
Ludicrous Speed Linear Mixed Models for Genome-Wide Association Studies

Carl Kadie1 and David Heckerman1,2
1Microsoft Research, Redmond, WA 98052
2Human Longevity, Inc., Mountain View, CA 94041

 carlk@microsoft.com, heckerma@hotmail.com

Abstract

We have developed Ludicrous Speed Linear Mixed Models, a version of FaST-LMM optimized for the

cloud. The approach can perform a genome-wide association analysis on a dataset of one million SNPs

across one million individuals at a cost of about 868 CPU days with an elapsed time on the order of two

weeks.

Introduction

Identifying SNP-phenotype correlations using genome-wide association studies (GWAS) is difficult

because effect sizes are so small for common, complex diseases. To address this issue, institutions are

creating extremely large cohorts with sample sizes on the order of one million. Unfortunately, such

cohorts are likely to contain confounding factors such as population structure and family/cryptic

relatedness, which leads to inflated type-I errors when analyzed with traditional methods.

The linear mixed model (LMM) can often correct for such confounding factors [1]. Unfortunately, in its

original form, its computational complexity of runtime and memory made it prohibitively expensive to

use. Relatively recently, improvements through algebraic transformations known as FaST-LMM, have

made it possible to scale LMM computations to sample sizes of about 100 thousand [2,3].

Here, we present a cloud implementation of FaST-LMM, called Ludicrous Speed LMM. Ludicrous Speed

LMM can process one million samples and one million test SNPs in a reasonable amount of time, at a

reasonable cost, and with arbitrarily little memory provided extremes (e.g., testing one SNP at a time or

all SNPs at once) are avoided.

Methods

We begin with a description of linear mixed models and FaST-LMM. The basic idea behind the linear

mixed model is that a single test SNP is regressed on a trait, with K other SNPs acting as covariates. For

reasons that will become clear shortly, we will refer to these covariates as similarity SNPs. Let yi, si, and

Gi=(gi1, …, giK) denote the trait, test SNP, and K similarity SNPs for the ith individual, respectively. Let

y=(y1,…yN)T, s=(s1,…sN)T, and G=(G1
T,…,GN

T)T denote the observations of the trait, test SNP, and K

similarity SNPs, respectively, across the individuals. Thus, G is an N x K matrix, where the ijth element

corresponds to the jth similarity SNP of the ith individual. We model the influence of the test SNP and

similarity SNPs on the trait as follows:

y ~ N(1+ ss + G; e
2 I),

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/154682doi: bioRxiv preprint

mailto:carlk@microsoft.com
mailto:heckerma@hotmail.com
https://doi.org/10.1101/154682

where is an offset and 1 is column of ones corresponding to the offset, s is the weight relating the

test SNP to the trait, T=(1,…K) are the weights relating the similarity SNPs to the trait, e
2 is a scalar,

and N(; ) denotes the multivariate normal distribution.

Taking a Bayesian approach, we assume that each of the betas corresponding to the similarity SNPs are

mutually independent, each having a normal distribution with the same variance

 i ~ N(0; g
2), i=1,…,K.

Further, we standardize the observations of each similarity SNP across the individuals to have variance 1

(and mean 0) so that, a priori, each SNP has an equal influence on the trait. We similarly standardize the

test SNP.

Averaging over the distributions of the is, we obtain

y ~ N(1 + ss; e
2 I+ g

2GGT). (1)

The distribution in (1) is a linear mixed model. As we have just shown, it corresponds to a Bayesian

linear regression, also known as L2-regularized linear regression. The distribution also corresponds to a

Gaussian process with a linear covariance or kernel function. The model implies that the correlation

between the traits of two individuals is related to the dot product of the similarity SNPs for those two

individuals, hence the name similarity SNPs. The similarity matrix GGT is known as the Realized

Relationship Matrix (RRM). In general, other similarity measures can be and have been used.

To compute a P value for the test SNPs, the parameters of the model (se g) are first fit with

restricted maximum likelihood (REML). All parameters can be computed in closed form except the ratio

of g
2 to e

2, which is usually (and herein) determined via grid search [2]. Then, an F-test is used to

evaluate the hypothesis s=0 [4]. To improve computational efficiency with little effect on accuracy,

rather than fit g
2/e

2 for each test SNP, we obtain a fit based on distribution (1) with the test SNP

removed, and then use it when fitting the remaining parameters for each test SNP [1].

The expression g
2/(g

2 +e
2) obtained from the REML fit is an estimate of narrow-sense heritability, a

quantity that addresses the important nature-versus-nurture question. When the elements of G are

scaled so that its diagonal sums to N (the expected value of the diagonal), the estimate of narrow-sense

heritability is more accurate [5]. Our implementation of Ludicrous Speed LMM includes this scaling.

As we mentioned in the introduction, a straightforward implementation of GWAS based on (1) is

computationally inefficient. Namely, P-value computations require manipulations of GGT that scale

cubically with sample size N, yielding an overall runtime complexity of O(MN3) when testing M SNPs.

Thus, the model is infeasible for GWAS with sample sizes greater than 104.

The FaST-LMM algorithm employs algebraic transformations, allowing computations to scale to sample

sizes on the order of 105. FaST-LMM consists of two key transformations. First, if we factor GGT into the

matrix product UDUT, where U is an orthogonal matrix and D is a diagonal matrix (a procedure known as

spectral decomposition), then it can be shown that (1) can be re-written as the linear regression

UTy ~ N(UT + sUTs; e
2 I+ g

2D). (2)

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/154682doi: bioRxiv preprint

https://doi.org/10.1101/154682

That is, the model takes the form of a linear regression after the data is rotated by UT. GWAS based on

(2) can be used to test M SNPs with a runtime complexity of O(MN2).

The second transformation makes use of the fact that when an RRM is used for the similarity matrix, its

spectral decomposition can be replaced by an SVD of G. (With G=UVT, GGT= UUT.) Furthermore,

when the number of similarity SNPs K is less than the sample size N, the SVD of G can be replaced by a

skinny SVD of G (GTG= VVT yields V and . G=UVT yields U by matrix multiplication.) The resulting

model can be used to test M SNPs with a runtime complexity of O(MNK).

The condition K<N can often be satisfied, because linkage disequilibrium allows us to build G from a

subset of available SNPs while still maintaining control of type-I error. In practice, K should be chosen so

that there is no visible inflation in the resulting quantile-quantile QQ plots of actual P values versus

expected P values under the null hypothesis. A practical approach to identifying a suitable value for K is

to start with a small value, and then increase it until no inflation is observed. SNPs should be selected

such that any two adjacent SNPs are roughly equally correlated.

There is one important remark that should be made before we move to a description of our

improvements. From the Bayesian-linear-regression formulation of the linear mixed model, it is clear

that the test and similarity SNPs should be disjoint. Otherwise, we would be conditioning on the SNP we

are trying to test. Moreover, due to linkage disequilibrium, we should avoid the use of similarity SNPs

that are near the test SNP. Doing otherwise has been termed proximal contamination [2]. In practice,

when testing SNPs on a given chromosome, G is typically built with similarity SNPs from all but that

chromosome. We employ this practice here.

Improvements to FaST-LMM: Ludicrous Speed LMM

Here, we describe Ludicrous Speed LMM, a cloud implementation of FaST-LMM including improvements

of parallelization, block decomposition, and multithreading. We describe the improvements across the

stages of analysis, partitioned as follows:

■ Stage 0: G – Read G0 (the pre-standardized similarity SNPS), standardize them, regress out any

covariates, and output G.

■ Stage 1: GtG – Compute GTG.

■ Stage 2: SVD – For each chromosome in the test SNPs, remove the entries of GTG corresponding

to the chromosome, compute the singular value decomposition (SVD) on the remaining product.

Herein, for concreteness, we assume all test SNPs come from the 22 human autosomal

chromosomes.

■ Stage 3: PostSVD – For each chromosome in the test SNPs, compute the corresponding rotation

matrix U, and identify the optimal ratio of g
2 to e

2.

■ Stage 4: TestSNPs – For each test SNP, read its data, standardize the SNP, regress out covariates,

use the appropriate U, and compute the P value for the SNP.

We optimized stage 0 by (1) reading selected SNPs in batches to keep the memory use arbitrarily small,

(2) reading and standardizing SNPs on multiple processes, and (3) computing the sum of squares across

individuals for each similarity SNP. The result of step 3 is a 50K vector, used to scale G in the SVD step

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/154682doi: bioRxiv preprint

https://doi.org/10.1101/154682

(see below). Calculating the vector here, but using it later, allows us to create just a single G, instead of

needing to create 22 G matrices, one for each chromosome. We write G to disk as a two-dimensional

array of doubles. It can be accessed via memory mapping or by streaming in blocks. In later stages, we

will see how it can be used without loading all of it in memory.

We optimized stage 1, the computation of GTG, by (1) distributing the calculation to compute it in

blocks, (2) using a tree copy to put the whole G file on each compute node on a solid-state drive (SSD),

(3) tree scaling, that is allocating compute nodes only when there is a source for them to tree copy from

and deallocating when there is no more work for a node to do, (4) using sub-blocks for the computation

of each block (allowing arbitrarily little memory to be used), and (5) doing the local calculations via

multithreaded C++ (with one thread reading from the SSD and the others multiplying, yielding a CPU

bounded procedure). Tree scaling reduces our compute costs with only minor effects on the elapsed

compute time.

We optimized stage 2, the computation of the SVDs, by (1) distributing the computations across 22

compute nodes, one for each chromosome, (2) computing the SVDs using LAPACK’s divide-and-conquer

algorithm, and (3) after computing the SVD, using the sum of squares vector created in stage 0 to adjust

the results to match the scaling we would have obtained had we operated on the scaled G matrix.

Regarding step 2, the LAPACK algorithm scales as N2.8, and MKL provides an optimized, multithreaded

version of it. The default MKL version doesn’t work because its integer indexes are too small, but the

MKL ILP64 version works well.

We optimized stage 3 by (1) using tree copy and tree scaling, now to get G on each compute node on an

SSD, (2) accessing G in blocks to make memory use arbitrarily small, and (3) using multithreaded matrix

multiplication for high CPU utilization.

The computations in step 4 are dominated by the multiplication of the test SNPs by UT. We optimized

this multiplication by (1) dividing the test SNPs into blocks and distributing the work for each block

across compute nodes, (2) keeping each U file in separate cluster storage so that all 22 files can be

downloaded to their first compute node with little interference with the others, using tree copy and tree

scaling for each chromosome so that each compute node needs only one of the 22 U files (each such file

is large, on the order of 400 GB), (3) using sub-blocks to avoid large memory use as before, and (4) doing

the local calculations via multithreaded C++ so that the calculations are CPU bound. Note that each

compute node needs only a small portion of the test SNPs and so downloads only that small portion.

Generation of data for testing

As we did not have access to data from a large cohort for testing, we generated synthetic data. One

million SNPs were generated across one million samples with an allele-frequency distribution taken from

human data. The SNPs were assigned to chromosomes in proportion to human DNA. Traits were

generated at random with mean 2/3 and a standard deviation of 3. Two covariates were generated at

random, each with mean 1.5 and a standard deviation of 2.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/154682doi: bioRxiv preprint

https://doi.org/10.1101/154682

Results

We applied Ludicrous Speed LMM on the synthetic data set using up to 115 compute nodes on an Azure

cluster with D15v2 compute nodes (20 processors each). 50,000 similarity SNPs were used.

Total cluster storage was about 10 TB. The largest memory use on a single node was 140 GB. Total

computation time (not counting node startup and monitoring) was 868 CPU days. Table 1 shows CPU

use per stage. Figure 1 shows the CPU use per task. Generally, the cost of each chromosome is

proportional to its size. The exceptions were caused by failures requiring partial restarts. In terms of

elapsed time, the run took 19 days, but would have taken 9 days with no restarts. If 1000 nodes had

been used without restarts, the run would have taken 5 days, and the CPU cost would have increased

only 9% due to copying large files to more machines.

Table 1. CPU use per stage.

Stage
CPU days

0 G 1

1 GtG 12

2 SVD 9

3 PostSVD 19

4 TestSNPS 827

Grand Total 868

Figure 1. CPU use per task.

0

10

20

30

40

50

60

70

80

90

G

G
tG

SV
D

P
o

st
SV

D 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

CPU Days

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/154682doi: bioRxiv preprint

https://doi.org/10.1101/154682

Summary

We have developed Ludicrous Speed LMM, a version of FaST-LMM optimized for the cloud. Using

50,000 similarity SNPs, the approach can analyze a dataset of one million test SNPs across one million

individuals at a cost of about 868 CPU days with an elapsed time on the order of two weeks.

If you are interested in using Ludicrous Speed LMM, please mail genomics@microsoft.com with “GWAS”

in the subject line.

References

1. Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple

levels of relatedness. Nat. Genet. 38, 203–8 (2006).

2. Lippert, C. et al. FaST linear mixed models for genome-wide association studies. Nat. Methods 8,

833–5 (2011).

3. Widmer, C. et al. Further Improvements to Linear Mixed Models for Genome-Wide Association

Studies. Sci. Rep. 4, 6874 (2014).

4. Kang, H. M. et al. Efficient control of population structure in model organism association

mapping. Genetics 178, 1709–23 (2008).

5. Lippert, C. Personal communication (2017).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/154682doi: bioRxiv preprint

mailto:genomics@microsoft.com
https://doi.org/10.1101/154682

