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Abstract 

We have developed Ludicrous Speed Linear Mixed Models, a version of FaST-LMM optimized for the 

cloud.  The approach can perform a genome-wide association analysis on a dataset of one million SNPs 

across one million individuals at a cost of about 868 CPU days with an elapsed time on the order of two 

weeks. 

 

Introduction 

Identifying SNP-phenotype correlations using genome-wide association studies (GWAS) is difficult 

because effect sizes are so small for common, complex diseases.  To address this issue, institutions are 

creating extremely large cohorts with sample sizes on the order of one million.  Unfortunately, such 

cohorts are likely to contain confounding factors such as population structure and family/cryptic 

relatedness, which leads to inflated type-I errors when analyzed with traditional methods.   

The linear mixed model (LMM) can often correct for such confounding factors [1].  Unfortunately, in its 

original form, its computational complexity of runtime and memory made it prohibitively expensive to 

use.  Relatively recently, improvements through algebraic transformations known as FaST-LMM, have 

made it possible to scale LMM computations to sample sizes of about 100 thousand [2,3].   

Here, we present a cloud implementation of FaST-LMM, called Ludicrous Speed LMM.  Ludicrous Speed 

LMM can process one million samples and one million test SNPs in a reasonable amount of time, at a 

reasonable cost, and with arbitrarily little memory provided extremes (e.g., testing one SNP at a time or 

all SNPs at once) are avoided.  

Methods 

We begin with a description of linear mixed models and FaST-LMM.  The basic idea behind the linear 

mixed model is that a single test SNP is regressed on a trait, with K other SNPs acting as covariates.  For 

reasons that will become clear shortly, we will refer to these covariates as similarity SNPs.  Let yi, si, and 

Gi=(gi1, …, giK) denote the trait, test SNP, and K similarity SNPs for the ith individual, respectively.  Let 

y=(y1,…yN)T, s=(s1,…sN)T, and G=(G1
T,…,GN

T)T denote the observations of the trait, test SNP, and K 

similarity SNPs, respectively, across the individuals.  Thus, G is an N x K matrix, where the ijth element 

corresponds to the jth similarity SNP of the ith individual.  We model the influence of the test SNP and 

similarity SNPs on the trait as follows: 

y ~ N(1+ ss + G; e
2 I), 
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where is an offset and 1 is column of ones corresponding to the offset, s is the weight relating the 

test SNP to the trait, T=(1,…K) are the weights relating the similarity SNPs to the trait, e
2 is a scalar, 

and N(; ) denotes the multivariate normal distribution. 

Taking a Bayesian approach, we assume that each of the betas corresponding to the similarity SNPs are 

mutually independent, each having a normal distribution with the same variance 

 i ~ N(0; g
2), i=1,…,K. 

Further, we standardize the observations of each similarity SNP across the individuals to have variance 1 

(and mean 0) so that, a priori, each SNP has an equal influence on the trait.  We similarly standardize the 

test SNP. 

Averaging over the distributions of the is, we obtain 

y ~ N(1 + ss; e
2 I+ g

2GGT).        (1) 

The distribution in (1) is a linear mixed model.  As we have just shown, it corresponds to a Bayesian 

linear regression, also known as L2-regularized linear regression.  The distribution also corresponds to a 

Gaussian process with a linear covariance or kernel function.  The model implies that the correlation 

between the traits of two individuals is related to the dot product of the similarity SNPs for those two 

individuals, hence the name similarity SNPs.  The similarity matrix GGT is known as the Realized 

Relationship Matrix (RRM).  In general, other similarity measures can be and have been used.   

To compute a P value for the test SNPs, the parameters of the model (se g) are first fit with 

restricted maximum likelihood (REML).  All parameters can be computed in closed form except the ratio 

of g
2 to e

2, which is usually (and herein) determined via grid search [2].  Then, an F-test is used to 

evaluate the hypothesis s=0 [4].  To improve computational efficiency with little effect on accuracy, 

rather than fit g
2/e

2 for each test SNP, we obtain a fit based on distribution (1) with the test SNP 

removed, and then use it when fitting the remaining parameters for each test SNP [1]. 

The expression g
2/(g

2 +e
2) obtained from the REML fit is an estimate of narrow-sense heritability, a 

quantity that addresses the important nature-versus-nurture question.  When the elements of G are 

scaled so that its diagonal sums to N (the expected value of the diagonal), the estimate of narrow-sense 

heritability is more accurate [5].  Our implementation of Ludicrous Speed LMM includes this scaling. 

As we mentioned in the introduction, a straightforward implementation of GWAS based on (1) is 

computationally inefficient.  Namely, P-value computations require manipulations of GGT that scale 

cubically with sample size N, yielding an overall runtime complexity of O(MN3) when testing M SNPs.  

Thus, the model is infeasible for GWAS with sample sizes greater than 104.   

The FaST-LMM algorithm employs algebraic transformations, allowing computations to scale to sample 

sizes on the order of 105.  FaST-LMM consists of two key transformations.  First, if we factor GGT into the 

matrix product UDUT, where U is an orthogonal matrix and D is a diagonal matrix (a procedure known as 

spectral decomposition), then it can be shown that (1) can be re-written as the linear regression  

UTy ~ N(UT + sUTs; e
2 I+ g

2D).        (2) 
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That is, the model takes the form of a linear regression after the data is rotated by UT.  GWAS based on 

(2) can be used to test M SNPs with a runtime complexity of O(MN2).   

The second transformation makes use of the fact that when an RRM is used for the similarity matrix, its 

spectral decomposition can be replaced by an SVD of G.  (With G=UVT, GGT= UUT.)  Furthermore, 

when the number of similarity SNPs K is less than the sample size N, the SVD of G can be replaced by a 

skinny SVD of G (GTG= VVT yields V and .  G=UVT yields U by matrix multiplication.)  The resulting 

model can be used to test M SNPs with a runtime complexity of O(MNK).   

The condition K<N can often be satisfied, because linkage disequilibrium allows us to build G from a 

subset of available SNPs while still maintaining control of type-I error.  In practice, K should be chosen so 

that there is no visible inflation in the resulting quantile-quantile QQ plots of actual P values versus 

expected P values under the null hypothesis.  A practical approach to identifying a suitable value for K is 

to start with a small value, and then increase it until no inflation is observed.  SNPs should be selected 

such that any two adjacent SNPs are roughly equally correlated. 

There is one important remark that should be made before we move to a description of our 

improvements.  From the Bayesian-linear-regression formulation of the linear mixed model, it is clear 

that the test and similarity SNPs should be disjoint.  Otherwise, we would be conditioning on the SNP we 

are trying to test.  Moreover, due to linkage disequilibrium, we should avoid the use of similarity SNPs 

that are near the test SNP.  Doing otherwise has been termed proximal contamination [2].  In practice, 

when testing SNPs on a given chromosome, G is typically built with similarity SNPs from all but that 

chromosome.  We employ this practice here. 

Improvements to FaST-LMM: Ludicrous Speed LMM 

Here, we describe Ludicrous Speed LMM, a cloud implementation of FaST-LMM including improvements 

of parallelization, block decomposition, and multithreading.  We describe the improvements across the 

stages of analysis, partitioned as follows: 

■ Stage 0: G – Read G0 (the pre-standardized similarity SNPS), standardize them, regress out any 

covariates, and output G. 

■ Stage 1: GtG – Compute GTG. 

■ Stage 2: SVD – For each chromosome in the test SNPs, remove the entries of GTG corresponding 

to the chromosome, compute the singular value decomposition (SVD) on the remaining product.  

Herein, for concreteness, we assume all test SNPs come from the 22 human autosomal 

chromosomes. 

■ Stage 3: PostSVD – For each chromosome in the test SNPs, compute the corresponding rotation 

matrix U, and identify the optimal ratio of g
2 to e

2. 

■ Stage 4: TestSNPs – For each test SNP, read its data, standardize the SNP, regress out covariates, 

use the appropriate U, and compute the P value for the SNP. 

We optimized stage 0 by (1) reading selected SNPs in batches to keep the memory use arbitrarily small, 

(2) reading and standardizing SNPs on multiple processes, and (3) computing the sum of squares across 

individuals for each similarity SNP.  The result of step 3 is a 50K vector, used to scale G in the SVD step 
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(see below). Calculating the vector here, but using it later, allows us to create just a single G, instead of 

needing to create 22 G matrices, one for each chromosome.  We write G to disk as a two-dimensional 

array of doubles. It can be accessed via memory mapping or by streaming in blocks. In later stages, we 

will see how it can be used without loading all of it in memory. 

We optimized stage 1, the computation of GTG, by (1) distributing the calculation to compute it in 

blocks, (2) using a tree copy to put the whole G file on each compute node on a solid-state drive (SSD), 

(3) tree scaling, that is allocating compute nodes only when there is a source for them to tree copy from 

and deallocating when there is no more work for a node to do, (4) using sub-blocks for the computation 

of each block (allowing arbitrarily little memory to be used), and (5) doing the local calculations via 

multithreaded C++ (with one thread reading from the SSD and the others multiplying, yielding a CPU 

bounded procedure). Tree scaling reduces our compute costs with only minor effects on the elapsed 

compute time. 

We optimized stage 2, the computation of the SVDs, by (1) distributing the computations across 22 

compute nodes, one for each chromosome, (2) computing the SVDs using LAPACK’s divide-and-conquer 

algorithm, and (3) after computing the SVD, using the sum of squares vector created in stage 0 to adjust 

the results to match the scaling we would have obtained had we operated on the scaled G matrix. 

Regarding step 2, the LAPACK algorithm scales as N2.8, and MKL provides an optimized, multithreaded 

version of it. The default MKL version doesn’t work because its integer indexes are too small, but the 

MKL ILP64 version works well. 

We optimized stage 3 by (1) using tree copy and tree scaling, now to get G on each compute node on an 

SSD, (2) accessing G in blocks to make memory use arbitrarily small, and (3) using multithreaded matrix 

multiplication for high CPU utilization. 

The computations in step 4 are dominated by the multiplication of the test SNPs by UT.  We optimized 

this multiplication by (1) dividing the test SNPs into blocks and distributing the work for each block 

across compute nodes, (2) keeping each U file in separate cluster storage so that all 22 files can be 

downloaded to their first compute node with little interference with the others, using tree copy and tree 

scaling for each chromosome so that each compute node needs only one of the 22 U files (each such file 

is large, on the order of 400 GB), (3) using sub-blocks to avoid large memory use as before, and (4) doing 

the local calculations via multithreaded C++ so that the calculations are CPU bound.  Note that each 

compute node needs only a small portion of the test SNPs and so downloads only that small portion. 

Generation of data for testing 

As we did not have access to data from a large cohort for testing, we generated synthetic data.  One 

million SNPs were generated across one million samples with an allele-frequency distribution taken from 

human data.  The SNPs were assigned to chromosomes in proportion to human DNA.  Traits were 

generated at random with mean 2/3 and a standard deviation of 3.  Two covariates were generated at 

random, each with mean 1.5 and a standard deviation of 2.   
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Results 

We applied Ludicrous Speed LMM on the synthetic data set using up to 115 compute nodes on an Azure 

cluster with D15v2 compute nodes (20 processors each).  50,000 similarity SNPs were used.  

Total cluster storage was about 10 TB.  The largest memory use on a single node was 140 GB.  Total 

computation time (not counting node startup and monitoring) was 868 CPU days.  Table 1 shows CPU 

use per stage.  Figure 1 shows the CPU use per task. Generally, the cost of each chromosome is 

proportional to its size. The exceptions were caused by failures requiring partial restarts.  In terms of 

elapsed time, the run took 19 days, but would have taken 9 days with no restarts.  If 1000 nodes had 

been used without restarts, the run would have taken 5 days, and the CPU cost would have increased 

only 9% due to copying large files to more machines. 

 

Table 1.  CPU use per stage. 

Stage 
CPU days 

0 G 1 

1 GtG 12 

2 SVD 9 

3 PostSVD 19 

4 TestSNPS 827 

Grand Total 868 

 

 

 

Figure 1. CPU use per task.  
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Summary 

We have developed Ludicrous Speed LMM, a version of FaST-LMM optimized for the cloud.  Using 

50,000 similarity SNPs, the approach can analyze a dataset of one million test SNPs across one million 

individuals at a cost of about 868 CPU days with an elapsed time on the order of two weeks.   

If you are interested in using Ludicrous Speed LMM, please mail genomics@microsoft.com with “GWAS” 

in the subject line. 
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