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Positional effects revealed in Illumina Methylation Array and the 

impact on analysis 

With the evolution of rapid epigenetic research, Illumina Infinium 

HumanMethylation BeadChips have been widely used to study DNA 

methylation. However, in evaluating the accuracy of this method, we found that 

the commonly used Illumina HumanMethylation BeadChips are substantially 

affected by positional effects; the DNA sample’s location in a chip affects the 

measured methylation levels. We analyzed three HumanMethylation450 and 

three HumanMethylation27 datasets by using four methods to prove the existence 

of positional effects. Three datasets were analyzed further for technical replicate 

analysis or differential methylation CpG sites analysis. The pre- and post- 

correction comparisons indicate that the positional effects could alter the 

measured methylation values and downstream analysis results. Nevertheless, 

ComBat, linear regression and functional normalization could all be used to 

minimize such artifact. We recommend performing ComBat to correct positional 

effects followed by the correction of batch effects in data preprocessing as this 

procedure slightly outperforms the others. In addition, randomizing the sample 

placement should be a critical laboratory practice for using such experimental 

platforms. Code for our method is freely available at: 

https://github.com/ChuanJ/posibatch. 

Keywords: positional effects; DNA methylation; Illlumina Infinium 

HumanMethylation BeadChips; ComBat; batch effects; Infinium Methylation 

450K; Infinium Methylation 27K; epigenetics 

Introduction 

DNA methylation is an important epigenetic modification that regulates gene 

expression1, chromatin structure and stability2, and genomic imprinting3. DNA 

methylation has also been implicated in the development of cancer4-6 and other 

diseases7-9. Furthermore, several studies indicated that the DNA methylation levels 

could vary by age10, sex11, disease affected status4-9, circadian rhythms12, tissues types13 

and other factors. 

Many methods have been used to measure the methylation levels of cytosines, 

such as blotting, atomic force spectroscopy, genomic sequencing, bisulfite sequencing, 
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methylation-specific PCR, microarray analysis, etc14. The high-throughput methods can 

be classified into two major categories: next-generation sequencing (NGS) and microarrays. In 

many NGS-based technologies, the whole-genome bisulfite conversion is generally regarded as 

a gold standard for highest genomic coverage, accuracy, and resolution. Microarray-based 

technologies such as Illumina Infinium HumanMethylation27 BeadChip Array (Methyl27)15, 

Illumina Infinium HumanMethylation450 BeadChip Array (Methyl450)16, 17, and Illumina 

Infinium MethylationEPIC BeadChip microarray18, have been widely used for 

methylome profiling since the first chip came to market in 200619 with its advantages in 

terms of low cost, modest DNA requirement, and high throughput20. However, these 

methods are unable to interrogate genomic regions outside of the pre-designed probes, 

thereby limiting the exhaustive screening of the genome. 

Methyl450 was one of the most popular and cost‑effective tools available 

allowing researchers to interrogate more than 485,000 methylation loci per sample at 

single-nucleotide resolution21. It has twelve sample sections in one array arranged in a 

six by two format (Fig.S1). While Methyl27 measures the methylation status of over 

27,000 CpG sites in the genome using the Type I assay with twelve sample locations 

arranged by twelve rows (Fig.S1), Methyl450 increased its capacities upon Methyl27 by 

adding the Type II assay. However, they suffer from errors introduced by probe cross-

hybridization17, 22, the probe type bias16, single nucleotide polymorphisms (SNPs) 

contaminated probes 17, 23 and so on. Filtering out probes with potential errors and 

adjusting experimental bias have been necessary data pre-processing steps.  

There is also ‘positional effects’ that the same sample in different physical 

positions on the array could be measured as different methylation levels. The earliest 

mention of the positional effect in the Illumina gene expression microarray analysis did 

not provide a method for correction except an advisement to randomly set the samples 

in the array24. Since then, a few papers mentioned the possible existence of positional 

effects by other names such as the 'Sentrix position effect', 'beadchip effect', 'slide 

effects' or 'beadchip position on plate effects', but failed to provide solid evidence about 

them, nor provide a convincingly effective method to correct the effect17, 24-26. 

Conventional approaches to correct confounders such as the polygenic regression 

model27 have been attempted, but the scientific rationality of the regression model in the 

randomly distributed effects is problematic24. There is also one unsupervised method 

named Functional normalization (FN) could correct the effect28.  
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In this article, we compared three methods for correcting the positional effects: 

ComBat, linear regression model and functional normalization. ComBat adjusts for 

known batches using an empirical Bayesian method even in small sample sizes, the 

linear regression model is a classical method to remove known confounders, and FN is 

an unsupervised method using control probes as surrogates for unwanted variation28. 

While the investigation into the positional effects was not thorough, positional 

effects have rarely been controlled in analysis like batch effects. Controlling batch 

effects29-33 has been a critical practice in data analysis. Illumina HumanMethylation 

BeadChip platforms have already been implemented in epigenetic studies of cancer and 

many other diseases with about 883 papers published so far (NCBI GEO database34). 

Few studies had properly addressed the positional effects, which could lead to potential 

bias particularly when samples were not placed randomly.  

In this study, we closely examined the important technical artifact in the 

Illumina HumanMethylation BeadChip named “positional effects” using multiple 

datasets of both Methyl27 and Methyl450. We proved the existence and discussed the 

origin of the effect, the bias it brings to the research result, and the proper solution to 

adjust this confounder. Specifically, four methodologies were utilized to evaluate the 

effects, including: identification of CpG sites that are significantly associated with 

sample position, the relative contribution to overall variation in measured methylation 

levels, correlation and variation between technical replicates, and significant differential 

methylation signals between cases and controls. We further tested several methods to 

control positional effects along with batch effects to ensure that both artifacts can be 

managed. With that, we are offering a recommendation for the pre-processing of 

Illumina methylation data. 

Results 

Analysis of Variance (ANOVA) Results of Methylation Levels and Physical 

Positions 

We analyzed the ROSMAP data with 743 samples in 64 arrays (Table 1, Fig.1, Material 

and methods). After quality control (QC) pre-processing and filtering, 167,384 probes 

were tested for the correlations between methylation levels and sample physical 

positions. 14,063 of them were significantly associated with their sample positions by 
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false discovery rate (FDR) q-value < 0.05, while 153,079 loci were associated with 

batches. After removal of batch effects, the number of CpG loci associated with position 

increased to 32,144; and the batch-associated sites reduced to zero.  

We corrected the positional effects only with ComBat, and still detected 20 CpG 

loci associated with positions but left 154,140 probes related to batches. Then the batch 

and positional effects were sequentially adjusted in two different orders. When 

corrected for the batch effects first, 21 loci associated with position were identified, and 

zero associated with the batch. However, when corrected for the positional effects first, 

24 position-associated loci were detected, and none of the batch-associated signals were 

detected.  

We noticed that we detected 11,500 CpG loci significantly associated with the 

batches when we corrected the batch effect first followed by positional effects in 

BrainCloud dataset (Table 2).   

We next attempted to correct the positional effects by the linear regression 

method27, 35, 36, through lm function in R. Regardless the orders of how the positional 

and batch effects were corrected, there were no CpG sites related to the physical 

positions. We normalized the data by functional normalization. In the ANOVA 

evaluated results, the FN_data did not perform well. Detailed results are shown in Table 

2. We further analyzed another two Methyl450 and three Methyl27 datasets (See 

Materials and Methods, Table 3), and confirmed the existence of positional effects in 

those data (See Table 2). 

We further assessed the impact of the processes controlling batch and positional 

effects had on the data. We calculated the average methylation levels of ROSMAP data 

comparing pre- and post- correction in twelve positions and two batches respectively. 

After correcting the batches and positions by ComBat regardless of order, the 

methylation levels in the twelve physical positions became homogeneous (Fig.2a), and 

the differences of batch correction results remained statistically insignificant (Fig.2b). 

Alternatively, when we corrected positional effects by linear regression and functional 

normalization method, the variation of methylation levels in different physical positions 

had no significant reduction (Fig.2a); the same was seen for the batches (Fig.2b). The 

difference between sample locations was normalized after removing positional effects 

by ComBat. Similar results are also displayed in the Supplemental Materials (Fig.S2a, 

Fig.S2b). 
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 Principal Variance Component Analysis (PVCA) 

We made the PVCA plot to evaluate the relative weighted proportion variance (Fig.3). 

The PVCA plot describes the relative weights of corresponding eigenvectors related to 

the eigenvalues that can be explained by factors in the experimental design and other 

covariates37, 38. Here we considered eleven possible sources of variation: the two types 

of cell; age at cycle – baseline (age_bl) which can be the cognitive date, interview date, 

or clinical evaluation; age at death (age_death); the education level (educ); the cognitive 

diagnosis (cogdx); race (race); Spanish ancestry (spanish); sex; batch; and positional 

effects (position) and the weight of residual effect (resid in the figure) caused by 

unexplainable factors.  

The PVCA plot revealed that the BatchPos(ComBat)_data and 

PosBatch(ComBat)_data performed well in these nine datasets. Because these two 

datasets perform well in the technical variants both in batch effects and positional 

effects. By comparing the weighted proportional variance, we found the ComBat 

method outperformed lm in controlling the positional effects.  

Nevertheless, other datasets reinforced the observation of positional effects. The 

similar results from the other datasets are displayed in the Supplemental Materials 

(Fig.S4, S5). These data indicate that the positional effects gave a relatively smaller 

contribution to the overall variation than other major factors like sex, age, and race, but 

it is not negligible.  

Analysis of the Technical Replicates  

Technical replicates can be used to evaluate the consistency or precision of 

measurement. With this in mind, we considered whether removing positional effects can 

improve precision. The GSE74193 dataset had 140 pairs of technical replicates, and the 

GSE26133 dataset had 83 pairs. Subsequent to each correction step, the correlation 

values of each pair were calculated (Fig.4, and Fig.S6). After removing the positional 

effects by ComBat, the correlation increased more than lm (Wilcoxon signed-rank one-

tailed test, p-value<2.2E-16) (Fig.4a, 4b, 4c and Fig.S6a, S6b, S6c) and functional 

normalization (Wilcoxon signed-rank one-tailed test, p-value = 0.0002) (Fig.S6d). 

Therefore, ComBat outperforms lm and functional normalization in adjusting the 

positional effects and improving precision. The correlation values in 

PosBatch(ComBat)_data is higher than BatchPos(ComBat)_data (Wilcoxon signed-rank 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 22, 2017. ; https://doi.org/10.1101/153858doi: bioRxiv preprint 

https://doi.org/10.1101/153858


one-tailed test, p-value=2.059E-15) (Fig.4d); thus correcting the positional effects first 

followed by batch effect improves precision. As for the efficiency of correction of 

positional effects, correcting the positional effects and batch effects could improve the 

correlation of technical replicates pairs (Wilcoxon signed-rank one-tailed test, p-

value<2.2E-16) (Fig.S6g). However, there is no significant difference in correlations 

between data corrected for the positional effects before batch and data corrected for the 

batch only (Wilcoxon signed-rank one-tailed test, p-value=0.8667) (Fig.4e and Fig.S6f).  

In summary, the best practice to correct the positional effect is ComBat. 

Correcting the positional effects first followed by batch effect is better than the reverse 

order. 

Differential Methylation CpG Loci Analysis 

The impact of positional effects on the detection of differential methylation signals was 

assessed. An empirical Bayes test, limma in R, was used to identify differentially 

methylated CpGs between cases and controls of the processed GSE74193 dataset with 

46 controls and 30 cases in two replicated groups; the number of CpGs associated with 

the schizophrenia was noted (p-value < 0.05 among all CpGs analyzed). The result is 

quantified using the area under a receiver operating characteristic curve (AUC of ROC), 

a popular measure of the accuracy. A higher AUC was identified in the 

PosBatch(ComBat)_data and BatchPos(ComBat)_data compared with other processed 

datasets (DeLong's test for two ROC curves, Pos_data vs. Poslm_data p-value = 0.05, 

Pos_data vs. FN_data p-value = 0.0005, PosBatch(ComBat)_data vs. Pos_data p-value 

= 3.818e-16, PosBatch(ComBat)_data vs. BatchPos(ComBat)_data p-value = 0.9682). 

The ROSMAP dataset was also be used to identify differentially methylated 

CpGs. 167,384 probes have been tested for differential methylation after filtering. 1,839 

of the CpG loci were differentially methylated in data corrected for the batch effects 

(FDR <0.05). 1,846 CpG loci were significant in data corrected for positional effects 

followed by batch correction (Fig.5a). There are 145 CpG loci that were detected in the 

Batch_data, but not in the PosBatch(ComBat)_data, and 152 CpG loci detected in the 

PosBatch(ComBat)_data, but not the Batch_data. One of 152 CpG loci named 

cg24519157 is located in gene CASS4, which is an AD significant signal studied in 

several studies39-44. Therefore the positional effects could have confounded the 

methylation comparisons between case and control if the positional effects were not 
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corrected during pre-processing, subsequently producing errors, including false 

negatives. When examining the sample plating, we noticed that the cases and controls 

had not been randomly placed in each position. Some positions have more cases than 

the others. Basically, position 4 and 5 have the largest proportion differences (Fig.5b). 

No matter how optimal the processing is, without proper randomization of an 

experiment the data may produce bias in the analysis 24, 45. 

Discussion 

Our analysis clearly identified an important technical artifact of the Illumina Infinium 

HumanMethylation BeadChips in both Methyl450 and Methyl27. We also studied one 

Illumina Infinium MethylationEPIC BeadChip microarray dataset (GEO: GSE86831) 

with 11 samples. 88,319 CpG loci of 864,935 loci were significantly associated with 

physical positions (FDR<0.05) in Batch_data, which suggest that the Illumina Infinium 

MethylationEPIC BeadChip microarray is also affected by the positional effects.  

Due to the fact that positional effects can produce possible false conclusions, 

particular attention needs to be paid in controlling this variable in data analysis. In the 

analysis, we noticed the effect of positional effects in Methyl450 is larger than in 

Methyl27. The Type II probes contribute 2.98 times more to the positional effects than 

the Type I probes in Methyl450 datasets. After we had corrected the bias by Beta 

Mixture Quantile dilation (BMIQ, see Material and methods), a method used to adjust 

probe type bias, the proportion of Type II probes and Type I probes which were 

associated with position was 1.11. Adjusting the Type II probes methylation levels into 

a statistical distribution characteristic of Type I probes could help to reduce the 

positional effects, though the best method to remove the technical effects is correcting 

the positional effect by ComBat first and then removing the batch effect.  

Although the technical replicates pairs could not prove the necessity of 

correcting the positional effects, the ANOVA results and differential CpGs analysis 

demonstrate that correcting the batch effect affect the positional effects and bias at 

many of the CpG loci. Therefore adjusting the positional effects is needed.  

Two primary reasons for choosing the ComBat function in R to correct for the 

positional effect: first, the positional effect is randomly distributed in the same pattern 

as the batch effect, which ComBat is considered to be the most efficient method of 

correction29-33. Second, the correlation of technical replicate pairs and PVCA illustrates 
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that the ComBat function is better than the linear regression model for correcting the 

positional effect. As for the correction order of positional and batch effects, we suggest 

correcting the positional effect first because of the first three evaluated methods. 

In summary, positional effects can undoubtedly introduce bias into methylation 

level measures and produce unwanted bias. Sample placement in each chip should be 

randomized certainly24, 45, and most importantly, proper statistical methods should be 

used to remove the confounding artifacts. If the artifact is not taken into consideration, 

misleading conclusions could be drawn. Given that hundreds of epigenetics studies have 

used these platforms without controlling for positional effects, re-analysis of those 

previously published data and re-examining those reported significant signals may be 

needed. 

Material and methods 

We have collected six datasets to test for positional effects. The datasets include three 

Methyl450 datasets and three Methyl27 datasets. 

Methyl450 Datasets 

The primary data used in this study was a brain DNA collection obtained from Rush 

Alzheimer’s Disease Center in healthy controls and patients with dementia46, 47. The 

samples included 236 healthy controls and 507 dementia samples from two longitudinal 

cohort studies at Rush University Medical Center – the Religious Orders Study and the 

Rush Memory and Aging Project (ROSMAP data). The detailed sample information 

and the analysis pipeline were described in De Jager, P. L. et al., (2014) and Bennett, D. 

A. et al., (2012). The ROSMAP data was generated using the Methyl450 dataset and a 

sample of dorsolateral prefrontal cortex obtained from each sample. The sample 

information is listed in Table 1. 

We used two other Methyl450 datasets to validate our findings: 179 frontal 

cortex samples from human fetal brains11 (GEO: GSE58885) (Genome Studio followed 

by WateRmelon in R. Normalized beta values generated via the Dasen method of the 

WateRmelon package); and 675 brain dorsolateral prefrontal cortex samples from 

Hernandez-Vargas’s study48 (GEO: GSE74193), which included 191 schizophrenia 

patients and 335 controls, with 140 technical replicates pairs or triplets included. 

Information on the two datasets is summarized in Table 3. And the ROSMAP and 
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GSE74193 datasets have the .idat file, a binary format containing the raw red and green 

channel intensities. 

Methyl27 Datasets 

We also used three Methyl27 datasets to confirm the findings. The datasets included the 

following: 153 cerebellum samples from our previous study (GEO: GSE38873)49, 106 

brain prefrontal cortex samples from BrainCloud (downloaded from 

http://braincloud.jhmi.edu/downloads.htm)50, and 160 samples from GSE26133 with 83 

technical replicates pairs, triplets or clusters included51. The beta-values of these studies 

were used directly to assess slide batch and positional effects. The information of these 

datasets was also summarized in Table 3. 

Data Quality Control and Pre-processing 

We processed and analyzed data by R statistical language (www.r-project.org). The 

main processing pipeline is shown in Figure 1a (Fig.1a). We removed probes and 

samples by detecting p-values obtained from GenomeStudio (Illumina, San Diego, CA). 

Samples were removed for those with more than 1% probes not detected (detection p-

value > 0.01). We removed the probes with a bead count less than 3 in at least 5% of 

samples and probes with a detection p-value above 0.01 in more than one sample. At the 

end, 463,641 out of 485,577 probes remained for further analysis (Fig. 5a).  

 We then replaced the β valued of 0 to 0.000001. Missing β value was imputed 

using a k-nearest neighbor algorithm by R impute.knn function in the impute package. 

To address the differences between the two types of probes, we used BMIQ (Beta 

Mixture Quantile dilation) function in wateRmelon package to adjust the β values of 

type II probes into a statistical distribution characteristic of type I probes, which has 

previously been shown to best minimize the variability between replicates16, 52.   

The single nucleotide polymorphisms (SNPs) based on the 1000 Genomes 

database, small insertions and deletions (INDELs), repetitive DNA, and regions with 

reduced genomic complexity may affect the probe hybridization by a subject’s 

genotype23. After filtering, 167,384 probes remained for downstream analysis. The 

package RefFreeEWAS was utilized to estimate cell proportion53, and function lm was 

used to correct for the cellular heterogeneity. 
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The Methyl27 datasets were processed by the same pipeline as with Methyl450 

datasets except the need to correct the probe type bias. 

Correct the Positional Effects 

Here we used three methods to correct the positional effects: ComBat function, linear 

regression correction approach by using the lm function and the functional 

normalization (FN) method by using preprocessFunnorm function in minfi package 

(Fig.1b). 

In our past studies, we found that the ComBat function in the R package sva is 

effective in removing the batch effects29-33. The function uses an empirical Bayesian 

method to adjust for known batches. Here we treated the positions as the batch 

information, and used the ComBat function applied to the high-dimensional data matrix, 

passing the full model matrix created without any known position variables. Position 

variables are passed as a separate argument to the function54, and the output is a set of 

corrected measurements where positional effects have been removed. We also used a 

linear regression model to adjust positions, and added the residues to the mean values as 

the corrected results. The FN method was also used to remove the positional effects28. It 

extends the idea of quantile normalization and uses control probes as surrogates. The 

method could be used to correct the positional effect and batch effect, mentioned in the 

Jean-Philippe Fortin. et al., (2014). It’s also worth noting that the functional 

normalization method can only be used for the 450K data with .idat files. 

In addition, we attempted to modify the technique of calibrating variants like 

batch effects and positional effects (Fig.1b). We built an R package to remove the 

positional effects and batch effects based on the ComBat function, named “posibatch”, 

to help you can correct these two confounders more easily. The package can be 

downloaded through https://github.com/ChuanJ/posibatch.  

Positional Effects Assessment 

We used several metrics to evaluate positional effects for each dataset: 

(1) The number of CpG loci significantly associated with positions. We used 

Analysis of Variance analysis (ANOVA) to calculate the p-values of correlation 

between methylation levels and position or batch. FDR q-value was computed 
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for each nominal p-value by controlling the false discovery rate at 0.05 using the 

R function qvalue55. We then obtained the number of CpGs significantly 

associated with positions and batches. 

(2) A principal variance component analysis (PVCA) plot measured the attribution 

of impact factors to the methylation levels. PVCA leverages the strengths of two 

statistic methods: principal components analysis (PCA) and variance 

components analysis (VCA). PCA is one of the most essential and popular 

techniques for reducing the dimensionality of a large dataset, increasing 

interpretability and minimizing information loss. VCA fits a linear mixed model 

to match the random effects to the factors of interest for estimating and 

partitioning the total variations. We made a PVCA plot by the lme4 package in 

R to assess which processes are the most efficacious to correct positional effects. 

(3) The correlation of technical replicated pairs. We used the same evaluation 

metrics as Hailong Meng et al56 to determine the adequacy of eight datasets 

mentioned above separately. 

(4) Differential Methylation CpG loci analysis. To assess the impact of positional 

effects on analytical results, we discovered differentially methylated loci 

associated with schizophrenia in GSE74193 data and ROSMAP data using the 

limma package in R57. The GSE74193 dataset was divided into discovery and 

validation subgroups, with 30 patients’ samples and 46 controls in each 

subgroup. The limma is used to identify the differentially methylated loci and 

get the fold change (FC) between cases and controls. The area under a receiver 

operating characteristic curve (AUC of ROC) is generally used to measure the 

accuracy. The curve is created by plotting the true positive rate and false 

positive rate at various threshold settings. We identified AUC for the prediction 

of high and low fold changes. The cut-off is p-value lower than 0.05 and the 

log(FC) higher than 0.02. The AUC of ROC was used to measure the internal 

consistency in each normalization method. The Delong’s test was used to 

compare the AUC of ROC Curves58. 
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Figure 1. The basic pipeline. (a) The basic pipeline used to process ROSMAP dataset. 

(b) Datasets in different workflows correcting batch and positional effects. The Fig.1b is 

the detailed procedure of Step 5 in Fig.1a. There are eight datasets in different 

workflows in Fig 1b, including: Raw_data (data after primary QC and filtering), 

Batch_data (data corrected the batch effect), Pos(ComBat)_data (data corrected the 

positional effect by ComBat function), BatchPos(ComBat)_data (data corrected the 

batch and positional effect sequentially by ComBat in order), PosBatch(ComBat)_data 

(data corrected the positional and batch effect sequentially by ComBat in order), 

Pos(lm)_Data (data corrected the positional effect by lm), Batch(ComBat)Pos(lm)_data 

(data corrected the batch by ComBat and positional effect by lm sequentially, 

Pos(lm)Batch(ComBat)_data (data corrected the positional effect by lm and batch effect 

by ComBat sequentially) and FN_data (data corrected by functional normalization by 

using the preprocessFunnorm function in the minfi package). Note: NBEADS means 

the number of the beads. BMIQ means Beta Mixture Quantile dilation, a method 

adjusting the β values of type II probes into a statistical distribution characteristic of 

type I probes (see Materials and Methods). SNPs means single nucleotide 

polymorphisms. 

Figure 2. The average and variation of methylation levels of all probes in ROSMAP 

eight different processed datasets. (a) Average methylation levels in different positions. 

(b) Methylation levels in different batches. The corrected results by lm mean the 

residual of the linear regression model, so the raw mean is added to make the data in a 

normal range. The p-value was calculated using t-test and three stars mean the 

difference was statistically significant. 

Figure 3. PVCA (principal variance component analysis) results in ROSMAP dataset. 

PVCA estimated the contribution of each factor to the overall variation. We considered 

eleven possible sources of variation in the ROSMAP data: the two types of cell; age at 

cycle – baseline (age_bl) which can be the cognitive date, interview date, or clinical 

evaluation; age at death (age_death); the education level (educ); the cognitive diagnosis 

(cogdx); race (race); Spanish ancestry (spanish); sex; batch; and positional effects 

(position). And we got the weight of residual effect (resid) that known factors could not 

explain. 
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Figure 4. The comparison between different processed datasets in GSE26133. The 

Fig.4a, 4b and 4c are used to compare the correction methods of positional effects, the 

Fig.4d is used to compare the correction order of positional effects and batch effect, the 

Fig.4e and 4f figures are used to evaluate the efficiency of correction of positional 

effects. (a) Pos(ComBat)_data versus Pos(lm)_Data , (b)  BatchPos(ComBat)_data 

versus Batch(ComBat)Pos(lm)_data, (c) PosBatch(ComBat)_data versus 

Pos(lm)Batch(ComBat)_data, (d) PosBatch(ComBat)_data versus 

BatchPos(ComBat)_data, (e) PosBatch(ComBat)_data versus Batch_data, (f) 

PosBatch(ComBat)_data versus Raw_data. The red lines mean y=x. The top left corner 

values reveal the Wilcoxon signed-rank one-tailed test result, the W is a test statistic 

means the sum of the signed ranks, which can be compared to a critical value from a 

reference table to get a p-value. 

Figure 5. Differential Methylation CpG loci analysis results in ROSMAP dataset. (a) 

The Venn diagram plot of the differential methylated CpG loci obtained from 

differently processed data. The datasets including Batch_data (Data corrected for the 

batch effect), and PosBatch(ComBat)_data (Data corrected for the positional and batch 

effect sequentially by ComBat). (b) The sample distribution in cognitive diagnostic of 

ROSMAP data in twelve positions. The values showed in the figure is the control and 

dementia samples percentages in Position 4 and Position 5. Venn diagram showing the 

number of differential methylated CpGs (FDR< 0.05) between each pair of datasets. 
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Table 1. The sample information of ROSMAP data (743 samples). The ROSMAP data 

is the primary data we used. The samples were from two longitudinal cohort studies at 

Rush University Medical Center - the Religious Orders Study and the Rush Memory 

and Aging Project. 

Variable Number ( or Mean± Standard deviation) 

Sex 
 

            Female 468 

            Male 275 

Race  
            White 725 

            African-American 14 

            Native American 1 

            Asian or Pacific Island 3 

Age_bl, year 81.17± 6.98 

Age_death, year 88.01± 6.66 

Educational level, year 16.38± 3.63 

Abbreviations: age_bl means age at cycle – baseline which can be the cognitive date, interview date, or 

clinical evaluation; age_death means age at death. 
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Table 2. The number of CpG sites showed association with sample physical positions 

and batches in studies (FDR q-value<0.05). We used Analysis of Variance (ANOVA) 

analysis to calculate the p-values of correlation between methylation levels and position 

or batch. FDR q-value was computed for each nominal p-value by controlling the false 

discovery rate at 0.05 using the R function qvalue. We then obtained the number of 

CpGs significantly associated with positions and batches. 

Methyl450 Datasets 

Studies (N probes) ROSMAP (167,384) GSE58885 (156,108) GSE74193 (149,069) 

Process Position Batch Position Batch Position Batch 

Raw_data 14,063 153,079 20,314 19,938 36,575 149,068 

Batch_data 32,144 0 38,926 12 71,622 0 

Pos(ComBat)_data 20 154,140 0 37,263 0 1 

BatchPos(ComBat)_data 21 0 0 24 1 0 

PosBatch(ComBat)_data 24 0 0 18 7 0 

Pos(lm)_data 0 153,175 0 38,188 0 149,068 

Batch(ComBat)Pos(lm)_data 0 0 0 24 0 0 

Pos(lm)Batch(ComBat)_data 0 0 132 20 51 0 

FN_data 71,388 117,679 NA NA 73,518 115,554 

Methyl27 Datasets 

Studies (N probes) GSE38873 (10,640) GSE26133 (11,500) BrainCloud (11,500) 

Process Position Batch Position Batch Position Batch 

Raw_data 0 10,574 0 11,047 286 11,500 

Batch_data 295 7 3,054 0 4,306 0 

Pos(ComBat)_data 0 10,640 0 11,066 0 11,500 

BatchPos(ComBat)_data 0 8 0 0 0 11,500 

PosBatch(ComBat)_data 0 7 0 0 0 0 

Pos(lm)_data 0 10,640 0 10,523 0 11,500 

Batch(ComBat)Pos(lm)_data 0 10 0 1 0 0 

Pos(lm)Batch(ComBat)_data 4 6 30 1 0 0 

Notes: Methyl450 means Illumina Infinium HumanMethylation450 BeadChip Array, and Methyl27 

means Illumina Infinium HumanMethylation27 BeadChip Array. N probes means the number of the 

probes after filtering and pre-processing. NA means the data is not available. The result data means the 

number of loci correlated at methylation sites and position FDR q-value < 0.05 in different datasets. The 

table cell highlighted in yellow is notable due to the corrected order.  
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Table 3. Information of verified datasets we used in this study. We used two Methyl450 

datasets and three Methyl27 datasets from public databases and our own data to verify 

the results. 

Datasets 
(NSAMPLES) 

Methyl450 Datasets Methyl27 Datasets 

GSE58885 
(179) 

GSE74193 
(673) 

GSE38873 
(153) 

BrainCloud 
(106) 

GSE26133 
(160) 

Tissue FC DLPC (BA46/9) CRBLM CRBLM LCLs 
Age, year -0.25± 0.07 36.13± 22.92 44.27± 9.84 35.86± 23.62 NA 
Sex      
    Female 79 244 57 51 90 
    Male 100 429 96 55 70 
Race      
    White NA 317 153 42 0 
    AA NA 356 0 64 0 
    African NA 0 0 0 Yoruba 160 
Affection status      
    Control 179 224 47 106 160 
    Schiz 0 449 45 0 0 
    Dep 0 0 15 0 0 
    BP 0 0 46 0 0 

Notes: NSAMPLES, # of samples; NA, Not available; FC, frontal cortex; DLPC, Dorsolateral prefrontal 

cortex; BA, Brodmann area; CRBLM, Cerebellum; Schiz, Schizophrenia; Dep, Depression; BP, Bipolar; 

AA, African American; LCLs, lymphoblastoid cell lines. 
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