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Abstract: This exploratory project report provides a study of the retina in response to spontaneous and evoked 

pattern of flashes for different time cycles. These patterns induce changes at individual neural level and network 
level, while global efficiency, a topological network measure, presents robustness and degenerate states across 
time. This report also discusses some alternatives to explain changes observed and how it could be related to 
oscillatory plasticity mechanism. 
 

Keywords—Retina; Neural codification; Graphs; Neural Networks 

Introduction  
The retina is a well-structured dynamical neural network. It is 

considered part of the central system and has interesting 

anatomically and physiologically properties (Masland, 2012), 

(Seung & Sümbül, 2014). For example, the retinal network 

activity can change according to the context (Farrow et al., 

2013), inputs are due to rod activity at low luminance 

(Scotopic condition), or due to cones at high luminance 

(Photopic condition) (Kolb, 2003; Tikidji-Hamburyan et al., 

2015). Furthermore, with or without external stimuli, the 

retinal network is always presenting neural activity (Evoked 

or Spontaneous activity). It has two synaptic layers and three 

nuclear layers (Carcieri et al, 2003; Kolb, 2003; Masland, 

2012; Sterling, 2013). Signals from photoreceptor are sent to 

Bipolar cells (BC) and Horizontal cells (HC), then to Amacrine 

cells (AC) and Retinal Ganglion cells (RGC) to produce action 

potentials (Spikes). Retinal cells have a non-lineal signals 

processing, allowing complex computational capacities 

(Gollisch & Meister, 2010). For instance, BC can respond 

differently depending of the presence of ionotropic or 

metabotropic receptors for glutamate, related with light (ON) 

or dark (OFF) flashes. Specifically, HC and AC can send 

different types of signals using various excitatory and 

inhibitory amino acids, catecholamines, peptides and nitric 

oxide (Kolb, 2003). These characteristics make of the retina a 

good model to understand how the brain encodes neural 

information. 

However, what is information for the brain and the way how 

neural systems codifies information is still an open question 

and represents a critical problem to understand how the 

brain works (Breakspear et al, 2010;  Gerstner et al, 1997;  

Gerstner et al, 2007; Quiroga & Panzeri, 2009). Generally 

speaking, two main types of codification base on spike 

activity can be mentioned (Cessac et al, 2010; Masuda & 

Aihara, 2007): i) Rate codification (normally spike counts per 

bin time) and ii) Temporal codification (precise time spike 

latency response). Additionally, independency (Nirenberg et 

al, 2001) or dependency (Aertsen & Gerstein, 1985; Gollisch 

& Meister, 2008; Meister, 1996) between neurons can be also 

assumed.  

In general, both spike counts and temporal codification 

(Schwartz et al, 2007) participate in neural coding. For 

example, when a repetitive pattern stops (Figure 2), 

individual RGCs respond strongly depending on the frequency 

of stimulation (Schwartz & Berry II, 2008) while in the midst 

of stimulation, the latency firing is constant and the firing rate 

is smaller than at the end. This type of codification is called 

Omission Stimuli Response (OSR) (Gao et al, 2009; Schwartz & 

Berry II, 2008; Schwartz et al., 2007). In other words, the 

retina recognizes the end of the pattern and the frequency of 

this pattern. The observed OSR dependency in retina has 
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been attributed to a general resonator neuron mechanism 

related with sub threshold oscillations (Gao et al., 2009; 

Schwartz & Berry II, 2008) contrasted with another simple, 

but not general, explication (Werner et al, 2008). OSR has 

also been noted in cortical areas of many species, including 

humans (McAnany & Alexander, 2009); visual system (Bullock 

et al, 1994; Rogers et al, 1992); auditory system (Klinke et al, 

1968) and somato-sensory system (Sutton et al, 1967); 

whereby OSR could be a mechanism common to nervous 

system (Bullock et al, 1994; Tiitinen et al, 1994). 

These encoding processes have implication on more complex 

brain areas. For example, the retina has many different types 

of RGCs which encode different kind of stimuli. It also have a 

huge spectrum of responses, even for the same stimulus and 

especially for OSR (Schwartz &Berry II, 2008). In this context, 

how would other brain areas integrate all this variability? One 

hypothesis is related with population coding and how the 

retinal network could keep stable responses to compensate 

this individual variability. 

Dependency and correlations between cells responses may 

be relevant and related with functional or anatomical 

connectivity between neurons. In this context, Graph theory, 

including topological network measures of functional 

correlation structure, can be applied. Graph theory has been 

used to study how “healthy”  neural network can be 

characterized (Bullmore & Sporns, 2009; Vincent et al, 2013), 

in terms of topological measures such as: i) integration, 

capacity of converge activation patterns, and ii) segregation, 

capacity of distribute activation patterns across a network 

(Rubinov & Sporns, 2010). On all these approaches, spiking 

activity is assumed as the only informative state, even when 

other types of states could be still informative. 

This report will use both independent and dependent coding 

paradigms to characterize retinal populations responding to 

repetitive OSR pattern. Thus, it is possible to observe 

temporal differences on network responses before and after 

stimulation protocols, mainly changes of latency in ON 

response, associated with OSR mechanism. It might suggest 

plasticity effects and dynamical variability of the system. Also, 

these preliminary results show differences of integration and 

segregation of neural activity between spontaneous retinal 

activity and OSR activity. Additionally, interesting conclusions 

appear after graph analysis of correlations for OSR states, and 

it shows that topological measures as global efficiency have a 

robust behavior, producing degenerate states to keep 

coherence and robustness of the network.  

 

Methodology 
Animal Model and Recording 

Experiments were performed in pieces of retina perfused 

continuously with Ringer's AMES medium and obtained from 

diurnal dichromate rodent Octodon degus (degu). Degus have 

~2.9 million cones with middle wavelength-sensitive (M); 

221,000 cones with short-ultraviolet wavelength (UV) 

sensitive (S), and ~6.5 million rods (Chavez et al, 2003; Jacobs 

et al, 2003; Palacios & Lee, 2013; Peichl, 2005). 

Data is recollected from 3 different animals and 6 pieces of 

retina in total. Here 429 units are reported and selected from 

different experiments through visual criteria of spike-

triggered average (STA). Experiments were carried under 

bioethical permit validated by the Universidad de Valparaiso 

Animal Care Office.  

Each retina was dissected and mounted on a 256- 

multielectrode array (MEA) (Segev et al, 2004) for field and 

action potentials (spike) recording, using McRack Data 

Acquisition Software (Multichannel Systems, 2013a, 2013b). 

The MEA contains 252 recordings, and four ground electrodes 

arranged in a 16 x 16 layout grid embedded in a transparent 

glass substrate. The contact to the amplifier is provided by a 

double ring of contact pads around the rim of the MEA. 

Electrodes are made of titanium nitride (TiN) with a silicon 

nitride (SiN) isolator. Contact pads and tracks are made of 

transparent indium tin oxide (ITO). The average spacing of 

electrodes was 100 μm in a 16x16 grid. Each electrode has 30 

μm diameters with an impedance of approximately 30-50 kΩ. 

The recording chamber temperature was maintained 

between 25°C and 30°C. 

 

Visual Stimulation and Protocols 

A Green LED (λmax 505 nm, 30 lux) was used for OSR dark or 

light condition (see below). LEDs were mounted directly 

underneath the retina and programmed with custom Matlab 

software. 

Experiments consisted of 10 minutes of spontaneous activity 

recording; 20 minutes of white noise recording; 50 trials of 

ON-OFF control flashes (Figure 1a), 1 cycle of OSR control for 

dark or light condition (Figure 1a); 5 cycles of stimulation with 

200 trials of green flashes (Habituation protocol) (Figure 1b-

e). First four stimulation cycles were separated by break of 2 

minutes without simulation activity (it will be called: Resting 

activity) and the last cycle by break of 4 minutes. Finally, 

experiments ended with other 50 trials of ON-OFF control 

flashes. 

The Habituation protocol (Figure 1b-e) contains 5 ON flashes 

and 5 OFF flashes, with 40ms duration (Schwartz & Berry II, 

2008; Schwartz et al, 2007), i.e. at 12.5 Hz. Each trial was 

presented at 1.78 Hz, i.e. 160 ms of delay between them and 

for a total of 560 ms per trial, which made each trial 

dependent, and a total of 200 trials per cycle with a total of 5 

cycles (1000 trials in total) per experiment. The cycle for OSR 
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control, dark or light, was similar but only 50 trials and 1 

second of delay between them for each condition, which 

made each trial independent. 

Four different variants of Habituation protocol (Figure 1b-e) 

were tested, and two of them represented controls. i) 

Habituation scotopic protocol (Figure 1b), where scotopic 

condition is defined as low luminance before pattern 

stimulation and resting condition, and light flashes (ON) for 

stimuli condition (n=3, where n is number of pieces of retina); 

ii) Habituation photopic (Figure 1c), where photopic is a high 

luminance condition before pattern stimulation and resting 

condition, and dark flashes (OFF) in stimuli condition (n=1); 

iii) Habituation 10 ms (Figure 1d) was a variation of 

Habituation Scotopic protocol with flashes duration at 10 ms 

(n=1); iv) Habituation Disorder (Figure 1e) experiment has 5 

ON and 5 OFF flashes with different durations between them 

under scotopic condition, it is not a repetitive pattern within 

the trial but with a pattern trial to trial (n=1, the protocol was 

in the same piece that (iv)). Finally, (iii) and (iv) were just 

controls to make a comparison with the results obtained from 

the protocols (i) and (ii).  

 

Sorting, Filters and Classification of units 

In order to analyze data, Offline Sorting Software for Plexon 

Inc was used. A Butterworth 4 poles filter at 100 Hz and 

threshold of 5 s.d. was used to detect different waveforms. 

Afterwards, automatic sorting was manually verified (Brown 

et al, 2004; Lewicki, 1998; Nicolelis, 2008) using a principal 

component analysis to create clusters depending on type of 

Waveform (in this case, somatic waveform); Inter Spike 

Interval Histogram (ISI); autocorrelation and cross correlation 

between units. 

Sorted data was exported to Matlab creating time series 

(timestamps) for each unit. Verification that RGC were 

responding at the beginning and at the end of each 

experimental condition was made. This was to verify the 

sustained retina response along the experiment. 

The spike-triggered average (STA) analysis was run using a 

custom implementation of the method from (Chichilnisky, 

2001). Examples of STA results are shown in Figure S1. Units 

were removed if their receptive field (RF) showed a peak 

inferior to 3 s.d. of the background and/or temporal filter 

curve without ON, OFF or biphasic clear behavior. Two 

additional filters were applied to verify cell validity and avoid 

duplication: The first one to calculate correlation between 

different channels, and other one based in a modulation 

index calculated as: 

𝑀𝑖 =
𝑟 1
𝑖 − 𝑟 5

𝑖

𝑟 1
𝑖 + 𝑟 5

𝑖
  , 

difference between total PSTH firing rates value (𝑟 ) on cycle 1 

minus total firing rate value on the final cycle 5 divided by the 

sum of both values, where 𝑖  is the cell index. If this 

modulation index was bigger than ± 3 s.d. from the 

distribution, the unit was discarded. 
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Figure 1. Protocols. a) ON-OFF control pulses had 1 second ON and 1 second OFF. OSR Scotopic (Photopic) Control 

was with 5 flashes ON of 40 ms and 5 flashes OFF of 40 ms at 12.5 Hz and 2 seconds between trials (for details see 

Schwartz, G., & Berry II 2008). The number of Trials in both protocols was 50. b) Habituation Scotopic protocol 

contains 5 ON flashes and 5 OFF flashes, with 40ms duration, i.e. at 12.5 Hz. Each trial was presented at 1.78 Hz, 

i.e. 160 ms of delay between them and for a total of 560 ms per trial, and a total of 200 trials per cycle with a total 

of 5 cycles per experiment. First four stimulation cycles were separated by break of 2 minutes without simulation 

activity (it will be called: Resting activity) and the last cycle by break of 4 minutes. c) Habituation Photopic is similar 

than Habituation Scotopic, but in Photopic condition. d) Habituation Scotopic 10 ms was a variant with 5 flashes 

ON of 10 ms and 5 flashes OFF at the same duration. e) Habituation Scotopic Disorder, the same that b) but with 

different duration of ON and OFF flashes. d) and e) were controls for results of a) and b) experiments. Temporal 

scale between figures is approximately the same. 
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Finally, each unit was classified through two 

different criteria: i) ON, OFF or ON-OFF using the 

PSTH responses over 50 trials of ON-OFF flashes. ON 

corresponds to an onset response (between 1 ms to 

1000 ms and spike count activity >3 s.d. of the total 

activity); OFF corresponds to the offset response 

(between 1001 ms to 2000 ms and spike count 

activity >3 s.d. of the total activity) and ON-OFF has 

both responses. ii) Using k-means algorithm to 

classify temporal filter in four main groups: OFF, OFF 

slow, ON Biphasic, and Biphasic. Finally, the first part 

of the name in the unit classification corresponds to 

Pulse (Ps) response and the second part corresponds 

to the type of temporal filter (Tf). Some examples of 

responses are in Figure S1. 

 

Firing Rate and Latency Analyses 

A global PSTH is defined as the sum of individual 

PSTH. It was normalized by the sum of the total 

activity on five cycles and represented in terms of 

probability, to make results comparable between 

different cycles. Adaptation curves are calculated 

from values of spike counts per trial and the mean 

corresponds to the whole population. 

The mean of firing rate is the mean of activity per 

unit trial to trial. An OSR peak was calculated with 

respect to the OSR peak recorded in the first cycle. 

After that, the time of this peak was kept fixed and it 

was allowed only a potential variation of ±10 ms 

during next cycles. The maximal peak was the 

maximal firing rate value after the last flash, 

independently of time position. With the goal to 

measure post OSR activity, it was used the center of 

mass, defined as the point in the Cartesian 

coordinate space where the total mass of the system 

is concentrated. In this case, the center of mass of a 

post OSR activity was defined as the temporal point 

after 150 ms after the last flash, i.e. post OSR activity 

(Pizarro et al, 2014), where the maximal peak of 

firing rate occurred. The calculus is: 

𝑇𝑐𝑚 𝑖
=

 𝑟 𝑖𝑗 𝑇𝑖𝑗
𝑛
𝑗=1

 𝑟 𝑖𝑗
𝑛
𝑗=1

, 

where 𝑖 is the index of cell, 𝑗 is the index trial and 𝑛 

is the total number of trials. 𝑇𝑖𝑗   is the time-to-peak 

of the  𝑖 cell in trial 𝑗 and  𝑟 𝑖𝑗  the peak of firing rate 

after 150 ms. We showed the value   𝑟𝑖𝑗 𝑇𝑖𝑗
𝑛
𝑗 =1  as 

mass of the center of mass in Figure 3c and 𝑇𝑐𝑚 𝑖
 in 

Figure 3d. The mass is the total counts per bin 

activity in a temporal range. In addition, to make a 

simpler comparative analysis and show the 

percentage of each variation, all these values were 

normalized according to the first cycle. 

  

To quantify differences on responses between two 

conditions, initial vs. final Paired Pulse Ratio (PPR) of 

ON-OFF pulses was calculated by: 

𝑃𝑃𝑅 =
∆𝑥𝑖

∆𝑥𝑓
, 

where ∆𝑥𝑖  corresponds to the value at initial 

condition and ∆𝑥𝑓  is the value at final condition, for 

one cell. The ∆𝑥 value was taken directly from the 

individual PSTH (calculated from 50 trials of ON-OFF 

control flashes). When ∆𝑥 was considered the 

maximal spike counts (peak activity in the temporal 

window for ON or OFF activity). Finally, three 

conditions are defined: i) facilitation as: 𝑃𝑃𝑅 > 1, ii) 

depression as: 𝑃𝑃𝑅 < 1 and iii) unchanged when 

𝑃𝑃𝑅 = 1. When ∆𝑥 was considered time to peak 

(time to maximal spike count value for ON or OFF 

activity), facilitation was  𝑃𝑃𝑅 < 1, and 

depression  𝑃𝑃𝑅 > 1. 

 

Correlation and Graph Analyses 

Timestamps information were converted to binary 

vectors with zeros and ones corresponding to a bin 

of 1 ms. The length of these vectors per unit was 

depending on the temporal window for each analysis 

(40 ms, 560 ms, 2 minutes etc). Correlation values 

were computed by a Pairwise Pearson correlation 

calculated as: 

𝜌𝑥𝑦 =
𝑛  𝑥𝑖𝑦𝑖− 𝑥𝑖

𝑛
𝑖=1

𝑛
𝑖=1  𝑦𝑖

𝑛
𝑖=1

 𝑛  𝑥𝑖
2𝑛

𝑖=1 −( 𝑥𝑖
𝑛
𝑖=1 )2 𝑛  𝑦𝑖

2𝑛
𝑖=1 −( 𝑦𝑖

𝑛
𝑖=1 )2

, 

where  𝑖 is 𝑖𝑡𝑕  component of 𝑥  and 𝑦  vector of 

𝑛 length. In other words, Pearson correlation is the 

covariance divided by the product between standard 

deviation of both vectors  𝑥  and  𝑦. 

Adjacency matrix was constructed by Pearson 

correlation (Aertsen & Gerstein, 1985; Vincentet al, 

2013) because Maetschke, et. al, 2014 demonstrated 

that this is one of the best performing simple 

method of inference in unsupervised networks. The 
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advantage of this method is as accurate as much 

more complex methods, yet much faster and 

parameterless (Maetschke, et. al 2014). To calculate 

the adjacency matrix, length binary vector was taken 

for every period of interest (Vincent et al., 2013), 

with 1 ms corresponded to 1 point in the vector. For 

spontaneous activity condition, 600 seconds are 

considered. For resting activity and stimulation 

activity between cycles, a temporal equivalent a 200 

repetitions of 560 ms (112 seconds) was used. Then, 

surrogate data (Grün, 2009; Pipa et al, 2008) was 

computed based on a randomly dithering of whole 

spike train against other, because previous works 

(Grün et al, 2010) showed it as the most robust 

detector of excess coincidences amongst other 

surrogates methods. Additionally, jitter length is 

used with a value of L=50 ms and history length of 

R=20 ms according to (Harrison & Geman, 2009) and 

data was shuffled 100 times (number of jitter 

resample). This surrogate data was used to obtain an 

absolute threshold value between experimental 

correlation and random correlation to generate a 

binary adjacency matrix for each network.  

For each cycle, the network was represented by 

graph characterization, using some measures of 

integration and segregation. The first one was Global 

Efficiency (GE) (Latora and Marchiori, 2001; Rubinov 

& Sporns, 2010). 

𝐺𝐸 =
1

𝑛
 𝐸𝑖

𝑖

=
1

𝑛
 

 𝑑𝑖𝑗
−1

𝑗∈𝑁 𝑗≠𝑖

𝑛 − 1
𝑖∈𝑁

, 

where 𝐸𝑖  is the efficiency of node 𝑖. 𝑁 is the set of 

nodes which are part of the network and 𝑛 the total 

number of nodes. 𝑑𝑖𝑗  is the shortest path length 

between nodes 𝑖 and 𝑗 defined for: 

𝑑𝑖𝑗 =  𝑎𝑢𝑣

𝑎𝑢𝑣∈𝑔𝑖↔𝑗

 , 

where 𝑔𝑖↔𝑗  is the shortest path (geodesic) between 𝑖 

and 𝑗, and 𝑎𝑢𝑣   is the connection status between 𝑢 

and 𝑣: 1 when the link between 𝑢 and 𝑣 exists 

(neighbors) or 0 otherwise (also 𝑎𝑢𝑢 =0). Finally, note 

that 𝑑𝑖𝑗 = ∞ for all disconnected pairs 𝑖, 𝑗. If 𝑑𝑖𝑗  is 

infinity, GE is zero. 

Another measure was Quality of Modularity (Q) 

(Newman, 2004), defined as: 

𝑄 =   𝑒𝑢𝑣 −   𝑒𝑢𝑣

𝑣∈𝑀

 

2

 ,

𝑢∈𝑀

 

where  𝑢  and  𝑣 are modules within a total 

of  𝑀  subdivisions of the network and without 

overlapping. 𝑒𝑢𝑣  is the proportion of every link that 

connects nodes in a module 𝑢 with nodes in 

module  𝑣. Modules are functional subgroups of 

nodes optimally portioned maximizing connection 

between them. A big value of Q implies more 

segregation or more subdivision in subgroups than 

small values of Q. 

Finally the variation of information (VI) was 

computed (Meilă, 2007; Rubinov & Sporns, 2011) 

between two networks 𝑀 and 𝑀′, as: 

𝑉𝐼 =
1

log( 𝑛)
 𝐻 𝑀 + 𝐻 𝑀′ 

− 2 𝐼(𝑀, 𝑀′) , 

where 1
log(𝑛)   is a scale factor to rescale  𝑉𝐼 in the 

range  0,1  and 𝑛 the total number of 

nodes. 𝐻 𝑀 =  𝑃 𝑢 log 𝑃 𝑢    𝑢∈𝑀 is the 

entropy definition for the space of partition  𝑀  with 

𝑃 𝑢 =
𝑛𝑢

𝑛  and  𝑛𝑢   as the number of nodes in 

module 𝑢. The third term is the mutual information 

defined as: 

𝐼 𝑀, 𝑀′ 

=   𝑃 𝑢, 𝑢′ 𝑙𝑜𝑔
𝑃(𝑢, 𝑢′)

𝑃 𝑢 𝑃(𝑢′)
,

𝑢′∈𝑀′𝑢∈𝑀

 

where  𝑃 𝑢, 𝑢′ =
𝑛𝑢𝑢 ′

𝑛  and  𝑛𝑢𝑢 ′  is the number of 

nodes that are simultaneously in module 𝑢 of 

partition  𝑀 , and in module 𝑢′ of partition 𝑀′. This 

definition implies that  𝑉𝐼 = 0 will mean equal 

partitions, and 𝑉𝐼 = 1 will correspond to the 

maximal distance between two partitions (Karrer et 

al, 2008). 

GE, Q, VI and Modules were calculated using Brain 

Connectivity Toolbox (Rubinov & Sporns, 2010) for 

Binary Networks. 

 

Statistical Analyses 

Statistic tests were done with Wilcoxon signed rank 

test for paired data, unless otherwise stated. For 

effect size analyzes, two different methods were 

applied depending of the data: i) Mean difference, 
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and ii) Mean difference standardized. The first is 

defined as: 

𝑚𝑑 = 𝑚1 − 𝑚2, 

with  𝑚1 the mean of the first distribution, and 𝑚2 

the mean of the second distribution. The second 

method is calculated as: 

𝑚𝑑 =
𝑚1 − 𝑚2

𝑆𝐷

, 

where 𝑆𝐷  is the standard deviation of the difference 

score (the differences between matching pairs of 

data in the groups). 

 Effect size and Confidence interval was calculated 

using the effect size Matlab toolbox (Hentschke & 

Stüttgen, 2011). Confidence intervals of md were 

calculated by a bootstrapping technique (1000 

iterations), as a random sampling with replacement 

(Carpenter & Bithell, 2000; Diciccio & Efron, 1996). 

Details on the definition of standard error of the 

mean difference can be seen in (Hentschke & 

Stüttgen, 2011) and documentation of each method.  

Finally, to contrast results of the mean distribution 

shown in Table 1, and avoid problems derived from 

not normal distribution, It was also applied 

bootstrapping (3000 iterations) to calculate these 

values with different distribution assumptions: 

Normal, Basic, Percentile, and Bias-corrected and 

accelerated (BCa). This calculation was performed by 

using R and the Boot function. 

 

Results 
This work has carried two main types of analyses and 

results: (i) spike counts and time to peak analyses of 

groups and individual neurons, which assumes 

independence on individual neuron responses, and 

(ii) Graph and Correlation analysis, assuming 

dependence on neuron responses. 

 

Characterization of responses for Habituation 

Protocol 

Habituation protocol corresponds to a pattern of 

flashes which is shown at some frequency, in this 

case 12.5 Hz, with only 160 ms of delay between 

trials inducing a second frequency order of 1.78 Hz 

(see methods Habituation protocol). Two hundred 

trials were presented in five different time cycles as 

a lineal sequence. We intersperse activity cycles 

between cycle 1 and cycle 4 by 2 minutes without 

activity (Resting activity), and cycle 4 and cycle 5 by 4 

minutes. Thanks to this protocol, it was expected to 

generate habituation without inducing fatigue (see 

methods, sorting and filters). 

Preliminary results showed as some units changed 

(Figure 2b, c) their activity between cycle 1 and cycle 

5, especially on temporal responses (red lines). 

While others units do not present strong time 

differences but present some decrease in the spike 

counts (Figure 2a). Taking 312 ON-OFF units from 4 

pieces of retina, it is possible to characterize the 

Group dynamic of firing rate activity trial to trial 

between cycle 1 and 5. Adaptation curves trial to 

trial (Figure 3a) in cycle 1 present a faster decrease 

at the beginning and then a stabilization. In the next 

cycles adaptation curves are increasing cycle to 

cycle, as temporal decay constant shows, until the 

last cycle, where there is a decrease in the value 

(Figure 3a). In other words, this protocol is 

apparently inducing dynamical modifications cycle to 

cycle.  

These modifications impact on the mean of the firing 

rate (Figure 3b). These units show differences for 

every cycle (p<0.05) except cycle 2 and 3, however if 

we look well, the order of these differences is on 

decimals and these variations could have relation 

with intrinsic variation of spike counts in retina 

(Berry, Warland, & Meister, 1997). These variations 

are apparently a decrease of the firing rate on OSR 

activity (Figure 3c, blue dot) that is contrasted with 

an increase of the activity in other parts of the 

pattern stimulus (Figure 3c, d), especially post OSR 

activity.  

The OSR activity was defined as the peak on firing 

rate from the last flash until 150 ms (as previous 

works showed (Pizarro M. et al, 2014)) and post OSR 

activity was defined as the peak on the firing rate 

after 150 ms. Maximal peak is the maximal value of 

the firing rate post last stimulus flash independently 

from temporal limit. It is defined a temporal point as 

the center of mass for post OSR activity, and it is 

showed the fact that this value keeps being constant 

(Figure 3d) while the latency of Max peak has a 

tendency to increase (Figure 3d). Together, these 
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results are suggesting a temporal shift on individual 

and group responses. In other words, these results 

are suggesting qualitative and quantitative changes 

on the network at temporal neuron level induced for 

Habituation protocol. 
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Figure 2. Individual comparison between responses to cycle 1 to cycle 5 in Habituation Protocol. Analyses with 

individual PSTH show changes between experimental cycles. These changes are principally on time response of 

some firing rate peaks. a) Unit type OFF with a qualitative decrease on the amplitude of firing probability during 

flashes but no change on OSR peak, neither latency of its peak. b) Unit type ON with changes on latency response 

of the first flash. c) Unit type ON-OFF with a shift on latency response for every flash. Units in a-b) were from 

Scotopic Habituation Protocol and Unit c) from Photopic Protocol. The zero point marks the beginning of last flash 

and red lines show variation between upper PSTH (Cycle 1) and below PSTH (Cycle 5). Each line in raster plot 

corresponds to one trial from up to down.  

 

 

 

Figure 3. Characterization of responses cycle to cycle Habituation Protocol. Habituation protocol allows some 

qualitative variations on different parts of the stimulation, increasing or decreasing the neural activity. a) 

Adaptation Curve of the group activity per each cycle of stimulation with 𝜏1 = 0.52, 𝜏2 = 0.94, 𝜏3 = 0.89, 

𝜏4 = 3.7 and 𝜏5 = 2.66 respectively. Measures are in seconds and from an exponential fit. b) The mean firing rate 

evolution per each cycle of stimulation shows a tendency to increase during Habituation Protocol. Every cycle is 

p<0.05 (except cycle 2 and 3) with Wilcoxon test. However, the order of 0.2 for firing rate could mean something 

related with intrinsic variability of the system. c) Variation of firing rate response normalized for the first cycle in 

different parts of stimulation: OSR peak, Center of Mass for post OSR activity, Maximum peak value and peak value 

on flash number six (as a random reference). This plot shows how some parts of the stimulus on firing rate activity 

increase while other parts decrease. d) Time Latency for Maximal Peak post stimulation and Center of Mass for 

Activity Post Omission response. We show results for 312 units ON-OFF types from n=4 pieces of retina with 

Habituation scotopic Protocol. Error bar are s.e.m. 

c d 

a b 
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Changes in Ganglion cells responses after 

Habituation Protocol 

To see differences induced at neuron level and at 

population level, initial responses of ON-OFF pulses 

(before Habituation Protocol) and final responses 

(after Habituation Protocol) are compared (Tikidji-

Hamburyan et al., 2015). Types of neurons are 

classified with two analyses: (i) How they respond to 

50 trials of ON-OFF pulses (1 second per each pulse, 

see methods), and (ii) thanks to temporal filter 

clustering from STA analysis. Both classifications can 

be crossed and it is possible to obtain 8 different 

kinds of classifications. Here, 188 units for 

Habituation scotopic protocol (Figure S1) from three 

pieces of retina are reported. Then, the value of 

maximum peak of spike counts and time to peak (or 

Latency) are measured before and after Habituation 

protocol from simple ON-OFF pulses at the 

beginning and end of experiments.  

With these measures, the population distribution of 

these units is shown for each kind of response of 

ON-OFF pulses (Figure 4). Again, it is possible to 

observe a little increase of maximal firing peak in 

both ON as OFF response and a bigger increase on 

latency ON response, after Habituation protocol. To 

make the comparison clearer between initial and 

final states, we show the paired pulse ratio (PPR) for 

each condition, where for “maximal firing peak”: 

Depression means decrease in response at final 

condition, Equal is all kept equal on both initial and 

final condition, and Facilitation is an increasing on 

final response. For “latency”: Depression means an 

increase on latency response and Facilitation is the 

decreasing on latency response (see methods). 

While maximal firing rate peak ON and OFF keeps a 

balance between depression and facilitation, for ON 

and OFF latency, it is possible to observe one or 

another, depression or facilitation, as dominant. 

In conclusion, initial population distribution shows 

differences with respect to final distribution and 

effect size analyses are clearer summarizing these 

ideas (Figure 5 and Table 1). Figure 5a shows the 

mean difference of the distributions and respective 

confidence interval for four different protocols of 

Habituation. In all of these protocols, differences are 

very small or zero between initial and final condition 

on maximal firing rate peak response ON and OFF, 

while for latency, the effect size is considerable. 

Positive values mean decrease in the final condition 

and negative values are an increase (see methods). 

One interesting observation is the opposite direction 

for changes induced in Habituation Disorder 

protocol, where final ON latency decreases, unlike 

other protocols. 

Figure 5b and 5c show the comparison of effect size 

changes between Habituation scotopic protocol and 

other protocols. Figure 5b suggests that maximal 

spike count peak responses are similar for every 

experiment at initial conditions, however latency or 

time to peak shows differences from protocol to 

protocol. It suggests different initial time responses 

induced for each protocol. In Figure 5c, it is possible 

to see similar behavior than Figure 5b, with 

exception of scotopic and disorder protocol for time 

to peak ON. These findings suggest that differences 

induced for Habituation protocols have similar 

tendency for Habituation scotopic, photopic and 

scotopic 10 ms, while it is different for Habituation 

disorder, at least for ON activity. 

In conclusion, repetition of one pattern at a second 

frequency order, as Habituation protocol, could 

induce changes on firing rate response, but 

principally on time response activity cycle to cycle. 

These changes are observed independently of the 

frequency of the pattern. Nevertheless, changes on 

ON latency activity are apparently driven for the 

pattern of stimuli (regular or irregular) and the kind 

of stimulation (scotopic or photopic). For example, 

changes induced by Habituation scotopic are more 

similar with scotopic 10 ms than photopic protocol, 

although these three protocols induce changes at 

population levels, mainly ON response (Figure 4 and 

5), which are more similar between them than in 

comparison with Habituation Disorder protocol. 

By this way, the phenomenon would not be 

associated only with repetitive patterns as OSR, if 

not rather with repetition itself. These preliminary 

results support the idea about a necessary periodic 

oscillation (ordered pulse pattern) between ON and 

OFF activity to induce disorder on retinal activity 

while non-periodic oscillations (Habituation 
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Disorder) to induce order. Further experiment are needed to validate these findings.

Figure 4. Change in the Population distribution before and after Habituation protocol. It is possible to observe 

changes after a habituation protocol in the population distribution of responses to a light pulse ON-OFF. a) 

Histogram of the maximal firing rate peak in the OFF response (p>0.05). b)  Histogram of the maximal firing rate 

peak in the ON response (p<0.001). c) Histogram of the latency of the maximal firing rate peak in the OFF response 

(p<0.01). d) Histogram of the latency of the maximal firing rate peak in the ON response (p<0.001). e-f) Histogram 

for Paired pulse ratio Peak in OFF and ON responses respectively. g-h) Histogram for Paired Time ratio Peak in OFF 

and ON responses respectively. We show results for 188 units from three different pieces of retinas with 

Habituation Scotopic protocol. In a-b) the lines are the normal approximation distribution for each histogram. The 

Paired Pulse and Time Peak ratio were calculated by dividing the value in the initial state by the final value. For e-f 

facilitation was defined as an increase in the paired ratio (increase in spike count per bin), while for g-h facilitation 

was defined as a decrease in the ratio value (decrease in the latency, i.e. the final response is faster than the 

initial). 
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Figure 5. Effect Size analysis of changes on population distribution before and after Habituation Protocol by ON-

OFF pulses. Effective changes are observed at different experiments, especially in the order of time response. Time 

to peak on OFF responses decreased for each experiment, while Time to Peak in ON responses increased on three 

protocols, with exception of Disorder protocol. It suggests that changes for Disorder protocol are opposite, while 

other three protocols affect the dynamic of the network in a similar way, but with some differences between 

them, induced for type of stimulus. For a correct interpretation see complementary information in Table 1. a) 

Effect Size between the mean population before and after Habituation Protocol. Different protocols are inducing 

differences of latency response: The time OFF final response decrease and the time ON final response increase 

(except for Disorder protocol). Analyses for four different kind of experiments: Habituation Scotopic (188 units 

from 3 pieces of retina); Habituation Photopic (44 units from 1 piece of retina); Habituation Scotopic 10 ms (39 

units from 1 piece of retina); Habituation Scotopic Disorder (39 units from 1 piece of retina). Units in Habituation 

Scotopic 10 ms are the same than in Scotopic disorder experiments, and differences in direction of changes 

between both protocols suggest reversibility. b) Effect size comparison between Habituation scotopic protocols 

and other protocols at the begging of each experiment. Maximal firing rate peak for Scotopic protocol is almost the 

same than other protocols, but differences appear in time to peak.  c) Effect size comparison between Habituation 

Scotopic protocols and other protocols at the end experiments. Calculation of the effect size is by the difference 

between the mean of the first population minus the mean of the second population. Negative values mean 

increased values on the second population. The bars are Confidence intervals calculated by bootstrapping 

technique (see methods). 
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Graph analysis for Spontaneous, OSR control 

and Habituation protocol activity. 

Topological network characterization can be applied 

thanks a simple pairwise correlation measures with  

a thresholding method based on surrogate data (see 

methods) (Grün, 2009; Pipa et al, 2008). Figure 6a 

shows an example of adjacency binary matrix for 

both spontaneous and stimuli driven responses, 

observing qualitative and quantitative differences 

between them. Quantitative differences can be 

stated using three topological network measures: 

GE, Q and VI.  

GE measures are related with integration of 

activated patterns, or in abstract terms: some kind 

of information (Latora & Marchiori, 2001; Rubinov & 

Sporns, 2010). A value close to 1 means a bigger 

integration, and 0 corresponds to nothing of 

integration (see methods). Results shows more 

informative integration for stimuli OSR activity than 

spontaneous activity (p<0.05). 

Another measure was Q (see methods), related with 

the degree on which networks can be subdivided 

into groups without overlapping nodes, these groups 

are called modules (Newman, 2004). The differences 

between both states are strong again (p<0.05) 

(Figure 6). This means that during OSR patterns, 

network activity has less potential to separate into 

smaller groups than in spontaneous activity. In other 

words, activity patterns are more segregated into 

spontaneous activity than stimulation activity.  

Finally, VI is used to quantify difference between 

two network states (Meilă, 2007; Rubinov & Sporns, 

2011), in this case Spontaneous and OSR activity (red 

bar, Figure 6b). The VI between both conditions is 

close to 0.7; this means a significant informative 

difference between partitions and modules. 

Comparison between spontaneous random network 

and OSR random network (blue bar, Figure 6b), are 

also computed. This random network is calculated 

with a rewiring process, preserving nodes and 

degree distribution of the original network. It is 

interesting to observe that there are not strong 

differences between VI of experimental networks 

and VI of random networks (p= 0.2). This last 

comparison was made between a random network 

generated from spontaneous adjacency matrix 

activity and another random network from OSR 

adjacency matrix activity. The randomization process 

keeps the degree distribution and nodes, while 

randomizes the order in connections of the 

adjacency matrix. One interpretation of these results 

is that differences are not driven by the factor 

randomized, i.e. changes of calculation method for 

random matrix can be drive significant differences, 

for example randomization of timestamps before 

adjacency matrix definition. Through this way, these 

findings suggest that observed properties of these 

networks are associated with the number of nodes 

and degree distribution. 

On the contrary, Graph measures for Habituation 

protocols shows little differences cycle to cycle with 

any statistical different. Figures 7a and b show a 

representative network and qualitative evolution of 

its adjacency matrix between cycles, for both 

spontaneous and stimulation activity. GE in 

stimulation activity condition keeps a high value 

while Q value shows a tendency for increase 

between cycles, but it does not show any tendency 

during resting/spontaneous activity. However, none 

of these values showed a significant statistic 

difference cycle to cycle (p ˃0.05). Nevertheless, one 

statistical limitation is the few number of 

experiments (n=5) (Hentschke & Stüttgen, 2011).  

One interpretation of these preliminary results could 

be that “integration of information” at macro level is 

the same cycle to cycle, while different modular 

organizations are presented, i.e. the proportion of 

links that connect nodes between different modules 

are changing time to time. This can be observed as 

changes of Q and/or changes of number of modules 

(number of red square per graph, e.g. Figure 7a, b). 

However, these differences between modular 

network partitions are not impacting the global 

organization, as values of VI are shown. In this work 

is presented two different VI, i) with respect to cycle 

1, ii) with respect to pre-cycle. From these VI values 

(Figure 7c, d), it is also possible to conclude that 

differences between networks partitions, due to 

stimuli driven activity cycle to cycle, change a little 

bit, in order of 10%, while for resting state activity 

we do not observe changes (less than 5% of 

differences). In other words, retinal network at 
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resting state and its partition are globally the same 

at different cycles. 

Thus, it is possible to define the “Robustness” of the 

network, when modular network partitions are more 

or less the same across time. Functional network 

robustness is defined as similar values of VI time to 

time and/or when variations are less than 

15%  𝑉𝐼𝑖 ≅  𝑉𝐼𝑓 ∧  𝑉𝐼 < 0.15  

( 𝑤𝑕𝑒𝑟𝑒 𝑉𝐼𝑖  𝑖𝑠 𝑉𝐼 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑛𝑑  𝑉𝐼𝑓  𝑖𝑠 𝑉𝐼 𝑓𝑖𝑛𝑎𝑙). One 

of the most interesting conclusions from these 

preliminary results is this robustness property in 

resting and stimulation driven activity.  

In addition, for each cycle, changes on number of 

modules (see number of red square per graph in 

Figure 7a, and Q values which are increasing in 

stimulation activity) suggest different organizations 

of the network while they are keeping the same 

global topological value of GE. This is similar to 

degeneracy states of a physical system, where 

energy (in this case GE) keeps the same value for 

different configuration/states of the system, in this 

case different group organization of individual cells. 

This phenomenon will be called degenerated 

topological states, defined as states which preserve 

similar values of VI and GE across time with or 

without similar values of Q  𝑉𝐼𝑖 ≅  𝑉𝐼𝑓 ∧  𝑉𝐼 <

0.15∧𝐺𝐸𝑖≅ 𝐺𝐸𝑓∧/∨𝑄𝑖≠𝑄𝑓, or in other words, 

different modular organizations with the same 

global topological value (in this case, principally GE). 

A similar phenomenon on the graph context is called 

degenerated modular states (Rubinov & Sporns, 

2011). However, in this case, Q values are 

constant 𝑉𝐼𝑖 ≅  𝑉𝐼𝑓 ∧  𝑉𝐼 < 0.15 ∧ 𝑄𝑖 ≅ 𝑄𝑓  . Here, 

these preliminary results show degenerated modular 

state for resting state activity and a more general 

degenerated topological state for a stimulation 

activity in retinal network across cycles of 

stimulation.  

These degenerated topological states and 

robustness could be a way how retinal networks 

compensate individual neural variability and keep a 

coherently macro response across time. These 

properties might be also related with healthy 

networks as it would present a lot of network 

configuration for a population response, in 

opposition to not healthy networks. Further 

experiments are needed to validate this last 

suggestion and compare results for retinal networks 

in other conditions (different stimulus or 

pharmacological conditions).  

 

Graph analysis before and after Habituation 

protocol 

An analysis of ON-OFF pulses responses before and 

after Habituation protocol shows a little decreasing 

on GE (Figure 8b) and a little increasing on Q (Figure 

8c). The VI shows a value near 0.4, this means a 

considerably variation between network partition 

between initial and final state. The effect size 

analysis also shows important effects induced for 

Habituation protocol (Figure 8e). These results 

suggest effective differences between both network 

organizations (take in count respective confidence 

intervals) after Habituation protocol, which are 

apparently compensated thanks global topological 

measures as GE. Figure 8 shows values for GE and Q 

calculated by ten times per piece of retina to avoid 

differences due to variability of computing algorithm 

(10 values per experiment, five experiments, i.e. 50 

values in total). These values can impact effect size 

calculation, for example using standardization by 

normalization of the standard deviation (see 

methods), as it is the case in Figure 8. These are 

methodological differences with respect to analyses 

in Figure 7; however, results of VI for graph in 

Habituation protocol are robust. Figure 7 has small 

values of VI that means not considerable difference 

between networks (for definition VI values < 0.15) 

unlike results in Figure 8d. 
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Figure 6. Characterization with Graph Analysis, between Spontaneous and OSR driven activity networks. a) 

Adjacency Matrix of one representative network at Spontaneous activity (left) and Stimulation activity with OSR 

scotopic and photopic protocol (right): 50 trials of 5 green light flash stimulation at 12.5 Hz and delay between 

trials of 2 second (Figure 1). Red line is representing network Modules. b) Characterization of Topological measures 

for Spontaneous (n=4, number of retinas) and Stimulation activity (n=5): Global Efficiency (p<0.05), Quality of 

Modularity (p<0.05) and Variation of the information between spontaneous and OSR activity (p=0.2 comparisons 

with a random network, spontaneous and OSR activity). These results show topological differences between both 

experimental conditions. Error bar are s.d. 
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Figure 7. Graph characterization of Habituation Protocol. a) Adjacency Matrix of one representative network at 

Stimulation activity, with 74 units: 3 ON, 22 OFF and 49 ON-OFF. It is possible to observe different modules at 

different cycles of stimulation. b) Adjacency Matrix (same network above) in resting activity shows degenerated 

modular states. c) Characterization of Topological measures in Stimulation State (n=5): Global Efficiency (p>0.05), 

Quality of Modularity (p>0.05) and Variation of the information (p>0.2). d) Characterization of Topological 

measures in Resting (spontaneous) State (n=4): Global Efficiency (p>0.05), Quality of modularity (p>0.05) and 

Variation of the information (p>0.2). Error bar are s.e.m. In a) and b) red line is showing network Modules. 
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Figure 8. Graph Analyses for ON-OFF pulses before and after Habituation protocol. These results show similar 

topological graph measures in both initial and final condition. However, effective changes by effect size 

standardized analysis and variation of the information are also observed at modular organization level. a) 

Adjacency matrix at initial, before Habituation Protocol (left), and final condition, after Habituation Protocol 

(right), for ON-OFF pulses control protocol (example from one network with 72 units). b) Global efficiency. c) 

Quality of Modularity (p>0.05). d) Variation of information between initial and final condition. e) Effect Size 

standardized analysis. Calculation of effect size is by the difference between the mean of first population minus 

the mean of second population and divided by standard deviation of the difference score (differences between 

matching pairs of data into groups, see methods). Negative values mean increased values in the second 

population. The bars in e) are Confidence intervals calculated by bootstrapping technique with 1000 iterations (see 

methods). For a-d) bars are s.d. Values for Global efficiency, Quality of Modularity and Variation of the information 

were calculated 10 times per condition from Adjacency matrix to avoid potential differences due to variability of 

the algorithm. 
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Discussion 
Habituation protocols have induced effective 

temporal changes in both independent analyses 

(Figure 2, 5) and network analyses (Figure 8). 

Habituation protocols induced a change of latency 

response in independent group/population analyses 

and a variation of VI for graph analyses before and 

after Habituation protocol. Additionally, It is shown 

differences between spontaneous and stimuli driven 

activity (Figure 6), degenerated topological ability 

(Figure 7) and the robustness property inferred from 

these preliminary results.  

 

Variability to explain changes observed 

The first option to explain changes of latency at 

individual and population neural level is the intrinsic 

variability across time of RGC activity. For example 

RGC have a variability of 3-5 ms when they respond 

to contrast or OSR protocols (Gollisch & Meister, 

2008). Here, one assumption was that temporal 

code involve in OSR is accurate, however it is not 

always true for ON-OFF responses. That is why, 

further experiments with ON-OFF control are 

needed to quantify latency values and make a 

comparison with results exposed above. These 

control experiments should present pulses at 

different times and during same duration than 

Habituation protocols (approx. 40 min). 

Independently of this observation, the intrinsic 

variability cannot explain strong variability for some 

units (~20 ms) and it is needed a complementary 

explanation. 

 

Reversible Fatigue Process to explain changes 

observed 

A second possibility to explain changes on latency 

implies loss capacity of speed information processing 

of external stimuli. Fatigue in RGC can be discarded, 

because amplitude on firing probability remains 

more or less constant, and it can also discard fatigue 

of visual pigments of photoreceptors, because even 

the retina is isolated from their epithelium, it is still 

responding to light for several hours. Another option 

is related with photoreceptors itself, which are 

involved on correlations mechanism of retina (Ala-

laurila et al, 2011; Farrow et al., 2013). For example, 

decreasing number of photoreceptors cycle to cycle 

could affect response time. Nevertheless, it is 

possible discard this option because retinal network 

can recover in part original values of latency, or at 

least countervails their differences, as results have 

shown for Habituation 10 ms and Disorder 

experiments (Table 1, Figure 5). These experiments 

were performed in the same piece of retina and 

suggest reversibility on stimuli driven changes 

between Habituation 10 ms (e.g. increase latency 

ON) and Disorder (e.g. decrease Latency ON) (Figure 

5). 

Finally, the last source of changes and fatigue on 

retinal circuit is a possible decreasing on speed of 

stimulus integration of AC and/or HC, but in theory, 

these cells are not involved in OSR and consequently 

should not be involved on Habituation protocol. 

 

Plasticity Process to explain changes observed 

Another alternative is related to plasticity process. 

Previous works have shown that in OSR is necessary 

to increase the number of flashes before the end, to 

increase the spike response, supporting the idea 

about a network training process in the order of 

milliseconds (Schwartz et al, 2007). As a result, some 

RGCs not simply respond at ended flash sequence, 

but for an expected flash omission, with precise 

time. Thus, OSR is predicting the time at which the 

next flash should have occurred, maintaining a short 

type of memory on the system that allows this 

prediction. One potential explanation about OSR is 

that a flash sequence sets up a resonance (6-20 Hz) 

within the retina that locks onto the stimulus 

frequency and it acquires a resonant frequency. 

When the sequence ends, internal oscillation 

continues and causes a large OSR (Gao et al, 2009). 

If repetitive flashes as OSR are inducing a memory in 

some units only at milliseconds, and if these patterns 

are repeated trial to trial, we might be able to induce 

a kind of plasticity and alterations of the neural 

pathways and synapses, as may suggest data 

presented here. If this interpretation is correct, 

there is a possibility that these changes could be due 

to synaptic changes between photoreceptors and 

BCs synapses, BCs and GCs or both kind of synapses. 
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However, it is not possible to know which synapses 

could be affected with these preliminary results. 

For example, main changes are in ON latency 

response and OSR is associated with this way, 

supporting part of this interpretation. Nevertheless, 

as we saw differences independently of the unit, 

whether it has or not OSR, type ON, OFF or ON-OFF, 

the mechanism to explain these changes should be 

common for all cells types. 

One option is that oscillatory stimuli induce non-

normal resonance on some cells and this resonance, 

as a background activity, would have impact on 

network configuration. External oscillatory stimuli 

could induce oscillations on BC and interactions 

between BC and spike responses of RGC would 

modify the connectivity weight by spike-timing 

depending plasticity, like similar mechanism is 

suggested in (Masquelier et al, 2009). The intrinsic 

resonance properties of cells’ membrane, for 

example BC, would also save information as a 

resonator neuron memory, and this activity relative 

to the activity of the next layer, for example RGC, 

would build complex memories and fast plasticity 

process. In terms of resonance property, we can 

expect fast and reversible changes, as we see in 

Table 1, Figure 5. 

With this last interpretation, we could also expect 

synaptic changes between BCs and RGCs. Typical 

mechanisms associated with these changes are long-

term potentiation (LTP) and long-term depression 

(LTD) (Carew et al, 1979; Kandel et al., 2000, 

Caporale & Dan, 2008, Dan & Poo, 2006). However 

LTP and LTD are providing limited information on 

how the circuit and its synapses are modified by 

natural patterns of activity and faster learning 

process (Caporale & Dan, 2008; Gallistel & Balsam, 

2014), (Gerstner et al, 1997; Masuda & Aihara, 2007) 

as it is suggested here. This is why resonance 

mechanism, as a kind of neural plasticity, may 

present an alternative to explain this missing link. 

 

Topological differences between Spontaneous 

and stimuli driven activity 

Figure 6 and Figure 7 showed topological differences 

between spontaneous/resting and stimuli network 

states. Both conditions present different capacities 

to process information. While stimuli network states 

seem to have more integrated ability, spontaneous 

network states showed more segregation. These 

results are really interesting. It is known that 

spontaneous activity does not mean “no activity”, on 

the contrary, photoreceptors are liberating 

glutamate and some parts of this network keeps 

being activated, however we still found differences. 

These topological differences between spontaneous 

and stimulation activity are not apparently due to 

differences between scotopic and photopic 

spontaneous activities. Both spontaneous states are 

measured and results seem to be the same. It 

suggests that differences are due to external 

stimulus condition. 

One interpretation could be that local correlation in 

spontaneous activity (in this case, local is considered 

some neurons near to others) (Brivanlou et al, 1998; 

Shlens et al, 2008; Trong & Rieke, 2008; Völgyi et al., 

2013) between neighbors is stronger than non-local 

correlation (Mastronarde, 1989; Neuenschwander et 

al, 1999), while in stimulation activity, the stimuli 

induces a non-local correlation (Amthor et al, 2005; 

Simmons et al., 2013) allowing more capacity of 

integrate activation patterns. These results also 

suggest differences for other graph measures like for 

example clustering coefficient (whole network 

scale), motifs (sub-network scale), centrality (nodes 

scale), among others. Future works will clarify the 

impact of these protocols in these measures. 

Additionally, a limitation to take in count is related 

with the definition of adjacency matrix (pairwise 

correlation method). On the one hand, pairwise 

correlation underestimates correlations value 

(Schneidman et al, 2006), it means that real 

correlation values are bigger than values of pairwise 

correlation. If we observe some interaction at this 

level, the correlation values of these interactions will 

increase with other correlation methods of 

inference. On the other hand, we know that 

unsupervised methods are appropriate for inference 

of only networks that are entirely composed of 

inhibitory or activating interactions but not both 

(Maetschke et al , 2014). If we consider, as shown 

above, that AC and inhibitory circuit are not involved 

in OSR protocols, it is possible to solve this 
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limitation. However, different ON/OFF BC ways have 

inhibitory and active synapses and maybe it is not 

possible to avoid these interactions at all; this is why 

more complex inference methods based on maximal 

entropy or others (Gerhard et al, 2011; Wilson & 

Brown, 2005) should be applied to confirm these 

preliminary differences observed. 

 

Degenerate Topological States and Robustness 

One important observation in Figure 7 is the 

degenerate topological and robustness ability: it  

may be related with keeping a stable or meta-stable 

network (Bullmore & Sporns, 2009). Results from 

Figure 7 and 8 showed different numbers of modules 

across cycles of stimulation while keeping relatively 

constant some topological measures. These results 

allow inferring robustness, degenerated topological 

states and coherent global response cycle to cycle. 

An Interesting preliminary conclusion is that retinal 

network might maintain informative properties 

thanks to the ability of generating degenerate 

topological states. 

In other words, changes induced with Habituation, in 

order of minutes, are absorbed for correlation 

activity of the population, in a context of Graph 

theory. Thank to that, the network might keep 

coherent and robustness of network responses for 

external stimuli. Independently of which is the 

mechanism to explain these changes induced, retinal 

networks apparently maintains topological measures 

as a capacity for integrating and segregating activity 

patterns. It is an interesting conclusion, because, if 

this is correct, the retina is showing the ability to 

compensate individual changes in the circuit due to 

fatigue or plasticity across time, maintaining a 

coherent response. Some implications could be that 

in non-healthy or non-normal network this ability 

could be lost. This conclusion may have important 

implications on different dynamics among neural 

networks. 

 

Conclusion 
Finally, these preliminary results have shown some 

interesting behavior of retinal networks when they 

are stimulated with the same pattern across time 

and how these patterns can induce changes. One 

suggestion for these changes is a short reversible 

fatigue network process, intrinsic to retinal 

variability. Another suggestion opens the door to 

search for a new oscillatory learning mechanism  

(Izhikevich, 1999, 2001) (Masquelier et al, 2009) 

(Richardson et al, 2003; Tchumatchenko & Clopath, 

2014)  induced by oscillatory patterns. 

Independently of that, in both cases, the retinal 

network has shown robustness on topological 

measures, and degenerates topological states ability 

across Habituation protocol. 

Some perspective of this work would be complete 

characterization of Spontaneous versus Stimulation 

patterns with other topological measures, Graph 

theory and more complex methods of inference. 

Another experimental line is to relate the ability of 

degenerate topological state or robustness of 

networks, with healthy networks. In this context, the 

same protocol applied to non-normal network will 

predict a loss of robustness (i.e. changes in the 

Variation of information). Finally, these results 

should be explained by some of the existing 

computational models for OSR, or it would be 

necessary to generate new models with oscillatory 

plasticity and/or resonator properties, among 

others.  

 

Acknowledgment 
The author appreciates valuable comments and 

reviews from Maria Jose Escobar, Patricio Orio and 

Adrian Palacios. The project was carried out thanks 

to Centro Interdisciplinario de Neurociencia de 

Valparaiso, Iniciativa Cientifica Milenio, Universidad 

de Valparaiso, Instituto de Sistemas Complejos, 

Valparaiso and CONICYT. 

 

References 
Aertsen, A., & Gerstein, G. (1985). Evaluation of neuronal 
connectivity: sensitivity of cross-correlation. Brain 
Research, 340(2), 341–354.  
Ala-laurila, P., Greschner, M., Chichilnisky, E. J., & Rieke, F. 
(2011). Cone photoreceptor contributions to noise and 
correlations in the retinal output. Nature, 14(10), 1309–
1316.  
Amthor, F. R., Tootle, J. S., & Grzywacz, N. M. (2005). 
Stimulus-dependent correlated firing in directionally 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2017. ; https://doi.org/10.1101/153742doi: bioRxiv preprint 

https://doi.org/10.1101/153742
http://creativecommons.org/licenses/by/4.0/


selective retinal ganglion cells. Visual Neuroscience, 22, 
769–787. 
Berry, M. J., Warland, D. K., & Meister, M. (1997). The 
structure and precision of retinal spike trains. Proceedings 
of the National Academy of Sciences, 94(10), 5411–5416.  
Breakspear, M., Jirsa, V., & Deco, G. (2010). Computational 
models of the brain: from structure to function. 
NeuroImage, 52(3), 727–30.  
Brivanlou, I. H., Warland, D. K., & Meister, M. (1998). 
Mechanisms of Concerted Firing among Retinal Ganglion 
Cells. Neuron, 20, 527–539. 
Brown, E. N., Kass, R. E., & Mitra, P. P. (2004). Multiple 
neural spike train data analysis: state-of-the-art and future 
challenges. Nature Neuroscience, 7(5), 456–61. 
Bullmore, E., & Sporns, O. (2009). Complex brain networks: 
graph theoretical analysis of structural and functional 
systems. Nature Reviews. Neuroscience, 10(3), 186–98. 
Bullock, T. H., Karamürsel, S., Achimowicz, J. Z., McClune, 
M. C., & Başar-Eroglu, C. (1994). Dynamic properties of 
human visual evoked and omitted stimulus potentials. 
Electroencephalography and Clinical Neurophysiology, 
91(1), 42–53.  
Caporale, N., & Dan, Y. (2008). Spike timing-dependent 
plasticity: a Hebbian learning rule. Annual Review of 
Neuroscience, 31(February), 25–46.  
Carcieri, S. M., Jacobs, A. L., & Nirenberg, S. (2003). 
Classification of retinal ganglion cells: a statistical 
approach. Journal of Neurophysiology, 90(3), 1704–13.  
Carpenter, J., & Bithell, J. (2000). Bootstrap confidence 
intervals : when , which , what ? A practical guide for 
medical statisticians. Statistic in Medicine, 19(August 
1999), 1141–1164. 
Cessac, B., Paugam-Moisy, H., & Viéville, T. (2010). 
Overview of facts and issues about neural coding by 
spikes. Journal of Physiology, Paris, 104(1–2), 5–18.  
Chavez, A. E., Bozinovic, F., Peichl, L., & Palacios, A. G. 
(2003). Retinal Spectral Sensitivity, Fur Coloration, and 
Urine Reflectance in the Genus Octodon (Rodentia): 
Implications for Visual Ecology. Investigative Opthalmology 
& Visual Science, 44(5), 2290. 
Chichilnisky, E. J. (2001). A simple white noise analysis of 
neuronal light. Network: Computation in Neural System, 
12, 199–213. 
Diciccio, T. J., & Efron, B. (1996). Bootstrap Confidence 
Intervals. Statistical Science, 11(3), 189–228. 
Farrow, K., Teixeira, M., Szikra, T., Viney, T. J., Balint, K., 
Yonehara, K., & Roska, B. (2013). Ambient illumination 
toggles a neuronal circuit switch in the retina and visual 
perception at cone threshold. Neuron, 78(2), 325–38.  
Gallistel, C. R., & Balsam, P. D. (2014). Time to rethink the 
neural mechanisms of learning and memory. Neurobiology 
of Learning and Memory, 108C, 136– 
Gao, J., Schwartz, G., Berry II, M. J., & Holmes, P. (2009). 
An oscillatory circuit underlying the detection of 
disruptions in temporally-periodic patterns. Network, 
20(2), 106–135.  
Gerhard, F., Pipa, G., Lima, B., Neuenschwander, S., & 
Gerstner, W. (2011). Extraction of Network Topology From 

Multi-Electrode Recordings: Is there a Small-World Effect? 
Frontiers in Computational Neuroscience, 5(February), 4.  
Gerstner, W., Kreiter, A. K., Markram, H., & Herz, A. V. 
(1997). Neural codes: firing rates and beyond. Proceedings 
of the National Academy of Sciences of the United States 
of America, 94(24), 12740–1.  
Gerstner, W., Sprekeler, H., & Deco, G. (2012). Theory and 
simulation in neuroscience. Science (New York, N.Y.), 
338(6103), 60–5.  
Gollisch, T., & Meister, M. (2008). Rapid neural coding in 
the retina with relative spike latencies. Science (New York, 
N.Y.), 319(5866), 1108–11.  
Grün, S. (2009). Data-driven significance estimation for 
precise spike correlation. Journal of Neurophysiology, 
101(3), 1126–40.  
Grün, S., Borgelt, C., Gerstein, G., Louis, S., & Diesmann, M. 
(2010). Selecting appropriate surrogate methods for spike 
correlation analysis. BMC Neuroscience, 11(Suppl 1), O15. 
Harrison, M. T., & Geman, S. (2009). A Rate and History-
Preserving Resampling Algorithm for Neural Spike Trains. 
Neural Computation, 21(5), 1244–1258.  
Hentschke, H., & Stüttgen, M. C. (2011). Computation of 
measures of effect size for neuroscience data sets. The 
European Journal of Neuroscience, 34(12), 1887–94. 
Izhikevich, E. M. (1999). Weakly Pulse-Coupled Oscillators , 
FM Interactions , Associative Memory. IEEE Transactions 
on Neural Networks, 10(3), 508–526. 
Izhikevich, E. M. (2001). Resonate-and-fire neurons. Neural 
Networks, 14(6–7), 883–894. 
Jacobs, G., Calderone, J., Fenwick, J., & Williams, G. (2003). 
Visual adaptations in a diurnal rodent, Octodon degus. 
Journal of Comparative Physiology, 189, 347–361.  
Karrer, B., Levina, E., & Newman, M. E. J. (2008). 
Robustness of community structure in networks. Physical 
Review E, 77(4), 46119.  
Klinke, R., Fruhstorfer, H., & Finkenzeller, P. (1968). Evoked 
responses as a function of external and stored 
information. Electroencephalography and Clinical 
Neurophysiology, 25(2), 119–22.  
Kolb, H. (2003). How the Retina Works. American Scientist, 
91(1), 28.  
Latora, Vito and Marchiori, M. (2001). Efficient Behavior of 
Small-World Networks. Phys. Rev. Lett., 87(19), 198701.  
Lewicki, M. S. (1998). A review of methods for spike 
sorting: the detection and classification of neural action 
potentials. Network, 9(4), R53–R78.  
Maetschke, S. R., Madhamshettiwar, P. B., Davis, M. J., & 
Ragan, M. A. (2014). Supervised, semi-supervised and 
unsupervised inference of gene regulatory networks. 
Briefings in Bioinformatics, 15(2), 195–211.  
Masland, R. (2012). The neuronal organization of the 
retina. Neuron, 76(2), 266–280.  
Masquelier, T., Hugues, E., Deco, G., & Thorpe, S. J. (2009). 
Oscillations, phase-of-firing coding, and spike timing-
dependent plasticity: an efficient learning scheme. The 
Journal of Neuroscience, 29(43), 13484–93.  
Mastronarde, D. (1989). Correlated firing of retinal 
ganglion cells. Trends in Neurosciences, 12(2), 75–80. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2017. ; https://doi.org/10.1101/153742doi: bioRxiv preprint 

https://doi.org/10.1101/153742
http://creativecommons.org/licenses/by/4.0/


Masuda, N., & Aihara, K. (2007). Dual coding hypotheses 
for neural information representation. Mathematical 
Biosciences, 207(2), 312–21.  
McAnany, J., & Alexander, K. (2009). Is there an omitted 
stimulus response in the human cone flicker 
electroretinogram? Visual Neuroscience, 26(2), 189–194.  
Meilă, M. (2007). Comparing clusterings—an information 
based distance. Journal of Multivariate Analysis, 98(5), 
873–895.  
Meister, M. (1996). Multineuronal codes in retinal 
signaling. Proceedings of the National Academy of …, 
93(January), 609–614.  
Multichannel Systems. (2013a). MEA Application Note : 
Retina Recordings ( Micro Electroretinograms ) from 
Rattus norvegicus. 
Multichannel Systems. (2013b). Microelectrode Array ( 
MEA ). 
Neuenschwander, S., Castelo-branco, M., & Singer, W. 
(1999). Synchronous oscillations in the cat retina. Vision 
Research, 39, 2485–2497. 
Newman, M. E. J. (2004). Fast algorithm for detecting 
community structure in networks. Phys. Rev. E, 69(6), 
66133.  
Nicolelis, M. A. L. (2008). Methods for Neural Ensemble 
Recordings. (M. A. L. Nicolelis, Ed.) (Second). CRC 
Press/Taylor & Francis.  
Nirenberg, S., Carcieri, S. M., Jacobs, A. L., & Latham, P. E. 
(2001). Retinal ganglion cells act largely as independent 
encoders. Nature, 411(June), 698–701.  
Okatan, M., Wilson, M. A., & Brown, E. N. (2005). 
Analyzing Functional Connectivity Using a Network. Neural 
Computation, 17, 1927–1961.  
Palacios, A. G., & Lee, T. M. (2013). Husbandry and 
Breeding in the Octodon degu (Molina 1782). Cold Spring 
Harbor Protocols, 2013(4).  
Peichl, L. (2005). Diversity of mammalian photoreceptor 
properties: adaptations to habitat and lifestyle? The 
Anatomical Record. Part A, Discoveries in Molecular, 
Cellular, and Evolutionary Biology, 287(1), 1001–12.  
Pipa, G., Wheeler, D. W., Singer, W., & Nikolid, D. (2008). 
NeuroXidence: reliable and efficient analysis of an excess 
or deficiency of joint-spike events. Journal of 
Computational Neuroscience, 25(1), 64–88.  
Pizarro M, Araya, J, Miguel, C, Herzog, R, Ravello, C, 
Escobar, M, Palacios, A. (2014). Gap junctions involved in 
spike activity in ganglion cells. In X Reunión Anual Sociedad 
Chilena de Neurociencia (p. 48). Valdivia, Chile.  
Quian Quiroga, R., & Panzeri, S. (2009). Extracting 
information from neuronal populations: information 
theory and decoding approaches. Nature Reviews. 
Neuroscience, 10(3), 173–85.  
Richardson, M. J. E., Brunel, N., & Hakim, V. (2003). From 
subthreshold to firing-rate resonance. Journal of 
Neurophysiology, 89(5), 2538–54.  
Rogers, R. L., Papanicolaou,  a C., Baumann, S. B., & 
Eisenberg, H. M. (1992). Late magnetic fields and positive 
evoked potentials following infrequent and unpredictable 
omissions of visual stimuli. Electroencephalography and 

Clinical Neurophysiology, 83(2), 146–52.  
Rubinov, M., & Sporns, O. (2010). Complex network 
measures of brain connectivity: uses and interpretations. 
NeuroImage, 52(3), 1059–69.  
Rubinov, M., & Sporns, O. (2011). Weight-conserving 
characterization of complex functional brain networks. 
NeuroImage, 56(4), 2068–79.  
Schneidman, E., Berry, M. J., Segev, R., & Bialek, W. (2006). 
Weak pairwise correlations imply strongly correlated 
network states in a neural population. Nature, 440(7087), 
1007–12.  
Schwartz, G., & Berry II, M. (2008). Sophisticated temporal 
pattern recognition in retinal ganglion cells. Journal of 
Neurophysiology, 99(February), 1787–1798.  
Schwartz, G., Harris, R., Shrom, D., & Berry, M. (2007). 
Detection and prediction of periodic patterns by the 
retina. Nature Neuroscience, 10(5), 552–554.  
Segev, R., Goodhouse, J., Puchalla, J., & Berry, M. J. (2004). 
Recording spikes from a large fraction of the ganglion cells 
in a retinal patch. Nature Neuroscience, 7(10), 1154–61.  
Shlens, J., Rieke, F., & Chichilnisky, E. J. (2008). 
Synchronized firing in the retina. Current Opinion in 
Neurobiology, 18, 396–402.  
Simmons, K. D., Prentice, J. S., Tkacik, G., Homann, J., Yee, 
H. K., Palmer, S. E., … Balasubramanian, V. (2013). 
Transformation of Stimulus Correlations by the Retina. 
PloS One, 9(12).  
Sterling, P. (2013). Some principles of retinal design: the 
Proctor lecture. Investigative Ophthalmology & Visual 
Science, 54(3), 2267–75.  
Sutton, S., Tueting, P., Zubin, J., & John, E. (1967). 
Information delivery and the sensory evoked potential. 
Science, 155(March), 1436–1439.  
Tchumatchenko, T., & Clopath, C. (2014). Oscillations 
emerging from noise-driven steady state in networks with 
electrical synapses and subthreshold resonance. Nature 
Communications, 5, 5512.  
Tiitinen, H., Sinkkonen, J., May, P., & Näätänen, R. (1994). 
The auditory transient 40-Hz response is insensitive to 
changes in stimulus features. Neuroreport, 6(1), 190–192. 
Tikidji-Hamburyan, A., Reinhard, K., Seitter, H., 
Hovhannisyan, A., Procyk, C. a, Allen, A. E., … Münch, T. a. 
(2015). Retinal output changes qualitatively with every 
change in ambient illuminance. Nature Neuroscience, 
18(1), 66–74.  
Trong, P. K., & Rieke, F. (2008). Origin of correlated activity 
between parasol retinal ganglion cells. Nature 
Neuroscience, 11(11), 1343–1351.  
Vincent, K., Tauskela, J. S., Mealing, G. a, & Thivierge, J.-P. 
(2013). Altered network communication following a 
neuroprotective drug treatment. PloS One, 8(1), e54478.  
Völgyi, B., Pan, F., Paul, D. L., Wang, J. T., Huberman, A. D., 
& Bloomfield, S. a. (2013). Gap junctions are essential for 
generating the correlated spike activity of neighboring 
retinal ganglion cells. PloS One, 8(7), e69426.  
Werner, B., Cook, P. B., & Passaglia, C. L. (2008). Complex 
temporal response patterns with a simple retinal circuit. 
Journal of Neurophysiology, 100(June 2008), 1087–1097.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2017. ; https://doi.org/10.1101/153742doi: bioRxiv preprint 

https://doi.org/10.1101/153742
http://creativecommons.org/licenses/by/4.0/


 

Supplementary Information
Figure S1. Classification of units by statistical classification criteria and STA analysis. We classified each unit in 

response at Pulses (Ps) of ON-OFF flashes before Habituation Protocol: ON, OFF or ON-OFF using the PSTH 

responses over 50 trials (see methods). ON corresponds to an onset response (between 1 ms to 1000 ms and firing 

rate activity>3 s.d. of the total activity); OFF corresponds to the offset response (between 1001 ms to 2000 ms and 

firing rate activity>3 s.d. of the total activity) and ON-OFF has both responses. For classification from the temporal 

filter (Tf) we used k-means to find the optimal number of clusters. In this case, we decided use just four: OFF, OFF 

slow, ON Biphasic, Biphasic. The final classification was merging both previous classifications. The final name is: 

First, the classification by the response at pulses, and second, the classification by temporal filter. a) Example of 

one retinal network with 72 units and their spatial filters (Receptive field). b) Temporal filter for each classification 

for 188 units from three different pieces of retinas with Scotopic protocol. 

 

Measure Protocol Mean Initial 95% CI Initial Mean Final 95% CI Final 

Max Peak OFF Scotopic 8.82 [8.32, 9.32] 8.83 [8.28, 9.37] 
Max Peak ON Scotopic 6.8 [6.2, 7.36] 7.39 [6.85, 7.94] 
Latency Peak  OFF Scotopic 77.62 [74.03, 81.22] 73.26 [70.01, 76.52] 
Latency Peak  ON Scotopic 62.27 [58.85, 65.7] 68.92 [65.42, 72.42] 
Max Peak OFF Photopic 5.52 [4.8, 6.23] 5.45 [4.64, 6.26] 
Max Peak ON Photopic 8.65 [7.95, 9.36] 8 [7.21, 8.78] 
Latency Peak  OFF Photopic 71.79 [60.16,83.42] 69.13 [57.32, 80.94] 
Latency Peak  ON Photopic 88.52 [80.33,96.71] 95.81 [90.77, 100.86] 
Max Peak OFF Scotopic 10 ms 9.98 [8.75, 11.03] 9.61 [8.52, 10.70] 
Max Peak ON Scotopic 10 ms 7.08 [6.07, 8.88] 8.38 [7.29, 9.47] 
Latency Peak  OFF Scotopic 10 ms 107.89 [98.83, 116.96] 103.25 [93.73, 11.03] 
Latency Peak  ON Scotopic 10 ms 68.17 [60.15, 76.20] 75.89 [67.78, 112.77] 
Max Peak OFF Scotopic Disorder 9.61 [8.52, 10.70] 9.51 [8.50, 10.51] 
Max Peak ON Scotopic Disorder 8.38 [7.29, 9.47] 9.12 [7.82, 10.42] 
Latency Peak  OFF Scotopic Disorder 103.25 [93.73, 112.77] 99.69 [90.28, 109.09] 
Latency Peak  ON Scotopic Disorder 75.89 [67.78, 84] 71.43 [65.19, 77.67] 

Table 1. Confidence Interval and mean for different experiments before and after Habituation Protocol.
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