precision are 
task-dependent or not. 

Second caveat: trade-offs between factors lead to inconclusiveness or false negatives. A 
variant of the first caveat arises when considering multiple factors that “trade off” against each 
other, as discussed above. For example, a nonzero guessing rate could be mimicked by a zero 
guessing rate and a lower (mean) precision parameter. To illustrate this trade-off, we generate a 
synthetic data set with the G model for Experiment 4, with a precision of 0.08 deg-2 and a 
guessing rate of 0.02, and compute the log likelihood with different combinations of precision 
and guessing rate in the G model. Different combinations of precision and guessing rate fit the 
data equally well, including a precision with 0 guessing rate (Fig. 14A). In such a scenario, the 
LLmax of the with-factor model (G) could be identical to the LLmax of the without-factor model 
(Base) even though the factor is present. In another example, in Experiments 9-11, V might trade 
off against O and/or D, and the weaker evidence for factor V might be due to stronger evidence 
for factors O (9 and 10) or D (Experiment 11). To illustrate this scenario, we generate a synthetic 
data set with the V model for Experiment 9, with a scale parameter τ  = 0.05, and compute the 
log likelihood of different combinations of τ and β of the OV model. A combination of zero β 
and the true τ fit as well as different combinations of a non-zero β and a smaller τ (Fig. 14B). A 
smaller fitted τ indicates a weaker evidence for factor V, because the data is partly explained by 
the factor O. Trade-offs would lead to a Type IIi or a Type II error. This problem is present with 
any model comparison metric and finite data, but is exacerbated by our use of AIC, since AIC is 
insensitive to trade-offs between factors (Gelman, Hwang, & Vehtari, 2014). Like the first 
problem, the second problem would be resolved with infinite data. 

Third caveat: an idiosyncracy of AIC. Even if we had infinite data so that the first two 
problems would not apply, another issue arises from the nature of the penalty term in AIC. We 
approximated FPP as normalized exp(-AIC/2), where -AIC/2 is the maximum of the parameter 
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log likelihood, LLmax, minus a penalty term equal to the number of parameters. Since each factor 
is associated with an extra parameter, the relative penalty is 1. A with-factor model cannot have a 
lower LLmax than a without-factor model, because the former has extra flexibility. Therefore, 
their difference in -AIC/2 can never be smaller than -1, and what we called the factor posterior 
probability can – apart from simulation noise in LLmax – never be smaller than exp(-0.5)=0.27 
(Eq. (8)), even if the factor is not present and we have infinitely many trials. Thus, there is a 
fundamental asymmetry between evidence for factor absence and evidence for factor presence. 
This puts us in a situation similar to the likelihood ratio test (Casella & Berger, 2002): we cannot 
convincingly reject the with-factor model. This would lead to a Type Ii error if the cut-off were 
lower than 0.2: the factor is absent but the experiment is declared inconclusive. This problem 
would be solved by using log marginal likelihood or sampling-based metrics (such as DIC, 
WAIC, or LOO-CV) instead of AIC. The associated posterior probability can then be arbitrarily 
low for the with-factor model (see e.g. Eq. 28.9 in MacKay, 2005 for marginal likelihoods). 
However, all those models are computationally much more expensive, and marginal likelihood 
has the additional disadvantage that one has to make assumptions about the priors over 
parameters. 
 
Relationship between task features and importance of factors 
Armed with these caveats on the factor importance metrics, we can now review the importance 
of the four factors across the 11 experiments.  

The experiments differed in the following design features that might affect the 
importance of different factors in behavioral variability (Table 3): set size greater than 1 (divided 
attention), set size variability, number of targets greater than 1, task type (discrimination or 
detection), the distribution of the target orientation, the distribution of the orientation of the 
reference (Experiment 2) or the distractors (all other experiments), distractor variability across 
displays, distractor variability within displays, and the presence of ambiguity (in the form of 
overlapping category distributions). 
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1 0 0 0 Dis [-15, 15] - None - 0 0.66 
± 0.12 

0.243 
± 0.011 

0.455 
± 0.085 

0.49 
± 0.10 

2 0 1 0 Dis N(sref, 9.1) U(-90, 90) High Low 0 0.671 
± 0.095 

0.269 
± 0.019 

0.86 
± 0.14 

0.392 
± 0.064 

3 0 1 1 Dis [-15, 15] - None Low 0 0.64 
± 0.12 

0.273 
± 0.009 

0.523 
± 0.092 

0.511 
± 0.070 

4 1 1 1 Dis [-5, 5] - None Low 0 0.61 
± 0.13 

0.239 
± 0.041 

0.370  
± 0.085 

0.379 
± 0.081 
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5 0 1 0 Dis [-20, 20] δ(0) None Low 0 0.844 
± 0.074 

0.316 
± 0.035 

0.311 
± 0.022 

0.374 
± 0.046 

6 1 1 0 Dis [-20, 20] δ(0) None Low 0 0.910 
± 0.070 

0.388 
± 0.065 

0.347  
± 0.044 

0.398 
± 0.096 

7 0 1 0 Dis N(0, 9.1) N(0, 9.1) Low Low 0 0.59 
± 0.11 

0.44 
± 0.10 

0.327 
± 0.075 

0.870 
± 0.063 

8 1 1 0 Det 0 N(0, 5.1) Low Low 0 0.378 
± 0.068 

0.367 
± 0.067 

0.466 ±  
0.064 

0.786 
± 0.074 

9 0 1 0 Dis N(0, 9.1) U(-90, 90) High High 1 0.260 
± 0.028 

0.54 
± 0.12 

0.64  
± 0.16 

0.44 
± 0.15 

10 1 1 0 Dis N(0, 9.1) U(-90, 90) High High 1 0.392  
± 0.078 

0.47 
± 0.11 

0.69 
± 0.10 

0.54 
± 0.11 

11 1 1 0 Det 0 U(-90, 90) High High 0 0.536  
± 0.098 

0.75 
± 0.10 

0.427  
±0.093 

0.48 
±0.14 

 
Table 3: Features of experiments. Here are the abbreviations and notations. Dis: Discrimation; 
Det: Detection; ref: reference; sref : reference orientation; U(x1, x2) denotes a continuous uniform 
distribution on the interval [x1, x2]; N(s0, σ) denotes Gaussian distribution with a mean of s0 and a 
standard deviation of σ; δ(x) denotes Dirac’s delta function. The units of all orientations are 
degrees, and the Von Mises distributions are “converted” to Gaussian distributions to make the 
comparison across experiments easier.  
 

By examining the importance of factors in all these 11 experiments, we found that some 
factors are important when certain features are present. We now summarize the importance of 
each factor we tested and attempt to link to the features of the experiments  (Table 3).  
 
Guessing (G) 
Guessing, representing stimulus-independent lapses of attention or motor errors, is a factor that 
has been widely accepted to be present in psychophysical tasks, and it is routinely included in 
psychometric curve fits (Wichmann & Hill, 2001). Consistent with this, we found in many of our 
experiments (Experiments 1, 3, 5, 6, 7) that knocking in factor G decreases the AIC of the Base 
model by more than 50 (Fig. 15A) and an obvious improvement in model fits to the 
psychometric curves (Figs. 3, 5, 7, 8, 9, panel G). Among these experiments, in Experiments 6, 
factor G is necessary to explain the data (Fig. 15B) and has a mean FPP of greater than 0.9 (Fig. 
15C). This experiment has a relative large number of easy trials, because the target orientation is 
drawn randomly from 19 values equally spaced between -20º and 20º (Fig. 8B), which is the 
largest range of the target orientation among all experiments. Also, Experiment 6 contains four 
set sizes, 1, 2, 4, 8. When the set size is 1 and target orientation close to ±20°, the trials are very 
easy, where a mistake is only explainable with factor G. In Experiment 5, in which the stimulus 
range is the same but only with set size equal to 4, factor G is no longer necessary to explain the 
data, but evidence for factor G is greater than 0.8. For other experiments, it seems that the larger 
the proportion of “easy” trials, the higher the evidence for factor G. With fewer “easy” trials, 
models without factor G fit the data equally well as models with factor G, by estimating a lower 
encoding precision (Fig. 14A). For example, in Experiment 4, where the target orientation range 
is very narrow (between -5° and 5°), the Base model fits as well as the G model, but the 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/153650doi: bioRxiv preprint 

https://doi.org/10.1101/153650
http://creativecommons.org/licenses/by-nc/4.0/


 32

estimated precision is lower. This comparison might be a “false negative” or “inclusiveness” 
because of both the lack of informative trials and trade-off between parameters.  
 
Decision noise (D) 
Decision noise might reflect random variability or systematic suboptimality (Beck et al., 2012). 
In most of our experiments (Experiments 1-10), we found little or no evidence for factor D (Fig. 
15C), suggesting that human subjects are close to optimal. This is consistent with the conclusion 
of our previous paper (Shen & Ma, 2016), where we compared many suboptimal decision rules 
with the optimal rule in an orientation discrimination task (Experiment 7 in this paper) and found 
that the more similar a suboptimal rule to the optimal rule, the better it fits the data. However, we 
find more evidence for factor D in Experiment 11 (Fig. 15C), suggesting more random 
variability or greater suboptimality in this experiment. It is not clear why, but the combination of 
a detection task and the heterogeneity of distractors might provide a more complex stimulus 
contexture and therefore induce some subtoptimality. One possible explanation is that in this 
experiment where the large tilted stimuli are less relevant to the task, the subject pay less 
attention to those large tilted stimuli. 
 
Orientation-dependent variable precision (O) 
Orientation-dependent variable precision seems to be an intrinsic property of neural populations 
in early visual areas. Physiological studies have shown that there are more neurons in primary 
visual cortex that are tuned to cardinal orientations than oblique orientations in cats (Bauer & 
Jordan, 1993; Kalia & Whitteridge, 1973; Li et al., 2003; Payne & Berman, 1983) and monkeys 
(De Valois, William Yund, & Hepler, 1982; Mansfield & Ronner, 1978). This distribution 
matches the stimulus statistics of natural environments (Attneave, 1954; Barlow, 1961; Girshick 
et al., 2011) and supports the theory of efficient coding (Ganguli & Simoncelli, 2014; Wei & 
Stocker, 2015). Therefore, O should be a factor that is commonly present in perception, but it is 
easier to be detected when the stimulus distribution covers a larger orientation range. Indeed, we 
found strong evidence for factor O in Experiments 2, 9 and 10 (Fig. 15C), where the stimulus 
distribution covers the entire orientation space (Figs. 4, 11, 12, panel B). The low evidence found 
in experiments with narrow orientation range (Experiments 1, 3-8) is another case of “false 
negative” or “inconclusiveness” because of the lack of informative trials. In Experiment 11, 
however, although the distractor stimulus also covers the entire space, the evidence for factor O 
is weak, which might be explained by two reasons. First, stimuli with large tilts are informative 
of factor O, but these stimuli are weighted less even in the optimal decision rule (Appendix 1, 
Experiment 11), therefore making factor O harder to detect. Second, because the stimuli with 
large tilts and their precisions are less relevant to the task, subject pay less attention to the large 
tilted stimuli. This is a kind of suboptimality and is reflected in the high evidence for factor D we 
found in this experiment. The weak evidence for factor O is consistent with previous findings 
that the “oblique effect” is weaker when the visual stimuli are unattended (Kelly & Matthews, 
2011; Takács et al., 2013). Both scenarios lead to a case of “false negative” or 
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“inconclusiveness” resulting from the lack of informative stimuli, because the informative large 
tilts are not used in the decision rule. 
 
Orientation-independent variable precision (V) 
As noted before (van den Berg et al., 2012), sources of orientation-independent variable 
precision could include fluctuations in attention (Adam et al., 2015; Cohen & Maunsell, 2009; 
Luck et al., 1997) and stochastic memory decay (Fougnie et al., 2012). Therefore, in a perceptual 
task without memory component, factor V is more likely to be detected when the task is more 
likely to induce attentional fluctuations. To induce allocation of attentional resource, we 
introduced multiple targets (Experiment 3), multiple targets with multiple set sizes (Experiment 
4), vertical distractors (Experiments 5 and 6), homogeneous distractors variable across trials 
(Experiments 7 and 8), and heterogeneous distractors variable across trials (Experiments 9, 10, 
and 11). Only in Experiments 7 and 8 did we find strong evidence for factor V (Fig. 15C, Table 
3). These results suggest that variability of distractors across the trials might be necessary to 
induce detectable orientation-independent variable precision, regardless of task type. We 
expected that heterogeneous variable distractors (Experiments 9, 10, and 11) would induce more 
attentional fluctuations than homogeneous variable distractors (Experiments 7 and 8), but we 
found weaker evidence for factor V. One possible explanation is that the factor V is harder to 
detect in the presence of high orientation-dependent precision variability (Experiments 9 and 10) 
or high decision noise (Experiment 11). This is a case of “inconclusiveness” because of the 
trade-off between factors V and O (Experiments 9 and 10), or between factors V and D 
(Experiment 11).   
 
Relationship between mean precision and set size 
Experiments 4, 6, 8, 10, and 11 used multiple set sizes, allowing us to explore the effects of task 
on the relationship between mean precision and set size. Mean precision decreases strongly with 
set size in Experiments 8, 10 and 11 (significant effect of set size: repeated-measures ANOVA, p 
< 0.05), where the distractors were variable across trials. There was no significant effect of set 
size in Experiment 6 (repeated-measures ANOVA, F(3, 6) = 1.1, p = 0.38), where the distractors 
were fixed at vertical (Fig. 16). There are no obvious differences between detection 
(Experiments 8 and 11) and discrimination (Experiment 10). In Experiment 4, all stimuli were 
targets but with an orientation that was unpredictable across trials. Here, we found that mean 
precision also decreases with set size (Fig. 16A, significant effect of set size: repeated-measures 
ANOVA, F(3, 6) = 4.18, p = 0.013).  
 Experiments 8 and 11 were from Mazyar et al. (2013) (Experiment 2 and Experiment 1, 
respectively), and even though there were minor differences between the models, the relationship 
between mean precision and set size was very similar as in the original paper. An earlier paper 
(Mazyar et al., 2012) considered one more visual search condition. When the distractors were 
fixed at 5°, mean precision was constant across different set sizes. Based on the results of both 
studies, the latter paper hypothesized that mean precision decreases with set size if the 
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distractors are unpredictable across trials. The results from Experiments 6 and 10 are broadly 
consistent with this conclusion. However, the design of Experiment 4 was not covered by this 
hypothesis: there were no distractors but yet we found a significant effect of set size. A unifying 
hypothesis could be that the less predictable the entire stimulus display is across trials, the 
stronger the decrease of mean precision with set size.  

Ultimately, it would be more satisfactory to have a normative explanation: why does 
mean precision decrease with set size to different extents for different stimulus statistics? One 
recent proposal is that set size effects are due to an optimal trade-off between behavioral 
performance and the neural costs associated with stimulus encoding (van den Berg & Ma, 2017). 
Greater predictability might allow for more efficient neural coding, which would lead to savings 
in neural cost, and that in turn to a weaker set size effect.  
 
Suboptimal decision rules 
We performed factorial analysis on four factors and ended up with 16 models in total. However, 
there are still a large number of models we did not cover. For example, a subject may have used 
a suboptimal decision rule in performing some of the tasks. An example of a suboptimal rule 
would be the max rule (Baldassi & Verghese, 2002; Eckstein, 1998; Green & Swets, 1966; 
Nolte, 1967; Palmer, 1990), in which the subject performs the task only based on the item with 
the largest tilt. Another case arises when subjects have incorrectly or incompletely learned the 
class-conditioned stimulus distributions in the experiment, p(s|C=-1) and p(s|C=1), yet perform 
Bayesian inference under those wrong beliefs. In the paper where Experiment 7 was originally 
presented (Shen & Ma, 2016), we systematically tested the optimal decision and 24 suboptimal 
decision rules for one experiment; however, of the four variability factors (G, D, O, V), we only 
included factor G in that paper. In the present paper, we tested all variability factors, but assumed 
an optimal decision rule. We found that a combination of variability factors including V fits 
better than the G model. This slightly but not majorly changes the conclusion of the previous 
paper; however, we did not test for combinations of suboptimal decision rule with all factors G, 
D, O, and V. If a model of that type would fit substantially better than our best model found here, 
it would imply a major change of the conclusion of the previous paper. To start exploring this, 
we crossed the suboptimal rules from Shen & Ma (2016) with the factor models in this current 
study, to the extent that the rules themselves did not change (this can in principle be extended). 
This led to 132 extra models (for a more detailed description, see Appendix 2). This analysis 
confirms the conclusions from Shen & Ma (2016) and the present paper. a) Simple rules (Class I 
and Class II) fit the data worse than the optimal decision rules, regardless of the factor model 
they are crossed with, with mean AIC differences being more than 50. This result confirms the 
conclusion from Shen & Ma (2016): human behaviors are closer to optimality than to simplicity 
in this task. b) Among all models tested, the best-fitting models are the combinations of the 
optimal rule and factors models containing factor V, confirming the strong evidence we found 
for factor V in the present paper (Fig. 17). 
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DISCUSSION 
We studied the contributions of four factors to behavioral variability: guessing, decision noise, 
orientation-dependent variable precision, and orientation-independent variable precision. We 
analyzed data from 11 visual experiments (8 new and 3 previously published) that used very 
similar oriented stimuli, and performed factorial model comparison and three factor importance 
metrics. We found that the importance of different factors in explaining the data depends on 
specific features of the experimental design. We found stronger evidence for guessing in 
experiments with more easy trials. We found little or no evidence for decision noise in most 
experiments. We found stronger evidence for orientation-dependent precision when the range of 
stimulus orientations was wider. Finally, we found little evidence for orientation-independent 
variable precision, except when distractors were variable across trials. We identified several 
caveats associated with the limited number of trials, trade-offs between parameters, and an 
idiosyncracy of AIC, all of which could produce inconclusiveness or false negatives. 
 
Relation to previous work 
 
Relation to work on visual short-term memory (VSTM) 
Recent studies that used the variable-precision model in VSTM (Devkar & Wright, 2015; 
Fougnie et al., 2012; Keshvari et al., 2012, 2013; Salahub & Emrich, 2016; van den Berg et al., 
2012) listed, but did not empirically distinguish, different sources of variability in precision; 
instead, the variability was considered random. One possible source is stimulus-dependent 
variable precision, as has been found for orientation (Pratte et al., 2017) and color (Bae et al., 
2015, 2014). This leaves the question of how much stimulus-independent variability is present.  
 Here, we separated orientation-dependent variable precision from orientation-
independent variable precision. We did not find strong evidence for the latter, except in 
Experiments 7 and 8. In Experiments 1-6, there are either no distractors (Experiments 1-4) or 
vertical distractors (Experiments 5-6), which are different from the experimental paradigms in 
previous VSTM studies. The weak evidence for factor V in Experiments 9, 10, and 11 is 
probably a case of inconclusiveness due to a trade-off between factors. The fact that we did find 
evidence for orientation-independent precision variability in Experiments 7 and 8 suggests that 
memory is not necessary to induce orientation-independent variable precision.  
 
Relation to work on discriminating noise in different stages 
Previous work has characterized different kinds of noise in human behavior with various 
approaches. In contrast detection studies, varying external noise allows one to estimate internal 
noise (Burgess et al., 1981; Liu et al., 1995; Pelli & Farell, 1999). In Burgess et al., 1981, Pelli & 
Farewell, 1999, this method is based on a linear relationship between threshold signal energy and 
noise energy. They then define the intercept to be the “internal noise” and the slope to be the 
“sampling efficiency”. The “internal noise” roughly corresponds to sensory noise in our 
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framework, although the noise in the decision stage would also contribute to this measure. 
“Sampling efficiency” characterizes how close to optimal the decoder is, e.g. how well matched 
Gabor filters are to the stimulus1. Like other forms of suboptimality, low sampling efficiency 
could cause more variability in human behaviors, and in our study it would be absorbed into 
decision noise (Beck et al., 2012).  

More recently in the Bayesian modeling framework, Drugowitsch et al. (2016) 
distinguishes sources of suboptimality in an evidence accumulation task. The factors they test 
include noise in the encoding, inference, and decision stages, as well as deterministic biases. 
They compared models with noise in each stage with the base model without noise, similar to 
our knock-in analysis. They found that the model with noise in the inference stage explains the 
data best. We did not specifically test noise in the inference stage, because in our experiment, it 
is equivalent to noise in the decision stage, because we only have one inference step. The reason 
that Drugowitsch et al. (2016) could separate noise in inference and decision because their task 
requires accumulation of information. Inference noise would be introduced in every step of 
accumulation, while the decision noise only applies in the last step. 
 
Model proliferation and model identifiability 
In van den Berg et al. (2014), we brought up the problem of model proliferation when doing 
factorial model comparison: with k factors, we would have at least 2k models (more if a factor 
has more levels than just absent or present). This problem is also present here, as we tested 16 
models. However, it would be exacerbated if we were to cross these 16 models with alternative 
decision rules. In “suboptimal decision rules” above, we made a start with addressing this issue, 
but a complete solution is far away: in Experiment 7, testing all combinations of variability 
models introduced here and decision rules from Shen & Ma (2016) would result in a total of the 
order of 25×16=400 models (not exactly because the set of suboptimal rules to consider might 
depend on variability factors). Testing all these models in all experiments would be 
computationally prohibitive. Moreover, many of these models would in practice be difficult to 
identify (Acerbi, 2014; Lehmann & Casella, 1998, Definition 1.5.2), a problem that we also 
encountered in van den Berg et al., 2014, Shen & Ma (2016).  

The computational demands and the unidentifiability go beyond these specific examples. 
Our current view on how to deal with these issues is to keep in mind that very often, one is 
interested in the evidence for a factor rather than for a specific model. Therefore, a solution could 
be to further develop techniques for summarizing a factorial model comparison into evidence for 
factors, as van den Berg et al. (2014) did using the metric of model family comparison and we 
have done here using knock-in, knock-out, and factor posterior probabilities. It is often much 
easier to draw conclusions about the importance of a model factor than about the evidence for a 
specific model. We expect that this toolkit will be expanded and refined as model comparison in 
psychology becomes more sophisticated. 

                                                 
1 Confusingly, Liu et al., 1995 also measure the efficiency by varying the external noise, but the 
efficiency they defined is purely a result from the internal noise. 
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Appendix 1: Decision rules 
 
Notations: 
erf: error function; xi: internal measurement of the ith item; Ji: encoding precision of the ith item; 
Js: precision to generate stimulus orientations; κi: concentration parameter of Von Mises 
distribution; κs: concentration parameter of the von Mise distribution to generate stimulus 
orientations;  pright, pclockwise,  or ppresent: prior probability of reporting “right”, “clockwise” or 
“present”; N: set size. 
 
Experiment 1: 
The observer reports “right” when 
 

 d = log

1+ erf
xJ

2 J + Js( )
1− erf

xJ

2 J + Js( )
+ log

pright

1− pright

> 0.  

 
Experiment 2: 
The observer reports “clockwise” when 
  

 d = log

1+ erf
ΔxJc

2 Jc + Js( )
1− erf

ΔxJc

2 Jc + Js( )
+ log

pclockwise

1− pclockwise

> 0,  

 

where Jc = 1
1
J

+ 1
JR

.  JR denotes the encoding precision of the reference, and J denotes the 

encoding precision of the target. Δx denotes the internal measurement of the target relative to 
that of the reference. 
 
Experiments 3 and 4 
The observer reports “right” when 
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 d = log

1+ erf
xiJi

i=1

N

∑

2 Ji
i=1

N

∑
⎛

⎝⎜
⎞

⎠⎟
+ Js

⎛

⎝⎜
⎞

⎠⎟

1− erf
xiJi

i=1

N

∑

2 Ji
i=1

N

∑
⎛
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⎞

⎠⎟
+ Js

⎛

⎝⎜
⎞
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+ log
pright

1− pright

> 0.  

 
Experiments 5 and 6 
The observer reports “right” when 
 

 d = log

1+ erf
xiJi

2 Ji + Js( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

exp
xi

2Ji
2

2 Ji + Js( )
⎛

⎝
⎜

⎞

⎠
⎟
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N

∑
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⎝
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⎞

⎠
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> 0.  

   
Experiment 7 
The observer reports “right” when 
 

d = log

1
Ji + Js

1

J j
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Experiment 8 
The subject reports “present” when  
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Experiments 9 and 10 
The subject reports “right” when 
 

 d = log
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> 0,    

 
where VM(x; s, κ) denotes a Von Mises distribution with a mean of s and concentration 
parameter of κ, sT denotes the target orientation, and κT denotes the concentration parameter of 
the von Mise distribution to generate target orientations. 
 
 
Experiment 11 
The subject reports “present” when 
 

 d = log
1

N

exp κ i cos2xi( )
I0 κ i( )i=1
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∑
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⎝
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> 0.  

 
 
Appendix 2: Hybrid models of suboptimal rules and factor combinations in Experiment 7 
 
We tested combinations of suboptimal rules and different factors. Among these combinations, 
Class I suboptimal rules are combined with the total 16 factor models, Class II and Class III 
models are only combined with models Base, G, D, GD.  

Class I suboptimal models do not contain precision in their decision rules, so the decision 
rule does not change with the addition of factors O or/and V. For models containing factors O, V 
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or both, we just generate the noisy measurements with variable precision and use the same rule 
to compute the decision variable. By contrast, Class II and Class III models contain precision in 
their decision rules, so adding factor O or/and V change the decision rules. Therefore, we did not 
test the combinations with factors O or/and V.  

For all suboptimal decision rules other than the Sign rule in Class I, the decision rule 
takes the form d > 0, where d is the decision variable (Shen & Ma, 2016, Appendix 1). To 
combine with factor D in the models, a Gaussian noise with standard deviation σd is added to d, 
and is treated as a free parameter in the model fitting. 

Adding the prior pright would change the form of the suboptimal rules, so we did not 
include the prior as a parameter in these hybrid models. 

 
  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/153650doi: bioRxiv preprint 

https://doi.org/10.1101/153650
http://creativecommons.org/licenses/by-nc/4.0/


 46

FIGURES 
 

 
 
Figure 1. Factors that affect behavioral variability. (A) The generative model of a typical 
perceptual task is shown on the left. Each node represents a variable and each arrow between two 
nodes represents a distribution. The right side to generative model shows the possible factors that 
might affect behavioral variability identified in the field so far. Among these factors, we test the 
following (marked as bold-faced in the plot) in this study: stimulus (orientation)-dependent 
variable precision, stimulus (orientation)-independent variable precision, decision noise and 

guessing. (B) Orientation-dependent precision J is modeled as J = J0

1+ β sin 2s( )( )2  at 

orientation s (red line), where J0 denotes the baseline precision and β denotes the amplitude 
parameter of the orientation dependence. The black line represents the constant orientation when 
β equals zero. (C) Probabilistic distribution of orientation-independent precision is modeled as a 

Gamma distribution p J( ) = Gamma J;
J

τ
,τ

⎛

⎝⎜
⎞

⎠⎟
, where J denotes the mean precision, and τ 

denotes the scale parameter that characterizes the variability in the precision. The black line 

represents the distribution of a fixed precision J , when τ equals to zero. 
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Figure 2. Factor metrics. In each graph, each dimension represents a factor and each vertex 
represents a model. Here we show an example with 3 factors and get a total of 8 models. The 
model with none of the factors is (0, 0, 0) and the full model with all factors is (1, 1, 1). (A) All 
from full (complete model comparison). Goodness-of-fits of all models are compared with that 
of the full model (1, 1, 1). (B) Factor knock-in. We compute how much improvement in the 
goodness-of-fit when adding each single factor (red arrows) to the Base model (0, 0, 0). (C) 
Factor knock-out. We compute how much worse in the goodness-of fit when removing a factor 
(red arrows) from the full model (1, 1, 1). (D) Factor posterior probability. We compute the 
posterior probability of the existence of the factor by marginalizing all models containing that 
factor. 
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Figure 3. Experiment 1: Single stimulus, four possible locations. (A) Trial procedure. Each trial 
starts with a fixation dot for 500 ms, then a single stimulus appears for 50 ms in one of the four 
angular positions: -135º, -45º, 45º, and 135º. The subject reports the tilt of the stimulus with 
respect to vertical (0°), and a feedback for correctness will be given after the subject response. 
(B) Stimulus distribution. The stimulus orientation is randomly drawn from 19 values equally 
spaced between -15º and 15º on each trial. (C) All from full (complete model comparison). Mean 
and s.e.m. of the difference in AIC between each model and the full model GDOV. (D) Factor 
knock-in. Mean and s.e.m. of the difference in AIC between models with each single factor (or a 
combination of factors O and V) and the Base model. (E) Factor knock-out. Mean and s.e.m. of 
the difference in AIC between models without each single factor (or a combination of factors O 
and V) and the full model GDOV. (F) Factor posterior probabilities (mean and s.e.m.) of each 
factor and of the combination of factors O and V. (G) Proportion of reporting “right” as a 
function of the stimulus orientation. Solid lines and error bars: data; grey areas: model fits. 
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Figure 4. Experiment 2: Discrimination of a single target with respect to a variable reference 
orientation. (A) Trial procedure. The trial procedure is similar to Experiment 1, but the stimulus 
display consists of two stimuli, placed on the horizontal axis left and right of fixation.  The 
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stimulus on the right is the reference stimulus, and the stimulus on the left is the target stimulus. 
The subject reports whether target was oriented clockwise or counterclockwise with respect to 
the reference orientation. (B) Stimulus distribution. Left panel: the reference orientation is 
randomly drawn from a uniform distribution over the entire orientation space. Right panel: the 
target orientation is randomly drawn from a von Mise distribution centered at the reference 
orientation with a concentration parameter of 10. (C) All from full (complete model 
comparison). Mean and s.e.m. of the difference in AIC between each model and the full model 
GDOV. (D) Factor knock-in. Mean and s.e.m. of the difference in AIC between models with 
each single factor (or a combination of factors O and V) and the Base model. (E) Factor knock-
out. Mean and s.e.m. of the difference in AIC between models without each single factor (or a 
combination of factors O and V) and the full model GDOV. (F) Factor posterior probabilities 
(mean and s.e.m.) of each factor and of the combination of factors O and V.  (G) Proportion of 
reporting “clockwise” as a function of the orientation difference between the target and the 
reference. Solid lines and error bars: data; grey areas: model fits. (H) Proportion of correct 
responses as a function of the reference orientation. Solid lines and error bars: data; grey areas: 
model fits. 
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Figure 5. Experiment 3: Discrimination with all stimuli being targets. (A) Trial procedure. The 
trial procedure is similar to Experiment 1, but the stimulus display consists of four stimuli, all of 
which are targets. The subject reports the tilt of the common orientation. (B) Stimulus 
distribution. The target orientation is randomly drawn from 19 values equally spaced between -
15º and 15º on each trial. (C) All from full (complete model comparison). Mean and s.e.m. of the 
difference in AIC between each model and the full model GDOV. (D) Factor knock-in. Mean 
and s.e.m. of the difference in AIC between models with each single factor (or a combination of 
factors O and V) and the Base model. (E) Factor knock-out. Mean and s.e.m. of the difference in 
AIC between models without each single factor (or a combination of factors O and V) and the 
full model GDOV. (F) Factor posterior probabilities (mean and s.e.m.) of each factor and of the 
combination of factors O and V. (G) Proportion of reporting “right” as a function of the target 
orientation. Solid lines and error bars: data; grey areas: model fits. 
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Figure 6. Experiment 4: Discrimination with all stimuli being targets and multiple set sizes. (A) 
Trial procedure. The trial procedure is similar to Experiment 3, but the set size is 1, 2, 4, or 8, 
drawn randomly on each trial. (B) Stimulus distribution. The target orientation is randomly 
drawn from 19 values equally spaced between -5º and 5º on each trial. (C) All from full 
(complete model comparison). Mean and s.e.m. of the difference in AIC between each model 
and the full model GDOV. (D) Factor knock-in. Mean and s.e.m. of the difference in AIC 
between models with each single factor (or a combination of factors O and V) and the Base 
model. (E) Factor knock-out. Mean and s.e.m. of the difference in AIC between models without 
each single factor (or a combination of factors O and V) and the full model GDOV. (F) Factor 
posterior probabilities (mean and s.e.m.) of each factor and of the combination of factors O and 
V. (G) Proportion of reporting “right” as a function of the target orientation. Solid lines and error 
bars: data; shaded areas: model fits. Different colors represent different set sizes. 
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Figure 7. Experiment 5: Discrimination of a single target with a fixed number of vertical 
distractors. (A) Trial procedure. The trial procedure is similar to Experiment 3, but the stimulus 
display consists of four stimuli. Three of them are vertical distractors, and the other is the target. 
The subject reports the tilt of the target with respect to vertical (0°). (B) Stimulus distribution. 
The target orientation is randomly drawn from 19 values equally spaced between -20º and 20º on 
each trial (blue line), and the distractors are always vertical (red line). (C) All from full 
(complete model comparison). Mean and s.e.m. of the difference in AIC between each model 
and the full model GDOV. (D) Factor knock-in. Mean and s.e.m. of the difference in AIC 
between models with each single factor (or a combination of factors O and V) and the Base 
model. (E) Factor knock-out. Mean and s.e.m. of the difference in AIC between models without 
each single factor (or a combination of factors O and V) and the full model GDOV. (F) Factor 
posterior probabilities (mean and s.e.m.) of each factor and of the combination of factors O and 
V.  (G) Proportion of reporting “right” as a function of the target orientation. Solid lines and 
error bars: data; grey areas: model fits. 
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Figure 8. Experiment 6: Discrimination of a single target with a variable number of vertical 
distractors. (A) Trial procedure. The trial procedure is similar to Experiment 5, but the set size is 
1, 2, 3, or 4, drawn randomly on each trial. (B) Stimulus distribution. The target orientation is 
randomly drawn from 19 values equally spaced between -20º and 20º on each trial (blue light) 
and the distractor orientation is always vertical (red line). (C) All from full (complete model 
comparison). Mean and s.e.m. of the difference in AIC between each model and the full model 
GDOV. (D) Factor knock-in. Mean and s.e.m. of the difference in AIC between models with 
each single factor (or a combination of factors O and V) and the Base model. (E) Factor knock-
out. Mean and s.e.m. of the difference in AIC between models without each single factor (or a 
combination of factors O and V) and the full model GDOV. (F) Factor posterior probabilities 
(mean and s.e.m.) of each factor and of the combination of factors O and V.  (G) Proportion of 
reporting “right” as a function of the target orientation. Solid lines and error bars: data; shaded 
areas: model fits. Different colors represent different set sizes. 
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Figure 9. Experiment 7: Discrimination of a single target with a fixed number of homogeneous 
distractors. (A) Trial procedure. The trial procedure is similar to Experiment 5, but the stimulus 
display is different, although still consists of four stimuli. Three of the stimuli have identical 
orientations, and they are the distractors. The fourth stimulus is the target. The subject reports the 
tilt of the target with respect to vertical (0°). (B) Stimulus distribution. On each trial, the target 
orientation and the common distractor orientation are drawn independently from the same 
Gaussian distribution, which has a mean of 0° and a standard deviation of 9.06°. (C) All from 
full (complete model comparison). Mean and s.e.m. of the difference in AIC between each model 
and the full model GDOV. (D) Factor knock-in. Mean and s.e.m. of the difference in AIC 
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between models with each single factor (or a combination of factors O and V) and the Base 
model. (E) Factor knock-out. Mean and s.e.m. of the difference in AIC between models without 
each single factor (or a combination of factors O and V) and the full model GDOV. (F) Factor 
posterior probabilities (mean and s.e.m.) of each factor and of the combination of factors O and 
V.  (G) Proportion of reporting “right” as a function of the target orientation. Solid lines and 
error bars: data; shaded areas: model fits. Different colors represent different distractor 
orientation ranges. 
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Figure 10. Experiment 8: Detection of a single target with a variable number of homogeneous 
distractors. (A) Trial procedure. The trial procedure is similar to Experiment 7, but the task is 
different. The subject reports whether the target is present or not, which is drawn randomly on 
each trial. On a target-absent trial, all stimuli have identical orientations and they are the 
distractors. On a target-present trial, one stimulus is the vertical target, and the remaining stimuli 
are distractors with identical orientations. The set size of each trial is 1, 2, 4, or 8, drawn 
randomly. (B) Stimulus distribution. The target orientation is always vertical (blue line), and the 
distractor orientation is drawn from a Von Mises distribution centered at vertical, with a 
concentration parameter of 32 (red line). (C) All from full (complete model comparison). Mean 
and s.e.m. of the difference in AIC between each model and the full model GDOV. (D) Factor 
knock-in. Mean and s.e.m. of the difference in AIC between models with each single factor (or a 
combination of factors O and V) and the Base model. (E) Factor knock-out. Mean and s.e.m. of 
the difference in AIC between models without each single factor (or a combination of factors O 
and V) and the full model GDOV. (F) Factor posterior probabilities (mean and s.e.m.) of each 
factor and of the combination of factors O and V.  (G) Proportion of reporting “present” as a 
function of set size or distractor orientation. Solid lines and error bars: data; shaded areas: model 
fits. Different colors represent target-present trials or target absent trials. 
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Figure 11. Experiment 9: Discrimination of a single target with a fixed number of heterogeneous 
distractors. (A) Trial procedure. The trial procedure is similar to Experiment 7, but the stimulus 
display is different, although still consists of four stimuli. Three of the stimuli are distractors, 
whose orientations are randomly drawn from a uniform distribution over the entire orientation 
space. The fourth stimulus is the target, and is randomly drawn from a narrow Von Mises 
distribution. The subject reports the tilt of the target with respect to vertical (0°). (B) Stimulus 
distribution. On each trial, the target orientation randomly drawn from a Von Mises distribution 
centered at vertical and with a concentration parameter of 10 (blue line). The orientation of each 
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distractor is independently drawn from a uniform distribution over the entire orientation space 
(red line).  (C) All from full (complete model comparison). Mean and s.e.m. of the difference in 
AIC between each model and the full model GDOV. (D) Factor knock-in. Mean and s.e.m. of the 
difference in AIC between models with each single factor (or a combination of factors O and V) 
and the Base model. (E) Factor knock-out. Mean and s.e.m. of the difference in AIC between 
models without each single factor (or a combination of factors O and V) and the full model 
GDOV. (F) Factor posterior probabilities (mean and s.e.m.) of each factor and of the 
combination of factors O and V.  (G) Proportion of reporting “right” as a function of the target 
orientation. Solid lines and error bars: data; grey areas: model fits. 
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Figure 12. Experiment 10: Discrimination of a single target with a variable number of 
heterogeneous distractors. (A) Trial procedure. The trial procedure is similar to Experiment 9, 
but the set size is 1, 2, 4, or 8, drawn randomly on each trial. (B) Stimulus distribution. On each 
trial, the target orientation randomly drawn from a Von Mises distribution centered at vertical 
and with a concentration parameter of 10 (blue line). The orientation of each distractor is 
independently drawn from a uniform distribution over the entire orientation space (red line).  (C) 
All from full (complete model comparison). Mean and s.e.m. of the difference in AIC between 
each model and the full model GDOV. (D) Factor knock-in. Mean and s.e.m. of the difference in 
AIC between models with each single factor (or a combination of factors O and V) and the Base 
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model. (E) Factor knock-out. Mean and s.e.m. of the difference in AIC between models without 
each single factor (or a combination of factors O and V) and the full model GDOV. (F) Factor 
posterior probabilities (mean and s.e.m.) of each factor and of the combination of factors O and 
V. (G) Proportion of reporting “right” as a function of the target orientation. Solid lines and error 
bars: data; grey areas: model fits. Different colors represent different set sizes. 
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Figure 13. Experiment 11: Detection of a single target with a variable number of heterogeneous 
distractors. (A) Trial procedure. The trial procedure is similar to Experiment 8, but the stimulus 
display is different. On a target-absent trial, orientations of all stimuli are independently drawn 
from a uniform distribution over the entire orientation space. On a target-present trial, one 
stimulus is the vertical target, and the remaining stimuli are distractors with orientations 
independently drawn from the uniform distribution. The set size of each trial is 1, 2, 4, or 8, 
drawn randomly. (B) Stimulus distribution. The target orientation is always vertical (blue line), 
and the distractor orientations are independently drawn from a uniform distribution over the 
entire orientation space (red line). (C) All from full (complete model comparison). Mean and 
s.e.m. of the difference in AIC between each model and the full model GDOV. (D) Factor 
knock-in. Mean and s.e.m. of the difference in AIC between models with each single factor (or a 
combination of factors O and V) and the Base model. (E) Factor knock-out. Mean and s.e.m. of 
the difference in AIC between models without each single factor (or a combination of factors O 
and V) and the full model GDOV. (F) Factor posterior probabilities (mean and s.e.m.) of each 
factor and of the combination of factors O and V. (G) Proportion of reporting “present” as a 
function of set size or minimum absolute distractor orientation. Solid lines and error bars: data; 
shaded areas: model fits. Different colors represent target-present trials or target absent trials. 
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Figure 14. Trade-off. (A) Trade-off between precision J and guessing rate λ. We generate a 
synthetic data set with the G model in Experiment 4, with a J of 0.08 deg-2 and a λ of 0.02, and 
fit the data with the G model. The color plot shows the log likelihood of each combination of J 
and λ. Different combinations of J and λ have similar log likelihood given the synthetic data, 
including a zero guessing rate and lower precision than the true precision. (B) Trade-off between 
factors O and V. We generate a synthetic data set with model V for Experiment 9, with an 
orientation-independent variable precision parameter τ = 0.05, and fit the data with the OV 
model. The color plot shows the marginal log likelihood of each combination of orientation-
dependent parameter β and τ. Different combinations of β and τ have similar log likelihoods 
given the synthetic data. For example, a combination of zero β and the true τ could be mimicked 
by a combination of non-zero β and a smaller τ. 
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Figure 15. Summary results. (A) Factor knock-in results of all experiments. Mean and s.e.m. of 
the difference in AIC between models with each single factor (or a combination of factors O and 
V) and the Base model. (B) Factor knock-out results of all experiments. Mean and s.e.m. of the 
difference in AIC between models without each single factor (or a combination of factors O and 
V) and the full model GDOV. (C) Factor posterior probabilities (mean and s.e.m.) of each factor 
and of the combination of factors O and V. 
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Figure 16. Relationship between mean precision and set size. The figure shows the mean 
precision as function of set size, estimated with the full model GDOV. Dots and error bars are 
the means and the s.e.ms. (A) Estimated mean precisions versus set size for Experiment 4. There 
is significant effect on set size: repeated-measures ANOVA, F(3, 6) = 4.18, p = 0.013. (B) 
Estimated mean precision versus set size for Experiment 6. There is no significant effect on set 
size: repeated-measures ANOVA, F(3, 6) = 1.1, p = 0.38. (C) Estimated mean precision versus 
set size for Experiment 8. There is significant effect on set size: repeated-measures ANOVA, 
F(3,15) = 8.5,  p < 10-6. (D) Estimated mean precision versus set size for Experiment 10. There is 
significant effect on set size: repeated-measures ANOVA, F(3, 11) = 10.8, p < 10-4 . (E) 
Estimated mean precision versus set size for Experiment 10. There is significant effect on set 
size: repeated-measures ANOVA, F(3, 6) = 3.52, p = 0.034. 
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Figure 17. Cross the suboptimal decision rules with the factor models. The x-axis lists factor 
models, and the y-axis lists different decision rules in Shen & Ma (2016). The color of the dot 
represents the AIC of a hybrid model with a certain decision rule and factor model. Because the 
generation of Class II and Class III models in Shen and Ma, 2016 is based on the assumption of 
fixed precision across items, we only tested Base, G, D, GD models for Class II and Class III 
rules. Also, it is not clear how factor D is combined with the Sign rule in Class I, so the 
combination between the Sign rule and factor models with D are also missing. 
 
  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/153650doi: bioRxiv preprint 

https://doi.org/10.1101/153650
http://creativecommons.org/licenses/by-nc/4.0/


 69

 
 
Figure A1. Summary results with BIC the measure of goodness-of-fit. Similar to Figure 15, but 
all quantities are computed with BIC. Results are similar to those with AIC, but the importance 
of all factors are lower because of more severe penalties to extra parameters. 
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