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Abstract 

Colorectal cancer (CRC) is a heterogeneous disease and recent advances in 

subtype classification have successfully stratified the disease using molecular 

profiling. The contribution of bacterial species to CRC development is increasingly 

acknowledged, and here, we sought to analyse CRC microbiomes and relate them to 

tumour consensus molecular subtypes (CMS), in order to better understand the 

relationship between bacterial species and the molecular mechanisms associated 

with CRC subtypes. We classified 34 tumours into CRC subtypes using RNA-

sequencing derived gene expression and determined relative abundances of 

bacterial taxonomic groups using 16S rRNA amplicon metabarcoding. 16S rRNA 

analysis showed enrichment of Fusobacteria and Bacteroidetes, and decreased 

levels of Firmicutes and Proteobacteria in CMS1. A more detailed analysis of 

bacterial taxa using non-human RNA-sequencing reads uncovered distinct bacterial 

communities associated with each molecular subtype. The most highly enriched 

species associated with CMS1 included Fusobacterium hwasookii and 

Porphyromonas gingivalis. CMS2 was enriched for Selenomas and Prevotella 

species, while CMS3 had few significant associations. Targeted quantitative PCR 

validated these findings and also showed an enrichment of Fusobacterium 

nucleatum, Parvimonas micra and Peptostreptococcus stomatis in CMS1. In this 

study, we have successfully associated individual bacterial species to CRC subtypes 

for the first time.   

 

Key words: Microbiome, colorectal cancer, molecular classification, oral pathogens, 

CMS1 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 22, 2017. ; https://doi.org/10.1101/153809doi: bioRxiv preprint 

https://doi.org/10.1101/153809


3 

 

Introduction 

Colorectal cancer (CRC) is one of the most common cancers, as well as one of the 

cancers with the highest mortality worldwide[1]. CRC is a highly heterogeneous 

disease, with varying clinical outcomes, response to therapy, and morphological 

features. Therefore, classification into clinically useful and reproducible subtypes has 

been a goal within the research community for many years. Studies of molecular 

features, such as BRAF, KRAS and TP53 mutation status, microsatellite instability 

(MSI), CpG island methylator phenotype (CIMP), somatic copy number alterations 

(SCNA), and activation of various molecular pathways such as WNT and MYC, have 

been used with some success to stratify CRC into subgroups[2-5]. The advent of 

large-scale sequencing technologies has recently facilitated the development of a 

Consensus Molecular Subtyping (CMS) system for CRC based solely on tumour 

gene expression[6]. The strong association of these CMS subtypes with distinct 

molecular features and pathway activation provides an indication of potential 

mechanisms underlying the disease. 

Most CRCs are sporadic and follow a pattern one would expect from a yet 

unidentified environmental source. The human colon plays host to a vast and 

complex microbial community of < 1012 microorganisms[7], and a growing body of 

evidence points to a role for gut microbial dysbiosis in the development of CRC[8]. 

Comparison of faecal microbiomes from CRC patients and healthy controls[9-12] has 

identified particular bacterial species that are enriched in CRC, and analysis of 

tumour, adenoma, and matched normal tissue from the same patients found that 

changes in local communities of potentially interacting bacterial taxa are associated 

with different disease states[12, 13]. Correlations between particular cancer 

mutations and changes in microbial communities, and transcriptional remodelling 
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associated with specific bacteria have recently been described in CRC[14, 15]. 

However, a global investigation of the association of tumour gene expression with 

tumour metagenomics has yet to be described. Identification of specific species or 

bacterial communities associated with CRC subtypes could facilitate improved 

screening and diagnostics, and understanding the underlying pathogenic 

mechanisms will pave the way for the development of targeted interventions, such as 

microbiome modulation and vaccines for CRC prevention. 

Here, we looked at gene expression and related CMS subtypes of a cohort of 34 

CRC patients using data derived through RNA-sequencing, and use both bacterial 

16S rRNA gene analysis and interrogation of non-human RNA sequences from 

tumour tissue to establish metagenomic profiles for each tumour sample. The 

combination of tumour transcriptomics and metagenomics has allowed us to identify 

bacterial species with potential roles in the mechanisms underlying particular 

molecular subtypes of CRC.  
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Materials and Methods 

Patient cohort and samples 

Colorectal cancer tumour samples were collected from 34 patients during surgical 

resection of previously untreated tumours. Samples were collected with patients’ 

written, informed consent, and this study was carried out with approval from the 

University of Otago Human Ethics Committee (ethics approval number: H16/037). 

Twenty of the patients were female, and patient ages at the time of surgery ranged 

from 44–88 years (mean age, 74 years, see Table 1). One tumour sample was from 

the rectum, 21 tumours were from the right side of the colon, and 12 from the left 

side. One sample was of a large colorectal adenoma, not an adenocarcinoma. 

Histologically, four tumours were described as well differentiated, 20 were 

moderately and nine were poorly differentiated. Two tumours showed signet-ring 

histology and three were mucinous type. Postoperative staging showed that five 

tumours were stage 1, 14 and 13 tumours were stage 2 and 3, respectively, while 

only one tumour was stage 4. Patient characteristics are given in more detail in 

Table 1.  

Nucleic acid extraction 

Samples were immediately frozen in liquid nitrogen and initially stored at -80°C. 

They were subsequently transferred to RNAlater ICE™ (Qiagen), and stored at -

20°C, prior to nucleic acid extraction. RNA was extracted from < 20 mg of tissue 

using RNEasy Plus Mini Kit (Qiagen), including DNAse treatment, following tissue 

disruption using a Retsch Mixer Mill. DNA was extracted using DNeasy Blood and 

Tissue Mini Kit (Qiagen), also following tissue disruption. DNA extraction included 

overnight incubation with proteinase K, and treatment with RNAse A. Purified nucleic 
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acids were quantified using the NanoDrop 2000c spectrophotometer (Thermo 

Scientific, Asheville, NC, USA), and stored at -80°C.  Nucleic acids were extracted 

from all tumour samples in a single batch by one operator, to avoid inter-batch 

variation. 

RNA sequencing 

Sample preparation, including library creation and ribosomal RNA depletion (with 

RiboZero Gold) was carried out using Illumina TruSeq V2 reagents. RNA-

sequencing was carried out using the Illumina HiSeq 2500 V4 platform to produce 

125bp paired end reads. The libraries were sequenced on two lanes of the HiSeq 

instrument. To avoid technical biases caused by sequencing the libraries on different 

lanes, each sample library was split equally to the two lanes. Sequences from the 

two lanes were merged for each sample during the data processing phase. 

Quality control and gene expression quantification 

In order to calculate a gene expression profile for each sequenced sample and later 

on to classify the samples into CMS subtypes, the raw sequenced reads were 

processed in the following way: First, low quality segments of reads as well as 

remnants of adapter sequences were removed and very short reads were discarded. 

Second, the reads passing the previous step were mapped to a reference human 

genome sequence and a read count for every annotated gene was calculated for 

each sample. The read counts were later transformed to gene expression profile 

expressed by a measure 'transcripts-per-million' (TPM). Last, the CMS classifier[6] 

was used to assign a molecular subtype of the disease to each sample based on the 

gene expression profiles. 
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Adapter sequences were removed using utility fastq-mcf (v1.1.2.537) from EA 

Utils[16]. Next, SolexaQA++ (v3.1.6)[17] was used to trim low-quality segments of 

the reads and only sufficiently long reads were kept for further analysis. At the first 

step SolexaQA++ dynamictrim stored for each read only the longest continuous 

segment, such that the probability of a base being called in error was less than 0.01. 

Afterwards, segments shorter than 50bp were discarded using SolexaQA++ 

lengthsort. 

 

The human genome reference sequence GRCh38 and HAVANA annotation were 

used as the reference genome to map the cleaned reads to using the STAR (v2.5.2b) 

mapping tool[18]. After the mapping stage, reads from two sequencing lanes were 

merged together using samtools merge (v1.3.1)[19]. Later, a read count table was 

created using htseq-count (v0.6.1p1)[20] for each sample and the raw read counts 

were transformed to TPM values using R and Bioconductor package DESeq2 

(v1.10.1)[21]. 

CMS classification  

The CRC Subtyping Consortium created the consensus molecular subtype (CMS) 

classification by utilizing six previously established classification systems. Patients' 

gene expression profiles (n = 3962) were collected from various public and 

proprietary datasets. The profiles were classified due to each of the previously 

known systems and a graph of relationships among subtypes of the various 

classification systems was used in a Markov Cluster Algorithm to identify a number 

of consensus subtypes. A smaller set of core consensus patient data (n = 3104) and 

their gene expression profiles were used to train the Random Forest based CMS 

classifier. 
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Besides the random forest classifier, the authors made a Single Sample Predictor 

(SSP) method available in the CMS classifier (v1.0.0, 

https://www.synapse.org/#!Synapse:syn4961785) R package, and this method was 

used to classify our samples into molecular subtypes of colorectal cancer. The SPP 

method is less sensitive to differences in normalisation techniques used during the 

data processing and in terms of its performance comparable to the random forest 

classifier. 

 

In order to classify a sample to one of the four subtypes, the SSP method calculates 

similarity of the sample to a centroid of each subtype. If the sample shows 

acceptable level of similarity to exactly one of the centroids, the subtype 

corresponding to the centroid is assigned to the sample undergoing the classification. 

Similarity between two gene expression profiles is calculated as Pearson's 

correlation of log2 scaled values from the profiles. A sample is considered to be 

similar to a centroid if the correlation is at least 0.15. In order for a sample to be 

classified, a correlation to the most similar centroid has to be higher by 0.06 than a 

correlation to the second most similar centroid. These values are set by default in the 

SSP method. Centroid genome expression profiles are hard-coded in the method as 

information from the random forest classifier and the training data were used to 

calculate the values. 

Metabarcoding by 16S rRNA  

Libraries containing16S rRNA were prepared with 20 ng of DNA for each sample 

using primer pairs flanking the V3 and V4 regions of the 16S rRNA gene (16SF_V3: 

5'-TATGGTAATTGGCCTACGGGAGGCAGCAG-3' and 16SR_V4: 5'-
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AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3'), and Illumina sequencing 

adaptors and barcodes added using limited cycle PCR (40 cycles). Amplicon 

sequencing was carried out using the Illumina MiSeq platform, and paired end reads 

of length 250bp were generated. 

 

During data processing, short overlapping forward and reverse reads coming from 

the same fragment were joined together by FLASh (v1.2.11)[22] to form overlapped 

sequences of the V3-V4 16S region. After joining, the resulting fragments were 

trimmed that the probability of a base being called in error was less than 0.01, and 

minimal length of a fragment was at least 50bp. This step was done by SolexaQA++ 

(v3.1.5). Next, chimeric sequences were removed by the QIIME (v1.9)[23] scripts  

identify_chimeric_seqs.py and filter_fasta.py. A collection of sequences suitable for 

further QIIME analysis was thus obtained. Later on, the script pick_de_novo_otus.py 

was used to identify de novo operational taxonomic units (OTUs) and to link the 

OTUs to the available bacterial taxonomy. Taxa were then summarized for various 

metadata classes (e.g. CMS, tumour location, etc.) using 

summarize_taxa_through_plots.py. 

Taxonomic classification of RNA-sequencing reads using Kraken 

All NCBI Refseq bacterial genomes with "Complete Genomes"- or "Chromosome"-

level genomes were downloaded from NCBI FTP site 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/) based on information in the 

"assembly_summary.txt" file as of 19th January 2017. A list of the genomes can be 

accessed in Supplementary Table S1. Additional genomes known to play role in 

CRC were added disregarding their genome status (see Supplementary Table S2). 

Using the genome fasta-files, a new Kraken database 
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(https://ccb.jhu.edu/software/kraken/) was created using "kraken-build --build" with 

default parameters[24]. The resulting Kraken database had a size of ~131GB. 

All RNA-seq reads that were unable to be mapped to the human reference genome 

(GRCh38) were extracted per sample and were used as input to Kraken (v0.10.6) 

using our custom Kraken database for taxonomic classification. This resulted in 

bacterial abundances per CRC sample based on unmapped RNA-seq reads. We 

visualized bacterial abundances per CRC subtype, by combining all reads of all 

samples of a CRC subtype and those reads were input to Krona (v2.7). Interactive 

plots are available at https://crc.sschmeier.com. 

 

Differential bacterial abundances in CMS subtypes 

To identify bacterial strains that are enriched or depleted in one CMS subtype 

compared to all other subtypes, we employed a strategy similar to common 

differential expression analyses. We term this approach “differentially expressed 

taxa”. Using edgeR Bioconductor package (v3.14.0) [25],  we identified bacterial taxa 

whose abundances are significantly different among CMS subtypes.  

In this analysis, for each CRC sample we used the assigned CMS subtype together 

with a list of bacterial taxa identified by Kraken and corresponding raw read counts 

as input data. We treated all samples of a certain CMS subtype as replicates 

belonging to the subtype. We ran differential analysis of each CMS subtype against 

all the other classified samples (more information can be found at 

https://gitlab.com/s-schmeier/crc-study-2017). This resulted in bacterial taxa that are 

enriched (or depleted) in a subtype as compared to all other subtypes. We 

performed this analysis on the species-level taxa for all CMS subtypes. 

Quantitative PCR 
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Levels of the Porphyromonas gingivalis, Bacillus coagulans, Selenomas sp., F. 

nucleatum, P. stomatis, P. micra and the reference gene, prostaglandin transporter 

(PGT)[26] were simultaneously measured from genomic DNA extracted from CRC 

tumour samples, using qPCR on a LightCycler®480 thermocycler (Roche 

Diagnostics, Indianapolis, IN, USA), as previously described[27]. Primers for each 

gene are given in Supplementary Table S3. Genomic DNA from purified bacterial 

samples were used as positive controls (DSMZ, Germany). The levels of each of the 

bacterial species in each DNA sample were calculated as a relative quantification 

(RQ). Calculations were made using 2-ΔCt, where ΔCt is the difference in Ct values 

between the gene target of interest and reference gene for a given sample. 

Differential gene expression analysis 

We used count tables from the RNA sequencing mapping and counting procedure 

(see above), in addition to the CMS subtype information produced through the CMS 

classification step, and ran a differential expression analysis for all genes. We used 

each sample within a given subtype as a replicate of that subtype, and ran edgeR 

(v3.14.0) to compare each subtype against all other samples not in the CMS subtype, 

e.g. samples in CMS1 against all other classified samples (samples in CMS2 plus 

CMS3). We extracted genes that are up- or down-regulated, using a Benjamini and 

Hochberg false-discovery rate (FDR)[28] adjusted P-value (< 0.1), and a log2 fold-

change greater or smaller than zero (more information can be found at 

https://gitlab.com/s-schmeier/crc-study-2017). 

Gene-set enrichment analysis 

We used gene-sets per CMS subtype, and the type of expression (i.e. up- or down-

regulation) as input, and calculated a P-value for enrichment of the gene-set in 
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biological categories, using Fisher's exact test for count data (“fisher.test” method in 

R). All P-values were adjusted for multiple testing using the false-discovery 

adjustment method from Benjamini & Hochberg, using R-method “p.adjust” (more 

information can be found at https://gitlab.com/s-schmeier/crc-study-2017). The 

biological categories and corresponding gene-sets used in the analysis were 

extracted from MSigDB[29] (version 5.2). We sub-selected the following categories 

for the analysis: KEGG, REACTOME, BIOCARTA, PID, HALLMARK GENES, and 

Gene Ontology (GO) biological processes. The background set of genes for each 

gene-set enrichment analysis (GSEA) test was all genes associated with any of the 

above categories.  
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Results 

Classification of CRC samples into consensus molecular subtypes 

Reads generated by RNA-sequencing were quality checked, mapped to the human 

reference genome, and gene expression was quantified based on the number of 

reads mapped to particular transcript models. The RNA from one tumour sample 

was too degraded to carry out RNA-sequencing, leaving 33 samples. Gene 

expression profiles from each patient were used as input data to the publicly 

available CMS subtype classifier[6] (see Materials and Methods). The CMS subtype 

for each sample based on the classification was recorded. Five CRC samples were 

designated as unclassified. The proportion of CRC samples in each subgroup is 

shown in Table 2, compared with that seen in the CMS classification by the CRC 

subtyping consortium[6]. 

 

Biological features of CMS subtypes  

 

In order to validate the CMS classification approach, we identified differentially 

expressed genes (DEGs) for groups of samples belonging to each subtype (CMS) by 

comparing the samples of a subtype against all other samples not belonging to that 

subtype. We did this for all subtypes in which we classified our samples (CMS1, 

CMS2, and CMS3). We split the resulting DEG into up- and down-regulated genes 

and ran gene-set enrichment analysis (GSEA) with each individual set of genes to 

identify categories in which these genes are enriched (see Materials and Methods). 

Although we were not able to exactly reproduce the methodology used in the 

publication describing the original classification[6], the enriched biological categories 
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per CRC subtype in our data closely follow the originally identified categories, 

confirming that our approach for classifying the CRC samples was successful (see 

Supplementary Table S4). 

 

Strikingly, most highly ranked categories for up-regulated DEGs of CMS1 show clear 

immunological signatures, e.g. immune response, interferon-γ response, 

inflammatory response, TNFα signalling through NFκβ and cytokine-mediated 

signalling (see Supplementary Table S4). Downregulated DEGs in CMS1 are 

involved in pathways associated with digestion, metabolism and the negative 

regulation of morphogenesis. 

 

Up-regulated DEGs of CMS2 show significant enrichment in cell-cycle signatures, 

e.g. DNA damage checkpoint, DNA replication and synthesis and cell cycle 

regulation. DEGs associated with Myc signalling were also enriched, although 

statistical significance was not reached. However, no enrichment of Wnt-associated 

signalling was found in CMS2 in our cohort. Interestingly, the down-regulated DEG in 

CMS2 show a greater number of significantly enriched categories, especially those 

associated with immunological signatures, which agrees with the observation made 

in the study by Guinney et al[6]. 

 

GSEA of our designated CMS3 samples showed many highly significant categories 

associated with metabolism, e.g. lipid and steroid metabolism, amongst others. 

Interestingly, we found that many down-regulated DEGs are enriched in cell-cycle 

related categories, and those involved in DNA replication, synthesis and damage 

checkpoints.  
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Despite differences in the methodology of the analysis, as well as in the biological 

categories used, overall, we recovered many similar biological signatures through 

GSEA of our DEG groups per subtype, suggesting that the originally proposed 

classification system is appropriate, and our analysis produced comparable results. 

 

Insights into 16S rRNA metabarcoding data 
 

Metabarcoding analysis of microbial communities localized on tumour tissue 

samples based on the V3-V4 hypervariable region of the 16S rRNA gene was 

carried out using QIIME. Representative sequences were identified for each 

operational taxonomic unit (OTU), and these sequences were used to assign 

taxonomy to each OTU using the Greengenes reference OTU database. Relative 

abundances of taxonomic groups in each CRC sample was calculated on various 

taxonomic levels (from phyla to genera), and the bacterial phyla present on average 

with abundance over 1% are listed for each sample from our cohort in Table 3. 

It can be seen that the samples differ remarkably already in abundances at the level 

of bacterial phyla. In Figure 1, we show the relative abundances for various groups 

of samples from our cohort. As for CMS subtypes, visible differences are in 

enrichment of Fusobacteria and Bacteroidetes, and decreased levels of Firmicutes 

and Proteobacteria in CMS1, compared to CMS2 and CMS3 (Figure 1A). 

 

Analysis of differences in taxonomic abundances between samples based on other 

clinicopathological variants, such as tumour differentiation (Figure 1B) and tumour 

location (Figure 1C) also showed changes at the phylum level; decreased levels of 

Fusobacteria and Firmicutes, and increased abundance of Proteobacteria and 
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Bacteroides were seen with decreasing tumour differentiation, while right-sided 

tumours had increased Fusobacteria compared to left-sided tumours.  

 

Taxonomic investigation of non-human RNA-seq reads per CMS subtype 

 

Although 16S rRNA analysis allowed us to identify changes in bacterial communities 

at the phylum level between CRC subtypes, it did not give us resolution to the 

species level. In order to identify bacteria that may be associated with particular 

molecular subtypes at the species level, we performed a taxonomic investigation of 

non-human RNA-seq reads using Kraken[24] (see Materials and Methods). To 

validate the consistency of the two approaches, we compared phylum and genus 

level abundances derived through 16S rRNA analysis or separately derived through 

non-human mapped RNA-seq reads using Kraken[24]. When correlating the phylum-

level abundances derived through 16S rRNA metabarcoding with the abundances 

derived through Kraken for each CRC sample, we see a high correlation of 85% 

(Figure 2B). At the genus level, there was an overall lower, but still high correlation 

as compared to phylum level, showing a reasonable agreement between the 16S 

rRNA and the RNA-seq Kraken approach (see Figure 2A). However, it should be 

noted that the number of genera that appear in both 16S rRNA and Kraken-derived 

data is quite low (76 genera, and only 13 on the phylum level); it is possible that 

using RNA-seq derived bacterial abundances is more sensitive in detecting taxa than 

16S rRNA sequencing, as has been shown previously for whole shotgun sequencing 

compared to 16S rRNA sequencing[30]. 
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Analysis of bacterial taxa for each molecular subtype uncovered distinct bacterial 

communities associated with each CMS subtype (Figure 3 and also 

https://crc.sschmeier.com for interactive Krona plots). Table 4 shows the 15 most 

highly enriched genera for each CMS subtype (for a complete list of genera see 

Supplementary Table S5).  

 

Analysis of Kraken-derived data at the species level revealed that among the highest 

enriched bacterial species associated with CMS1 were Fusobacterium hwasooki 

(previously F. nucleatum) and Porphyromonas gingivalis, both known oral pathogens 

with putative roles in CRC development. P. gingivalis is also known to synergistically 

promote extra-gastrointestinal infections through co-occurrence with Treponema 

denticola and Tannerella forsythia, both of which are also strongly associated with 

CMS1. CMS2 had highly enriched Selenomonas and Prevotella species, while there 

were only a few bacterial species significantly associated with CMS3. Of particular 

interest to this study was the strong association of oral pathogens and bacteria 

capable of forming biofilms with CMS1. Taken together, the strong immunological 

and inflammatory signatures associated with this CRC subtype, and the known 

mechanisms of actions of some of these bacteria in extra-gastrointestinal infections, 

provides a plausible link between the co-occurrence of certain oral bacteria and the 

development of CMS1 type CRC.  

 

Validation of bacterial species in CMS using qPCR 

Three bacterial species were chosen for qPCR validation of CMS subtypes using 

genomic DNA samples extracted from the CRC tumours. The species were chosen 
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based on their high enrichment in a CMS and corresponding low association with the 

other CMS subtypes. Primer design and commercial availability of bacterial genomic 

DNA for use as positive controls were also factors in choosing validation targets. 

Porphyromonas gingivalis, Selenomonas sp. and Bacillus coagulans were chosen 

due to their strong associations with CMS 1, 2 and 3, respectively. Three further 

bacteria were targeted due to their known or putative roles in CRC development: the 

oral pathogens, F. nucleatum, Parvimonas micra and Peptostreptococcus stomatis. 

Relative levels of each species was calculated using ΔCt method, with PGT as a 

reference gene (See Material and Methods). The relative expression values are 

given in Supplementary Table S6. Relative expression levels were calculated for 

each molecular subtype compared to the other subtypes and fold-change values 

generated based on average expression in samples of a subtype to the average 

expression in all other samples (Figure 4). High abundances of P. gingivalis and 

Selenomonas sp. were strongly correlated with CMS1 and CMS2, respectively, 

validating our findings generated from the Kraken analysis for these two subtypes. 

The expression of B. coagulans was less significantly associated with CMS3 than 

findings from Kraken analysis suggested. In addition, increased abundances of the 

oral pathogens, F. nucleatum, P. micra and P. stomatis were associated with CMS1.  
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Discussion 

The two main objectives of our study were the validation of molecular subtypes of 

CRC using published classifiers in an independent CRC cohort, and particularly the 

examination of differences in bacterial communities associated with different 

molecular subtypes of CRC. For the first aim, our study found similarities between 

our cohort and the original classification study of Guinney et al[6] that classified 

CRCs into consensus molecular subtypes. We found similar proportions of tumours 

classified as CMS1 and CMS2, in addition to unclassifiable tumours. However, none 

of the tumours in our study were classified as CMS4, and there was an increased 

proportion of CMS3 in our cohort compared to that used in the study of Guinney et al: 

30% compared to 13%. Several reasons might contribute to the observed 

differences. First, the small number of patients (33) in our study may have resulted in 

the absence of CMS4 patients from our cohort; the CRC subtyping consortium used 

3104 patients' samples in their study. Furthermore, differences in analytical methods 

used on RNA-sequencing data might be a contributing factor. We were unable to 

exactly replicate the methodology of the original CRC subtyping consortium study for 

several reasons. First, the original study made use of data from The Cancer Genome 

Atlas (TCGA, http://cancergenome.nih.gov/), which since then have been updated 

based on new computational technologies. Second, the original study included 

microarray based datasets and not only data derived through RNA-sequencing. 

Nevertheless, we tried to follow the original methodology as closely as possible, but 

some of the differences we observed might be attributed to the changes we 

introduced. In addition, several studies have recently highlighted the issue of the 

confounding influence of intra-tumoural heterogeneity when using molecular 

classification[31, 32]. Indeed, a recent study by Li et al, analyzing single cells, has 
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shown that EMT-associated genes, a hallmark of CMS4, are only upregulated in 

cancer-associated fibroblasts[31]. These findings suggest that CMS4 may not exist 

as a subtype of CRC per se, rather it may be a reflection of the stromal cells 

associated with a given tumour. This research area is still under active development 

and we believe our study provides some important insights into CRC subtyping and 

associated microbiomes. 

 

Gene-set enrichment analysis showed very similar findings to those described by the 

CRC subtyping consortium. This is encouraging, as we used a slightly different 

method to analyse associated biological categories to CRC subtypes (see Materials 

and Methods). The strong immune signature associated with CMS1, and 

corresponding low-expression of genes related to immune functions in CMS2 and 

CMS3, reflect findings of the CRC subtyping consortium[6]. However, a study by 

Becht et al, found that an inflammatory CRC micro-environmental signature was 

highly associated with CMS4 in their transcriptomic analysis[33]. In contrast, an 

inflammatory signature was strongly associated with CMS1 in our study, while CMS2 

and CMS3 displayed low immune and inflammatory signals in both studies. Although 

a small number of studies have used the CMS classifiers on previously unclassified 

gene array data[34, 35], most published studies reporting of CMS classification have 

used expression data from the cohorts used in the initial study. This study is the first 

one to independently validate the classifier using “newly derived” RNA-sequencing 

data from a physically disparate patient cohort. Our findings highlight the importance 

of validation of new classification systems in order to ensure their reproducibility and 

methodological robustness prior to use in a research or clinical setting. 
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Our second aim involved cataloguing and identifying differences in the tumour 

microbiome associated with different molecular subtypes of CRC. To this end we 

employed both 16S rRNA sequencing and RNA-sequencing data. We found 

significant phylum-level changes between the three subtypes studied in our cohort, 

using both sequencing methods; differences between the methods may be 

accounted for by the lower resolution seen using 16S rRNA metabarcoding. Mapping 

of non-human RNA-sequencing reads to bacterial reference sequences enabled us 

to catalogue bacterial species of each tumour sample. This identified very distinct 

bacterial communities associated with each molecular subtype. Although bacterial 

dysbiosis, as shown through 16S rRNA and metagenomics studies, have previously 

been associated with CRC compared to controls[9, 10, 36, 37], and a recent study 

by Burns et al[14] has linked microbial composition with loss-of-function mutations in 

tumours, this is the first time that different bacterial signatures have been shown to 

associate with molecular subtypes of CRC. 

 

Increased carriage of Fusobacterium nucleatum has been frequently associated with 

CRC[38-40]. F. nucleatum possesses a unique adhesion molecule, FadA, that allows 

it to adhere to and invade epithelial cells[41]; it has also shown to potentiate 

colorectal carcinogenesis by recruitment of infiltrating immune cells[42] and 

modulating E-cadherin/β-catenin signalling[43]. F. nucleatum has also been shown 

to have an association with immune response in the development of CRC[44]. 

Fusobacterium hwasookii, which until recently was classified as F. nucleatum[45], 

was one of the bacterial species most strongly associated with CMS1 in our cohort. 

Due to its recent reclassification it may account for some of the previously reported 

associations of Fusobacterium with CRC. While the genome of F. hwasookii has 
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been sequenced, no mechanistic studies have been carried out to date to compare 

the oncogenic potential of this strain to F. nucleatum. However, given the similarity to 

the F. nucleatum sequence, and presence of a highly conserved FadA gene, it is 

likely that F. hwasookii plays a similar role in carcinogenesis. The ability of 

Fusobacterium species to elicit an immune response, in particular to recruit T-cells, 

is reflected in the immunological signature seen in the CMS1 tumours. Our targeted 

qPCR analysis of F. nucleatum that showed an increased abundance associated 

with CMS1, also reflects the findings of two studies that found that Fusobacterium 

was associated with a CRC subtype characterised by CpG island methylation, MSI 

and inflammatory signatures[15], and higher prevalence in right-sided tumours[46], 

all hallmarks of CMS1[6]. 

 

Although not as well studied as Fusobacterium, several other oral pathogens, or 

potential pathobionts, have been reported to be associated with CRC. Of 

considerable interest to us, is the enrichment of Porphyromonas gingivalis with 

CMS1 in our cohort, identified by both Kraken and qPCR analysis. This oral 

pathogen has been reported to synergistically promote oral cancer[47] and is 

associated with CRC, although only some studies reported increased levels of the 

bacteria in tumours compared to controls[9, 36, 48]. P. gingivalis is also a known 

biofilm former that co-aggregates with Treponema denticola and Tannerrella 

forsythia[49, 50], both of which also show enrichment in CMS1. Formation of such 

biofilms in extra-intestinal infections facilitates synergistic pathogenicity[51, 52], and 

the high enrichment of these bacteria in CMS1 suggests that similar community 

synergy may be occurring in the tumour microenvironment. The concept of bacterial 

biofilms as initiators of CRC has recently been proposed. Biofilms facilitate the 
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invasion of the mucous layer, and a study by Dejea et al[53] found that biofilms were 

present in > 90% of right-sided CRC; all of the CMS1 tumours in our study were right 

sided. 

 

We also performed targeted analysis of two further oral bacteria, P. micra and P. 

stomatis, in our CRC cohort. These bacterial species have been identified in 

metagenomics studies as markers of CRC using faecal samples[10], and have been 

described in an oral-microbe-induced colorectal tumorigenesis model, proposed by 

Flynn et al[54]. Interestingly, a recent microbiome study by Flemer et al[55] of CRC 

tumour and matched faecal samples found significantly elevated abundance of 

Fusobacterium, Peptostreptococcus, or Parvimonas only in a subset of 20-30% of 

CRC patients. We found enrichment of these bacteria to be associated with CMS1 in 

our tumour cohort (18%), underlining the potential role of oral polymicrobial 

communities in the development of a subset of CRC, and the importance of 

considering CRC heterogeneity when studying mechanisms of CRC pathogenesis. 

 

The major limitation of this study was the small cohort size. Although we found 

significant associations of bacterial species and taxa associated with particular 

molecular subgroups, a much larger cohort would be useful to reproduce our findings. 

We also lacked an independent cohort to carry out validation, thus we carried out 

validation on the original cohort. Future directions would include testing of qPCR 

panels in a large independent sample set prior to molecular classification using RNA-

sequencing, and investigating the utility of these bacterial markers in non-invasive 

faecal-based tests. 
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Conclusions 

In conclusion, due to the potentially modifiable nature of gut bacteria, identifying the 

role of particular bacterial species in CRC development could have implications for 

cancer prevention. Here, we have identified, for the first time, distinct microbial 

populations associated with subtypes of CRC. This will lay the groundwork for future 

studies into the molecular mechanisms of bacterial colorectal carcinogenesis, and 

may have clinical utility for CRC screening, diagnosis and treatment. 
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Tables 
 Patients (n) 

Age  

 44-88 years  

 Mean = 74 years  

Gender  

 Males 14 

 Females 20 

Site  

 Right 21** 

 Left 12 

 Rectum 1 

Stage*  

 1 5 

 2 14 

 3 13 

 4 1 

Differentiation  

              Well 4   

              Moderate 20 

              Poor 9 

Histology  

 Signet-ring cell 2 

 Mucinous 3 

 Lymphovascular 
invasion 

16 

 Extramural venous 
invasion 

7 

 Perineural invasion 5 

 Lymph node positivity 13 

 

Table 1. Patient cohort characteristics. *post-operative; ** including one large 

adenoma; n, number of patients 
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CMS1 CMS2 CMS3 CMS4 UC 

This study 18% 39% 27% 0% 15% 

CMS study 14% 37% 13% 23% 13% 

 

Table 2. Comparison of proportion of patients in each consensus molecular subtype 

(CMS) and unclassified (UC) tumours from this study and the original classification 

study by the CRC subtyping consortium.  
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Sample Firmicutes Bacteroidetes Proteobacteria Fusobacteria 
CRC1 49.18 41.13 4.56 1.67 
CRC2 29.84 41.03 5.27 17.98 
CRC3 50.12 1.05 46.57 0.01 
CRC4 60.56 25.04 12.87 0.79 
CRC5 62.8 28.87 7.34 0.27 
CRC6 27.31 56.49 15 0.02 
CRC7 31.98 60.06 5.39 2.11 
CRC8 69.09 27.25 2.49 0 
CRC9 15.3 60.37 2.7 20.95 
CRC10 61.35 24.89 10.58 1.41 
CRC11 35.13 51.33 6.48 0 
CRC12 58.67 38.42 1.3 1.13 
CRC13 76.32 18.58 2.12 2.01 
CRC14 37.57 20.7 39.93 1.11 
CRC15 54.01 38.21 4.93 0.71 
CRC16 34.76 33.92 19 11.98 
CRC17 64.94 29.15 5.44 0 
CRC18 72.84 20.91 4.48 0 
CRC19 69.78 19.28 6.69 3.87 
CRC20 52.87 35.38 10.35 0 
CRC21 42.27 49.98 5.64 0.93 
CRC22 55.03 38.91 6 0 
CRC23 56.36 33.36 7.55 1.29 
CRC24 66.36 27.06 5.04 0.22 
CRC25 53.77 12.03 0.34 33.65 
CRC26 71.38 26.3 0.45 0.17 
CRC27 11.06 84.94 0.91 3.09 
CRC28 58.42 28.99 10.37 0 
CRC29 35.78 61.23 1.93 0.84 
CRC30 36.48 59.52 1.08 1.05 
CRC31 66.55 6.46 2 23.92 
CRC32 63.53 22.22 9.24 0.01 
CRC33 30.18 51.72 11.12 6.66 
CRC34 15.86 80.23 0.85 0.36 
Average 
(%) 49.34 36.91 8.12 4.07 
SD 17.92 19.39 9.97 8.05 

 Table 3. Phyla of bacteria present in each sample, with abundance > 1%, as per 

16S rRNA analysis. SD; standard deviation.  
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CMS1 CMS2 CMS3 

Genus % Genus % Genus % 

Bacteroides 48.5 Bacteroides 66.6 Bacteroides 27.6 

Fusobacterium 15.7 Fusobacterium 4.0 Faecalibacterium 5.8 

Hungatella 7.9 Prevotella 3.8 Clostridium 5.5 

Prevotella 4.0 Roseburia 2.6 Roseburia 4.7 

Porphyromonas 2.8 Faecalibacterium 2.2 Blautia 2.8 

Lachnoclostridium 2.7 Porphyromonas 1.3 Lachnoclostridium 2.2 

Campylobacter 1.6 Klebsiella 1.1 Prevotella 2.1 

Leptotrichia 1.2 Clostridium 0.9 Clostridioides 1.6 
Candidatus 
Desulfofervidus 0.8 Selenomonas 0.8 Klebsiella 1.6 

Clostridium 0.6 Blautia 0.6 Eubacterium 1.4 

Faecalibacterium 0.6 Eubacterium 0.5 Parabacteroides 1.2 

Roseburia 0.5 Lachnoclostridium 0.5 Hungatella 1.1 

Blautia 0.5 Ruminococcus 0.5 Alistipes 1.0 

Treponema 0.5 Bacillus 0.4 Selenomonas 0.8 

Klebsiella 0.5 Hungatella 0.4 Ruminococcus 0.7 
 

Table 4. The 15 most highly abundant bacterial genera, as a percentage of the total 

bacterial genera, for each consensus molecular subtype (CMS), as calculated using 

RNA-seq metagenomics. 
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Figures 

 

Figure 1. Phylum-level bar chart grouped by (A) consensus molecular subtype (CMS) 

group, (B) histological tumour differentiation and (C) location of tumour. Bar charts 

are colour coded by phyla. 
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Figure 2. A: Correlation between CRC samples using genus-level abundances 

derived through 16S rRNA metabarcoding and Kraken. 76 genera that appear in 

both methods were used.  B: Correlation between CRC samples using phylum-level 

abundances derived through 16S rRNA metabarcoding and Kraken. Thirteen phyla 

that appear in both methods were used. Dashed lines indicate the average 

correlation over all samples. 
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Figure 3. Krona plots of for each CMS showing relative abundance of bacterial taxa 

at the genus level. Interactive versions of these Krona plots can be further 

interrogated at https://crc.sschmeier.com. 
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Figure 4. Heatmap of log2 fold-changes in abundance of bacterial targets analysed 

using qPCR, for each consensus molecular subtype (CMS).  
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