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Abstract 
Understanding biological complexity is one of the most important scientific challenges nowadays. 
Protein folding is a complex process involving many interactions between the molecules. Fractional 
calculus is an effective modeling tool for complex systems and processes. In this work we have 
proposed a new fractional field theoretical approach to protein folding. 
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1. Introduction 
Protein folding is a complex process involving many different interactions between the molecules 
that has attracted many attentions from physicist, chemists and biologists in recent years. Protein 
folding is the process by which proteins achieve rapidly and spontaneously their highly structured 
conformation with a certain biological function in a self‐assemble manner, while misfolding process 
of protein can be seen as the failure to attain this fully functional conformation that may causes many 
different diseases such as: bone fragility, Alzheimer's disease, Parkinson disease and so on [1, 2]. 
There are many different approaches to address this issue such as: statistical mechanics and polymer 
dynamics etc. [3-7]. In the last decades, fractional calculus have found extensive applications in 
various fields of science from physics to biology, chemistry, engineering, economy and even in 
modeling of some human autoimmune diseases such as psoriasis[8-26]. Today fractional calculus is 
well known as an important effective modeling tool for complex systems and processes and can be 
used for describing various complex phenomena such as viscoelasticity, dielectric relaxations, fluid 
transport in fractal networks and so on [27-29]. 
The fractional variational principle can be considered as an important part of fractional calculus. 
Recently Agrawal has written a review article on this subject that can be found in [30] and discussed 
about various features of fractional variational calculus. Applications of fractional variational 
calculus have gained considerable popularity in science and engineering and many important results 
were obtained [31-39]. In our recent work we have propose the fractional sine-Gordon Lagrangian 
density, then using the fractional Euler-Lagrange equations, we have obtained fractional sine-Gordon 
equation [40]. Generalizing our previous results and using the approach present in [41, 42], we will 
propose a new fractional field theoretical approach to protein folding. 
In the following, we will briefly review our mathematical tools. Then in Sec. 3 we present a new 
fractional protein Lagrangian density. Then using the fractional Euler-Lagrange equations we obtain 
its related equation of motion. Finally, in Sec. 4, we will present some conclusions. 
 
2. Mathematical Tools 
The fractional derivative has different definitions such as: Grünwald–Letnikov, Riemann-Liouville, 
Weyl, Riesz, Hadamard and Caputo fractional derivative [43], however in the papers cited above, the 
problems have been formulated mostly in terms of two types of fractional derivatives, namely 
Riemann-Liouville (RL) and Caputo. Among mathematicians, RL fractional derivatives have been 
popular largely because they are amenable to many mathematical manipulations. However, the RL 
derivative of a constant is not zero, and in many applications it requires fractional initial conditions 
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which are generally not specified. Many believe that fractional initial conditions are not physical. In 
contrast, Caputo derivative of a constant is zero, and a fractional differential equation defined in 
terms of Caputo derivatives require standard boundary conditions. For these reasons, Caputo 
fractional derivatives have been popular among engineers and scientists. In this section we briefly 
present some fundamental definitions. The left and the right partial Riemann–Liouville and Caputo 
fractional derivatives of order k , 0 1k   of a function f  depending on n  variables, 1,..., nx x

defined over the domain
1
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n

i i
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  with respect to kx  are as follow [35]: 
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The Right (Backward) RL fractional derivative  
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The Left (Forward) Caputo fractional derivative  
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The Right (Backward) Caputo fractional derivative  
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The fractional variational principle represents an important part of fractional calculus and has found 
many applications in physics. As it is mentioned in [30] there are several versions of fractional 
variational principles and fractional Euler-Lagrange equations due to the fact that we have several 
definitions for the fractional derivatives. In this work we use new approach presented in [35, 40] 
where authors developed the action principle for field systems described in terms of fractional 
derivatives, by use of a functional ( )S  as: 

    ( ) ( ), ( ), ( ), ( )C C
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1( ) ...k ndx dx dx and the integration is taken over the entire domain . From these definitions, we 
can obtain the fractional Euler-Lagrange equation as: 

   1 1
0

n n

k kC C
k kk k

L L L 
    

  

  
    

    
   

Above equation is the Euler–Lagrange equation for the fractional field system and for , 1   , gives 
the usual Euler–Lagrange equations for classical fields. 
 
3. Fractional Protein Lagrangian Density 
In this section we present our new fractional Lagrangian model on protein folding that is in fact a 
fractional generalized version of the model presented recently in [41]. Using fractional Lagrangian 
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model we will be able to consider complex nature of protein folding. Following the model presented 
in [41, 42] we propose the protein Lagrangian including three terms: 
I- Nonlinear unfolding 4 −protein at the initial state: 
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II- Nonlinear sources injected into the backbone, modeled by 4 self-interaction: 
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III- The interaction term (with the coupling constant ): 
  † † IIIL       

where ( )x is an arbitrary quantities with dimension of [second for 0 ] and dimension 
of [meter for 1, 2,3 ]to ensure that all quantities have correct dimensions. The total 
potential (from all three terms) reads: 
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Assuming that  is small enough to be approximately at the same order with   , the first term can 

be expanded in term of  , giving (up to the second order accuracy): 
2
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from which the total fractional Lagrangian:   tot I II IIIL L L L can be (up to the second order 
accuracy) approximated by: 
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From the fractional Euler–Lagrangian equations for the total Lagrangian Eq. (6) we have: 
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the following coupled and perturbed  fractional Sine–Gordon equation and (nonlinear) fractional 
Klein–Gordon equation with cubic forcing in (1+1) dimension are derived: 
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where  − and   −terms determine nonlinearities of backbone and source, respectively. 
Solving these two coupled partial differential equations with specific boundary conditions would 
describe the contour of conformational changes for protein folding. 
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4. Conclusion 
There are many different approaches addressing complex phenomena such as protein 
folding/misfolding however we believe that such these phenomena can be comprehensively 
understood by using fractional calculus. In this work we have proposed a new fractional field 
theoretical approach to protein folding. We have derived two coupled partial differential equations 
(i.e. fractional Sine–Gordon equation and fractional Klein–Gordon equation) that their solutions with 
specific boundary conditions would describe the contour of conformational changes for protein 
folding. We hope to present our other result in future showing important role of fractional calculus 
in describing complex phenomena in bio structures such as protein, DNA and RNA dynamics. 
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