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Abstract 
Cellular regulatory networks are not static, but continuously reconfigure in response to 

stimuli via alterations in gene expression and protein confirmations. However, typical 

computational approaches treat them as static interaction networks derived from a single 

experimental time point. Here, we provide a method for learning the dynamic 

modulation, or rewiring of pairwise relationships (edges) from a static single-cell data. 

We use the epithelial-to-mesenchymal transition (EMT) in murine breast cancer cells as 

a model system, and measure mass cytometry data three days after induction of the 

transition by TGFβ. We take advantage of transitional rate variability between cells in the 

data by deriving a pseudo-time EMT trajectory. Then we propose methods for visualizing 

and quantifying time-varying edge behavior over the trajectory and use these methods: 

TIDES (Trajectory Imputed DREMI scores), and measure of edge dynamism (3D-

DREMI) to predict and validate the effect of drug perturbations on EMT. 

 
Introduction 
Different cell types exhibit distinct responses to environmental cues, resulting in changes 

in cellular state. Responses to environmental cues play a key role in development, 

cellular differentiation and fate. For instance, growth factors like TGFβ [1] guide the 

patterning of tissues during embryogenesis [2]. In hematopoiesis growth factors such as 

GM-CSF can drive the development of neutrophils, monocytes and macrophages [3]. 
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During wound healing, TGFβ can induce trans-differentiation from fibroblasts to 

myofibroblasts. During cell state transitions, configurations of signaling and 

transcriptional networks rewire, often causing cells to interpret external signals differently 

and to enable new cellular functions. Our goal is to develop computational methods that 

infer rewiring of cellular signaling and regulatory networks during state transitions. 

Further, our methods should facilitate the identification of critical events that are 

necessary for the transition. 

 

We use the EMT as a model system because it is a substantial change in cell state, that 

can be generated via a controllable means in model systems. This state transition is 

important in processes such as embryogenesis, wound healing and some aspects of 

cancer [4-6]. EMT can be initiated by an external TGFβ signal, resulting in signaling and 

transcriptional network activation, followed by behavioral and morphological changes. 

TGFβ-induced EMT is thought to involve among others the SMAD, MAPK and AKT 

pathways, which activate multiple transcription factors such as Snail, Slug, Twist and 

Zeb and in turn their targets [7, 8]. The induction of these factors causes cells to lose 

epithelial characteristics such as the cell-to-cell adhesion and polarity, and acquire 

mesenchymal characteristics such as migratory competence and spindle-like shape. We 

study EMT using a mouse breast-cancer cell line [9, 10], and use mass-cytometry to 

follow the transition of cell state starting with the induction by TGFβ. 

 

Signaling networks can be learned from high dimensional single cell data. For example, 

Sachs et.al. [11] used Bayesian networks to qualitatively learn signaling influences using 

flow cytometry measurements. Krishnaswamy et.al. [12] inferred a quantitative model of 

signaling interactions from mass cytometry data using a mutual information-based metric 

known as DREMI. However, most single cell datasets include only a single time point 

and hence most network-learning methods infer static versions of a time-varying 

phenomenon (a single network model). By contrast, we recognize that signaling 

networks are dynamic and reconfigurable entities and that a dynamic view is essential 

for describing state transition processes like EMT. To support this view, we propose a 

method that learns dynamic changes in signaling as a continuous process from static 

snapshots of data. This enables us to see how the signaling network is changing over a 

transition like EMT.  
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In EMT we observe considerable cell-to-cell variability in the rate at which cells 

transition. To glean dynamics from a single time point, we order cells onto a one-

dimensional trajectory that approximates the EMT progression [13, 14]. We developed 

new statistical methods, extending on our previous work [12] to model how signaling 

networks change continuously through EMT, treating relationships between molecules 

as a time-varying signaling edge. We validate our rewiring assessment using acute 

inhibitions that supports our inferred changes in signaling relationships. Our continuous 

view of rewiring also gives us insight into critical edges that may be essential for driving 

the transition. We find that inhibiting molecules that participate in such critical edges 

modulate the transition. 

 

Results 
Measuring signaling during TGFβ-induced EMT  

To study the signaling network and phenotypic changes during EMT (Figure 1A), we 

used Py2T murine breast cancer cells following chronic exposure to TGFβ [15] (Figure 

1B). Cells were sampled daily in biological triplicate over a four-day TGFβ time course. 

We used mass cytometry [16] to assay transcription factors and phosphorylation site 

abundance regulating signaling protein activity in single cells. A total of 32 markers were 

simultaneously measured, including three surface markers and 29 intracellular markers. 

The markers were chosen to assess epithelial (high expression of E-cadherin and CD24) 

and mesenchymal (high expression of Vimentin and CD44) states, signaling activity of 

the SMAD, AKT, MAPK, WNT and NFκB pathways, EMT transcription factors, cell cycle, 

and apoptosis (Supplementary Table 1).  

 

Starting on day two, we observed cells ranging from the epithelial to the mesenchymal 

state. Days two, three and four had 19%, 29% and 36% of cells in the mesenchymal 

state (Figure 1C, Supplementary Figures 1A-B). The epithelial cells showed high levels 

of E-cadherin and CD24. Cells labeled as mesenchymal recapitulated mesenchymal 

characteristics, including loss of E-cadherin and gain of Vimentin. The transitioning cells 

exhibited intermediate marker expression that shared both epithelial and mesenchymal 

characteristics, based on the expression of E-cadherin, CD24, CD44 and Vimentin 

(Supplementary Figures 2A-E). Taken together, we observed a continuum of cells from 

the epithelial to the mesenchymal state, underlining the transitional character of the 
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system, that either implies a high-degree of variability in the rate of transition or in 

commitment of a given cell to the EMT state. Therefore, rather than treating EMT as a 

two state-system, in all subsequent analyses we treated the heterogeneous population 

of cells as a continual trajectory and ordered cells along a pseudo-time axis of EMT 

progression, inferred using the Wanderlust algorithm [13]. We call the Wanderlust 

pseudo-time ordering “EMT-time” (Figures 2A-B). 

 

Extracting an EMT progression from static mass cytometry data via Wanderlust 

Given multi-dimensional single cell data, Wanderlust infers a one-dimensional axis of 

progression and has been shown to accurately recapitulate developmental trajectories 

[13, 14]. We applied Wanderlust separately to cells from days two, three and four after 

EMT induction using a subset of the measured markers (Supplementary Table 2). EMT-

time recapitulated expected changes: E-cadherin and CD24 showed a monotonic 

decrease in abundance while Vimentin and CD44 showed a monotonic increase through 

the transition (Figure 2B and Supplementary Figures 3A-C). The marker expression 

trend is robust across replicates (mean cross-correlation > 0.87) (Supplementary Figure 

3D). Moreover, the inferred trajectories are similar at different days following EMT 

induction. Supplementary Figure 3E shows that the Wanderlust trajectories are closely 

correlated between days 2, 3 and 4 (mean cross-correlation > 0.79), suggesting that 

EMT-time might represent a cell-state that is agnostic to the day of measurement, once 

the full range of cells from the epithelial to the mesenchymal state are present.  

  

Signaling edges along EMT progression 

Using the Wanderlust-derived EMT progression, we studied the rewiring or modulations 

of pairwise relationships i.e., edges in the signaling network. Such relationships are 

statistical dependencies and may or may not reflect direct phosphorylation or other 

specific biological mechanisms. Studying the dynamics of protein expression and protein 

phosphorylation levels can tell us which pathways are modulated. Studying an edge over 

time can tell us about how influences between molecules and pathways change. We first 

compared a canonical edge pPLCγ2-pMEK1/2 between the epithelial, transitional and 

mesenchymal states using DREMI and DREVI [12] to quantify and visualize edge 

strength. Figure 2C illustrates how the expression of pMEK1/2 and pPLCγ2 change 

along EMT-time. Figure 2D shows that the DREVI plot and DREMI scores are 

substantially different between the states along the progression. The DREMI score 
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between pPLCγ2 and pMEK1/2 increases from 0.08 to 0.14 from the epithelial to 

transitional state, and subsequently decreases to 0.06 as the cells approach the 

mesenchymal state (Figure 2D). Thus, the abundance of pPLCγ2 holds more 

information on the levels of pMEK1/2 in the intermediate state: the same increase in the 

abundance of pPLCγ2 (from 2 to 4) corresponds to only a small increase in the 

abundance of pMEK1/2 in epithelial cells (from 0.6 to 0.8) and mesenchymal cells (from 

2.1 to 2.3) but a higher increase in transitional cells (from 0.2 to 2).  

 

We sought to confirm whether signaling relationships were more dependent on the 

actual time point after TGFβ induction of EMT (wall time), or more on a cell’s position in 

the EMT progression as derived by Wanderlust (EMT-time). The latter is a possibility 

when different cells progress at individual rates through a fixed EMT program. We 

binned cells into four stages based on our inferred EMT-time (Figure 3A). For each bin, 

we computed DREMI scores for all pairs of signaling proteins. We found a high mean 

correlation of 0.72 between the DREMI scores across days (Figure 3B) when controlled 

for phase-of-transition (i.e., bins along EMT-time). This result also holds true across 

various replicates (Supplementary Figure 4A). This result suggests that in our 

experimental system many signaling relationships are determined by the phase, 

whereas differences in behavior between time points (wall time) in bulk measurements 

largely derive from the different proportions of cells in each phase. 

 

Since our data indicates a continuous trajectory with transitional cells between the 

epithelial and mesenchymal states, we formulated a method to model how relationships 

between proteins continuously rewire over the course of the EMT progression. We 

selected Day 3 as a representative sample where cells were relatively uniformly spread 

throughout the transition. This sets the stage for analysis of protein signaling 

relationships and their dynamics during the EMT cell-state transition.  

 

 

A method to infer rewiring of regulatory edges 

To gain a continuous view of edge rewiring (for any particular edge X - Y), we extended 

DREVI to a 3rd dimension, where the level of the molecule Y is modeled as a function of 

two parameters: the abundance of the molecule X and EMT-time (T). DREVI is based on 

the empirical conditional density, estimated directly from the data. As dimensionality 
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increases, data becomes sparser and therefore robust density estimation becomes more 

challenging. We extended the heat-equation based kernel density estimation [17] used 

in [12] to higher dimensions (See Methods). We then normalize the density estimate by 

two parent dimensions, rather than one dimension as in [12], to derive the conditional 

distribution on an X-T plane. We typically visualize a red surface representing the 

conditionally dense portion of DREVI surface that shows Y’s “typical” behavior for each 

level of X and point T along EMT-time (Figure 3C(I), right).  

 

Once the 3D-DREVI is computed, we can compute 3D-DREMI, measuring the degree of 

information X and T together provide for the value of Y, analogous to 2D-DREMI [12] 

(see Methods). In Figure 3C(I) the range of Y considerably drops when binned on X and 

T, thus its 3D-DREMI is high, relative to Figure 3C(II) (low 3D-DREMI) where the range 

does not change.  

 

While 3D-DREMI provides a general score indicating the degree in which both X and T 

influence Y, it does not directly address how edge strength changes over time. To derive 

a quantification of the change in edge strength over the course of the trajectory we 

introduce a new dynamic measure of dependency that we call Trajectory Interpolated 

DREMI Scores (TIDES). A TIDES curve is computed by first computing a 3D conditional 

density estimate f(T, X, Y) where T is EMT-time and X-Y are two molecules whose time 

varying dependency we intend to assess. Next we compute 2D DREMI in slices along 

fixed values T (EMT-time) by linearly interpolating the 3D conditional density at small 

intervals to obtain interpolated 2D DREVI slices and computing the DREMI of these 

slices (See Figure 3D-E, Methods for details). Thus, the projection of the 3D-conditional 

density on to a slice allows us to compute the DREMI score between the two markers at 

any given EMT-time. When taking a causal interpretation of an edge (possibly due to 

prior knowledge of mechanism), higher DREMI suggests that X exerts a stronger 

influence on Y. Computing DREMI at each point along EMT-time results in a TIDES 

curve, which provides a concise, quantitative view describing how pairwise molecular 

relationships change during the progression.  

 

A continuous view of rewiring during EMT 

TIDES allows us to examine how the relationship between two molecules evolves during 

a state transition. For example, the relationship between signaling molecule GSK3β and 
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the transcription factor Snail1, Figure 3D(I). GSK3β phosphorylates Snail1 at two motifs 

and is known to inactivate its transcriptional activity and cause protein degradation [7]. 

However, phosphorylation of GSK3β (pGSK3β) (e.g. through the AKT and PKC 

pathways [5]) inhibits its activity and therefore pGSK3β is positively correlated with 

Snail1. Snail1, in turn, modulates genes relevant to EMT and among others activates 

additional transcription factors [7]. The strength of the relationship between pGSK3β and 

Snail1 is weak at the beginning of the transition (DREMI = 0.08) and then grows steadily 

and peaks as the cells are on the verge of completing the transition (DREMI = 0.12), 

Figure 3D(II). This change is consistent across replicates (Supplementary Figure 4B).   

 

Another example is the edge between phosphorylated PLCγ2 (pPLCγ2) and 

phosphorylated MEK1/2 (pMEK1/2) shown in Figure 3E. This relationship increases and 

peaks in strength during the transition (DREMI = 0.14) and wanes again as the transition 

concludes (DREMI = 0.07). It is known that PLCγ2 enzymes are activated by receptor 

tyrosine kinases in response to growth factors [18, 19], making PLCγ2 one of the first 

players that get phosphorylated following growth factor stimulation. pPLCγ2 can then 

induce the MEK/ERK pathway via PKC [20-22]. In our case, the receptors are the TGFβ 

receptors (R1 and R2) [23]. We find that this pathway is transmitting the most 

information during the transitional phase, as indicated by the high DREMI score. This 

change is consistent across replicates (Supplementary Figure 4C). 

 

In addition to analyzing edges individually, TIDES can also be used to globally 

understand when there is a high information flow in the entire system. There are points 

in EMT-time when many signaling molecules pass signal to transcription factors (high 

DREMI). It can be assumed that such points of high information transfer correspond to 

critical points, when the system is going through a phase transition. In Figure 4, we 

combine TIDES scores incoming into the EMT transcription factor Slug, a known core-

regulator of EMT [24] which in turn regulates additional EMT transcription factors such 

as Twist [25]. The average TIDES curve of signaling molecules into Slug shows the 

scores start rising at around EMT-time 0.25, around when the cell morphology begins to 

change and hence corresponds to where the transition is beginning. We see a peak 

towards the end of the transition at around EMT-time 0.8 which might correspond to an 

additional change in cell state, perhaps when the transition becomes stable (Figure 4). 
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Additionally, we see similar behavior at similar EMT-times for two more EMT 

transcription factors, Snail1 and Twist (Supplementary Figure 5A-B). 

 

Validation of TIDES with Acute Inhibitions  

Our analysis indicates that the strength of the relationship between signaling molecules 

changes during the course of EMT. To validate some of the rewiring suggested by 

TIDES, we performed experiments inhibiting MEK1/2 with the small molecule 

PD184352. Py2T cells were treated with TGFβ for 3 days, followed by small molecule 

inhibition of MEK1/2 for 30 minutes prior to cell sampling. Inhibiting the kinase for 30 

minutes should accentuate the immediate downstream effects on signaling pathways 

without substantially altering transcriptional activity, EMT phenotype, or allowing for 

compensatory effects. Hence, we can directly compare EMT-time of the control and 

treated condition. We chose to inhibit MEK because it has a potent and specific inhibitor 

and we were able to measure proximal downstream phosphorylation targets of MEK1/2 

(ERK1/2 and P90RSK) by mass cytometry. 

 

For a given edge X-Y, we measured the impact of perturbing X on the abundance of Y. 

When X-Y represents a causal influence, we expect the impact of this inhibition to 

correlate with the DREMI at each point in EMT-time, i.e., when DREMI between X and Y 

is higher, the impact of the inhibition of X on Y is greater and vice versa. We define an 

impact curve as the difference between the abundance of Y along EMT-time under 

control (no drug-perturbation) and the abundance of Y along EMT-time with drug-

perturbation (see Fig. 5A(IV)). We expect regions of high DREMI of X and Y to coincide 

with the regions of high impact and test this by correlating the TIDES curve against the 

impact curve, using cross-correlation to match the trajectories (Figure 5A and Methods). 

 

We first compared the pP90RSK impact curve along with the pMEK1/2-pP90RSK TIDES 

curve, Figure 5A. pMEK1/2 is upstream of pP90RSK with pERK1/2 the  mediatory 

kinase that directly phosphorylates p90RSK. We find that the impact curve shows a high 

cross-correlation of 0.94 with the TIDES curve (Figure 5A(V)), a trend that is repeated 

across replicates (Supplementary Figure 6A). Note the correlation between the 

abundance of pP90RSK in control and the TIDES curve is only 0.61 demonstrating that 

1) TIDES does not trivially follow levels of the Y-molecule, and 2) that it adds additional 

predictive value to edge strength (Supplementary Figure 6B). Similarly, the impact curve 
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of pERK1/2 under MEK-inhibition matches the pMEK1/2-pERK1/2 TIDES curve with a 

cross-correlation of 0.78 (Figure 5B, Supplementary Figure 6C), further validating the 

approach. The cross-correlation between the pERK1/2-pP90RSK TIDES curve and the 

impact curve of pP90RSK under MEK-inhibition is also high (0.84 and 0.80 across 

replicates, Supplementary Figure 6D-E). Thus, we have validated the predictive 

capability of TIDES in all measured edges downstream of pMEK1/2 in our data.  

 

In the case of MEK-inhibition, the associated relationships were proximal members 

along a short signaling pathway thus enabling an easy interpretation and thus validation 

of our approach. Distant relationships can have inputs or convergence from several 

pathways and therefore the TIDES curve may not accurately match the output. Overall, 

we find that the TIDES successfully predicts the impact to downstream partners in 

signaling relationships and can therefore be used to study the time-varying behavior of 

signaling edges.  

 

Identification and Validation of Critical Edges in EMT via 3D-DREMI 

Next, we wanted to identify edges that are critical drivers for EMT based on rewiring 

behavior. We hypothesized that driving edges should involve molecules that have a 

strong dependence on both EMT-time, and each other. We wanted to make sure that for 

a given pair of molecules X-Y and EMT-time (T), X and T together provide more 

information about Y as compared to individually and Y is also highly dependent on both 

X and T, individually. Therefore, we add together a 3D-DREMI score on (T, X)-Y and 2D-

DREMI on X-Y and T-Y in our panel and sort them by their average score across the 

three replicates. We find that the top ranking edges are pSMAD2/3 – β-catenin, pAMPK - 

β-catenin, pERK1/2 - β-catenin, pGSK3β - β-catenin, pGSK3β - pERK1/2 and pMEK1/2 

- β-catenin (Supplementary Table 3). This suggests that these molecules, and their 

corresponding pathways, could be involved in interactions that are strongly regulated 

during EMT progression. We predict that interrupting these molecules and pathways will 

have an impact on EMT.  

 

To validate whether our critical edge predictions modulate EMT, we perturb these edges 

using drug inhibitions and activations. To determine the effect of the modulation on the 

EMT phenotype, we chronically inhibited/activated the respective molecules and 

pathways for 5 days while treating the Py2T cells with TGFβ (see Methods). For 
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comparison, cells were only treated with and without TGFβ for the same time. As an 

additional negative control we used AKT inhibition as an example of a molecule that 

does not score high in the critical edge list (although typically associated with EMT). We 

then compare the percentage of cells that transitioned as measured by mass cytometry 

(Figure 6).  

 

Inhibited molecules/pathways from our predicted critical edges include 1) SMAD2/3, 2) 

MEK/ERK/MAPK pathway, 3) β-catenin/WNT pathway and 4) AMPK. All results 

reproduced across biological replicates (Supplementary Figure 7). 

 

1) SMAD2/3: Upon TGFβ stimulation, SMAD2/3 is phosphorylated by the TGFβ-

receptor [26], thus inhibition of the TGFβ-receptor (SB431542) will abrogate 

SMAD phosphorylation. We find that inhibition of the TGFβ-receptor causes the 

strongest impact on the progression. The fraction of cells that complete the 

transition drops to 2% under TGFβ-receptor inhibition as compared to 54% in the 

control (Figure 6A).  

2) MEK/ERK: Inhibition of MEK (PD318088) blocks the activity of the MAPK 

pathway (and therefore also the activity of ERK and P90RSK). Under the MEK-

inhibition, the fraction of cells that complete the transition drops to 17% (Figure 

6B), less than a 1/3 of the cells that transitioned under control conditions, 

supporting its role in driving EMT.  

3) β-catenin: To probe WNT/βcatenin pathway, we use the drug XAV-939 which is 

known to perturb WNT signaling and cause further β-catenin degradation. Under 

this inhibition, the fraction of cells that complete the progression drops by 15% 

(only 11% of the cells transition as compared to 26% in control), see Figure 6C. 

4) AMPK: For AMPK, we tested an activator rather than an inhibitor, Phenformin. 

Activation of AMPK slightly increased the percentage of cells that underwent 

EMT to 60% compared to 52% in control (Figure 6D).  

 

Additionally, we tested the AKT inhibitor (PHT427) as a negative control. AKT has been 

reported to be an important regulator in EMT for other cell lines such as human 

squamous carcinoma cells (SCC13 and SCC15) [27] and NMuMMG mammary epithelial 

cells [28]. Despite the AKT pathway being reported as prominent in the literature [5], we 

find edges involving AKT to be low in our ranking and indeed we empirically measure 
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that AKT inhibition has little to no impact on EMT (Figure 6E, 55% of cells transition, 

compared to 54% on control). This result illustrates that EMT is not driven by the same 

edges across different systems.  

 

In summary, 3D-DREMI successfully predicted the important molecules and pathways 

involved during EMT, suggesting that the 3D DREMI analysis can be used to generate 

novel hypotheses on edges that are most relevant for a biological process of interest. 

 

Discussion 
 

Here, we studied a transition in cell state and how regulatory relations re-wire during this 

transition. Specifically, we quantified how the strength in relationship between two 

protein epitopes changed along a developmental trajectory. Importantly, we learned 

these dynamics from a single time-point of multidimensional single-cell data through a 

combination of pseudo-time trajectory mapping and dependence tracking along this 

trajectory. Current high-throughput single-cell techniques offer high-dimensional snap-

shot measurements of thousands of cells, but without capturing the dynamics. We 

utilized the fact that cells can exist in various phases of a transitional trajectory due to 

the variability and asynchrony in transition rates [29]. A major assumption underlying our 

approach is that while the cells progress through EMT at different rates, they largely do 

so along a similar path. Therefore, we were able to map the process along a pseudo-

time dimension despite the inability to follow a single cell. Once cells were aligned along 

their position in a pseudo-time trajectory, we tracked how relationships between 

molecules changed by formulating a dynamic model of edge strength and shape. As 

such, our approach overcomes the lack of dynamic and continuous single cell data and 

enables a continuous view on molecular relationships in cell state transition and 

developmental processes. 

 

All cells in our body contain the same DNA. The difference between cell types lies in the 

expression and regulation of individual genes and proteins, and the interactions between 

these proteins. Hence differentiation (or trans-differentiation like in EMT) is essentially a 

process of gene and protein network rewiring. Thus, treating gene or protein networks as 

static fundamentally misses key aspects of this rewiring. In our study we analyzed the 

epithelial-to-mesenchymal transition, which has important roles during development, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 25, 2017. ; https://doi.org/10.1101/155028doi: bioRxiv preprint 

https://doi.org/10.1101/155028
http://creativecommons.org/licenses/by-nc-nd/4.0/


12	  
	  

wound healing, tissue fibrosis and cancer. While this study was limited to this model 

system, it could be applied to understanding the wiring of the regulatory systems that 

govern malignant process, opening up exciting possibilities. It is rare that the 

heterogeneity of response to drug treatment is taken into account, whereas our 

approach enables the assessment of how a perturbation affects a highly rewired network 

over the whole continuum of states. We validated our methods by using acute and 

chronic perturbations in the EMT system. Indeed, times of higher dependence between 

molecules resulted in a larger impact upon perturbation. Moreover, we confirmed that 

the perturbation of these highly dynamic molecules, as predicted by our analysis, 

enabled the identification of nodes that halt EMT. Hence the dynamics can inform us of 

the key players involved in the developmental (and dynamic) process and aid the 

selection of drugs that target key factors. 

 

The methods we developed in this paper quantify evolving edge dynamics: specifically 

we quantified and visualized the time-varying relationship between pairs of molecules 

and tracked their relationship strength in a continuous manner. Our methods can identify 

event ordering, peak points of signal transfer, as well as give overall scores for the 

dynamism of an edge. Further these methods are generic, and can be utilized in any 

system where single-cell measurements can be used to sample cells that are time-

asynchronous with respect to a process and derive the time-dependent dynamics, as 

well as identification of critically rewired molecules.  

 

Currently single cell technologies are rapidly developing, thus enabling the measurement 

of ever increasing numbers of molecules of interest. For example, single-cell RNA-

sequencing [30, 31]  provides a genome wide single cell snap-shot and we could extend 

our approach to such higher dimensional data types. This could inform us of critical 

players in transcriptional networks and offer insights into regulatory mechanisms that 

drive developmental and differentiation processes. However, single-cell RNA 

sequencing data tends to be sparse, typically capturing only 5-10% of the molecules 

whereas DREMI and the higher dimensional versions formulated here require sufficient 

amounts of data to estimate density in the full dynamic range of molecules.  However, 

our approach could be modified to operate under sparse data conditions.  
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In this study we have formulated a general framework for studying dynamic interactions 

with static-snapshot data and present the first continuous analysis of the signaling 

networks controlling the epithelial-mesenchymal transition. We believe that our methods 

will lay a useful conceptual and quantitative foundation for analyzing relationship 

dynamics for any type of single cell analysis data.  
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Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rewiring during phenotypic change in EMT: (A) Conceptual diagram of rewiring as 

cells undergo EMT. (B) Immunofluorescence images of Py2T cells stained for canonical 

markers E-cadherin (in red) and Vimentin (in green) are shown after 1, 3 and 5 days of 

4ng/ml TGFβ stimulation. Three days after TGFβ treatment we find both cells that 

express E-cadherin and cells that express Vimentin. (C) Contour plots of Vimentin and 

E-cadherin following 2-4 days of TGFβ exposure show a shift in density from epithelial to 

mesenchymal with 19%, 29% and 36% of cells in the mesenchymal phase respectively. 

The data is arcsinh transformed with a cofactor of 5. The plots show a continuum of 

intermediate cell states indicating that EMT is a rate-heterogeneous process. 
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Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expression of molecules along EMT-time (wanderlust pseudo-time): (A) Scatterplot 

where each point represents a Py2T cell collected 3 days after TGFβ stimulation, 

colored by their Wanderlust-derived pseudo-time label, which we call “EMT-Time” [13]. 

(B) Smoothed expression levels of E-cadherin, Vimentin, CD24 and CD44 along EMT-

time. The EMT-time is normalized to a scale of 0-1, where epithelial cells are near 0 and 

mesenchymal cells are near 1. Marker levels are also normalized to 0-1 and are 

smoothed using a sliding-window Gaussian filter. The shaded region around each curve 

captures 1-standard deviation across replicates, indicating consistency. (C) Smoothed 

expression levels of signaling markers pPLCγ2 and pΜΕΚ1/2, as well as E-cadherin 

along EMT-time. (D) DREVI (conditional-Density Rescaled Visualization) [12] plots show 
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the relationship between pPLCγ2 and pMEK1/2 at three different points along EMT-time 

corresponding to epithelial, transitional and mesenchymal phenotypes. Each DREVI plot 

illustrates the renormalized conditional density estimate of the abundance of pMEK1/2 

given the abundance of pPLCγ2. The red color indicates the conditionally dense regions. 

The solid black lines indicate that an equal rise in the level of pPLCγ2 results in a higher 

increase in the abundance of pMEK1/2 during the transitional phase as compared to the 

epithelial and mesenchymal phase. The strength of the relationship is quantified by 

DREMI, which computes mutual information on the conditional probability between two 

molecules. This higher dependency of pMEK1/2 on pPLCγ2 results in a high DREMI 

score during the transitional phase. 
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Figure 3.  

 

 

 

 

 

 

Signaling relationships along EMT-time: (A)-(B) Relationship between signaling 

molecules is similar across days when controlled for EMT-time. (A) TGFβ-treated cells 

from Days 2, 3 and 4 are binned into four groups along EMT-time. Expression levels of 

E-cadherin and Vimentin are shown for reference. (B) Heat map shows the correlation of 

DREMI scores computed on all pairs of signaling molecules in each group across days. 

The mean correlation is 0.72. (C) Illustration of computing 3D-DREMI, where each 
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molecule is conditioned by two other molecules. In our work, Y is conditioned on EMT-

Time (T) along with the levels of another molecule X.  (I) Simulated data depicting strong 

dependence of Y on both T and X. Across the dynamic range of T and X, Y has a wide 

range of values. Conditioning Y on both T and X, depicted by the box (middle), 

substantially decreases the range in Y. The relationship can be seen using a 3D-DREVI 

plot (right), where the red surface shows the average value of Y conditioned on T and X. 

Specifying values of T and X provides information on the possible value of Y implying 

that the relationship has a high 3D-DREMI score. (II) Illustrates a weak relationship with 

little dependence of Y on X or T. (D) (I) 3D-DREVI between pGSK3β and Snail1 along 

EMT-time on Day 3 data. (II) The pseudo-dynamics of the relationship between pGSK3β 

and Snail1 along EMT progression is represented by the TIDES curve (purple curve) 

which shows the time-varying change in relationship strength (depicted on the Z axis) in 

the units of DREMI. The 2D-DREVI slices depict the normalized conditional density 

estimate of the abundance of Snail1 given the abundance of pGSK3β at three specific 

time-points during EMT. (E) (I) A 3D-DREVI plot of the relationship between pPLCγ2 and 

pMEK1/2 on Day 3. (II) The TIDES curve and slices of 2D-DREVI along EMT 

progression show the dynamics of the pPLCγ2->pMEK1/2 relationship, which peaks in 

strength in an intermediate stage and weakens as the cells complete transition. 
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Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Information transfer during EMT: Average TIDES curve of the relationship between 

several molecules (pCREB, pSTAT5, pFAK, pMEK1/2, pNFκB, pP38, pAMPK, pAKT, 

pERK1/2, pGSK3β, pSMAD1/5, pSMAD2/3, β-catenin, CAH IV, pMARCK, pPLCγ2, pS6, 

pSTAT3) and Slug, across three replicates for Day 3. The curves start rising steadily at 

near EMT-time = 0.25, and peak near EMT-time = 0.8.  
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Figure 5.  

 

Validation of TIDES via short-term drug inhibition: (A) (I) 3D-DREVI plot shows the 

typical behavior of pP90RSK given pMEK1/2 and EMT-time. The cells are treated with 

TGFβ for 3 days. (II) The levels of pP90RSK under control (stimulated with TGFβ) and 

under MEK-inhibition (TGFβ + MEKi) along EMT-time. As expected, MEK-inhibition 

substantially reduces the level of pP90RSK as compared to the control. (III) TIDES curve 

between pMEK1/2 and pP90RSK. (IV) The impact curve, computed as the level of 

pP90RSK under control minus under MEK-inhibition, shows regions of high effect of 
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MEK-inhibition on pP90RSK along EMT-time. (V) Cross-correlating the curves results in 

a correlation of 0.94. The depicted curves have been normalized to 0-1 and shifted 

appropriately based on the lag obtained from cross-correlation (see Methods). (B) 

Cross-correlating the TIDES curve of pMEK1/2 on pERK1/2 against the impact curve of 

pERK1/2 under MEK-inhibition also gives a high correlation of 0.78.  
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Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Validation of critical edges for EMT: (A)-(E) Bar plots showing the percentage of 

mesenchymal cells under control (TGFβ stimulation) and under perturbation of the 

stated molecule for 5 days. The percentage values measure the impact of the 

perturbation on EMT. Manual gates were defined to identify mesenchymal cells (see 

Methods). (A) Inhibition of TGFβ-receptor substantially reduces the fraction of cells 

completing the EMT transition from 54% under control to 2% following inhibition. (B) 

MEK inhibition also has a large impact on EMT, under which the fraction of 

mesenchymal cells drops to 17% from 54% under control. (C) WNT inhibition also 

causes the fraction of cells completing the transition to drop to 11% from 26% under 

control. (D) Activating AMPK on the other hand seems to slightly push cells into EMT as 
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the fraction of mesenchymal cells increases from 52% to 60%. (E) AKT inhibition on the 

other hand has no impact on EMT, fraction of cells completing the transition is 55% 

compared to 54% under control. 
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METHODS 

Py2T cell culture and stimulation 

Py2T cells were obtained from the laboratory of Gerhard Cristofori, University of Basel, 

Switzerland [1]. Cells were tested for mycoplasma contamination upon arrival and 

regularly during culturing and before being used for experiments. Cells were cultured at 

37 °C in DMEM (D5671, Sigma Aldrich), supplemented with 10% FBS, 2 mM L-

glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin, at 5% CO2. For cell 

passaging, cells were incubated with TrypLE™ Select 10X (Life Technologies) in PBS in 

a 1:5 ratio (v/v) for 10 minutes at 37°C. For each experiment, cells were seeded at the 

density of 0.3 million cells per plate (100 mm diameter) and allowed to recover for 36 

hours. After reaching 60% confluence, cells were either mock treated or treated with 

4ng/ml TGFβ (Human recombinant TGFβ1, Cell Signaling Technologies) for 2, 3 and 4 

days. Cell growth media and 4ng/ml TGFβ treatment was renewed every day. 

Cell harvesting 

For cell harvest, cells were washed two times with PBS and incubated with TrypLE™ 

Select 10X (Life Technologies) in PBS at a 1:5 ratio (v/v) for 10 minutes at 37°C. 

Following cell detachment, cells were cross-linked by addition of formaldehyde at a final 

concentration of 1.6% for 10 minutes at room temperature. Cross-linked cells were then 

centrifuged at 600 ×  𝑔 for 5 minutes at 4°C. After aspirating the supernatant, the cell 

pellet was re-suspended in -20°C methanol to a suspension of 1 million cells/ml and 

transferred to −80°C for long-term storage. 

  

Metal-labeled antibodies 

Antibodies were obtained in carrier/protein free buffer and labeled with isotopically pure 

metals (Trace Sciences) using MaxPAR antibody conjugation kit (Fluidigm), according to 

the manufacturer’s standard protocol. After determining the percent yield by 

measurement of absorbance at 280 nm, the metal-labeled antibodies were diluted in 

Candor PBS Antibody Stabilization solution (Candor Bioscience GmbH) for long-term 

storage at 4°C. Antibodies used in this study are listed in Supplementary Table 1. 

 

Mass-tag cellular barcoding and antibody staining 

Cell samples in methanol were washed three times with Cell Staining Media (CSM, PBS 

with 0.5% BSA, 0.02% NaN3) and once with PBS at 4°C. The cells were then re-
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suspended at 1 million cells/ml in PBS containing barcoding reagents (102Pd, 104Pd, 
105Pd, 106Pd, 108Pd, 110Pd, 113In and 115In,) each at a final concentration of 100 nM. Cells 

and barcoding reagent were incubated for 30 minutes at room temperature. Barcoded 

cells were then washed three times with CSM, pooled and stained with the metal-

conjugated antibody mix (Supplementary Table 1) at room temperature for 1 hour. 

Unbound antibodies were removed by washing cells three times with CSM and once 

with PBS. For cellular DNA staining, an iridium-containing intercalator (Fluidigm) was 

diluted to 250 nM in PBS containing 1.6% PFA and added to the cells at 4°C for 

overnight incubation. Before measurement, the intercalator solution was removed and 

cells were washed with CSM, PBS, and ddH2O. After the last washing step, cells were 

resuspended in MilliQ H2O to 1 million cells/ml and filtered through a 40-µm strainer. 

  

Mass cytometry analysis 

EQTM Four Element Calibration Beads (Fluidigm) were added to the cell suspension in a 

1:10 ratio (v/v). Samples were analyzed on a CyTOF1 (DVS Sciences). The 

manufacturer’s standard operation procedures were used for acquisition at a cell rate of 

~300 cells per second as described in [2]. After the acquisition, all FCS files from the 

same barcoded sample were concatenated using the Cytobank concatenation tool 

(http://www.support.cytobank.org/hc/en-us/articles/206336147-FCS-file-concatenation-

tool). Data were then normalized [3], and bead events were removed. Cell doublet 

removal and de-barcoding of cells into their corresponding wells was done using a 

doublet-free filtering scheme and single-cell deconvolution algorithm [4]. Subsequently, 

data was processed using Cytobank (http://www.cytobank.org/). Additional gating on the 

DNA channels (191Ir and 193Ir) was used to remove remaining doublets, debris and 

contaminating particulate. 

 

Immunofluorescence microscopy analysis 

Cells were seeded on 12 mm glass coverslips in 24-well plates. After reaching 60% 

confluence, cells were treated with TGFβ for 3 and 5 days. The cell growth media 

containing 4ng/ml TGFβ was replenished once per day. All sample preparation steps 

were performed at room temperature. Cell samples were cross-linked with 4% 

paraformaldehyde in PBS for 20 min and permeabilized using 0.1% Triton X-100 in PBS 

for 3 min. After a blocking step with 0.5% BSA in PBS for 20 min, cell samples were 

incubated with the primary antibodies (E-Cadherin, Alexa Fluor® 647, 36/E-Cadherin, 
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BD Biosciences; and Vimentin (D21H3) XP® Cell Signaling Technologies) for 1.5 hours, 

and subsequently incubated for 1 hour with the appropriate fluorophore conjugated 

secondary antibodies (Alexa Fluor-488). Fluorophore-labeled antibodies were diluted in 

buffer containing 0.5% BSA in PBS. Nuclei were stained with Hoechst 33258 stain 

(Sigma Aldrich) diluted in PBS for 3 min. Coverslips were mounted in ProLong® Gold 

Antifade Mountant (Thermo Fisher Scientific) on microscope slides and imaged with a 

confocal microscope CLSM SP8 upright Leica. Images were acquired and analyzed 

using Imaris Software (Bitplane, Switzerland) and the acquisition was performed on the 

same day to prevent differences due to emission changes of the light sources. In 

addition, exposure times for a given marker were kept constant for the comparative 

analysis of each antibody. 

Time course experiment 

Mock-treated and TGFβ-treated cells were sampled for measurement after 2, 3 and 4 

days. For each condition, three biological replicates were cultured, harvested and 

analyzed. 

  

Acute kinase inhibition 

After chronic TGFβ stimulation for 3 days, cells were treated with MEK (PD184352) 

small molecule inhibitors for 30 minutes at a concentration of 10µM and collected in two 

replicates. 

 

Chronic kinase perturbation 

For chronic kinase perturbation, small molecule inhibitors (Supplementary Table 4) were 

applied to the cells at a concentration of 1 µM in parallel with TGFβ or mock treatment. 

The small molecule inhibitor was applied once per day for 5 days, after media change 

and 10 minutes before TGFβ stimulation, and collected in two replicates. 

 

Data preprocessing 

All data were arcsinh transformed with a cofactor of 5 [2]. Any remaining debris or 

doublets were removed by gating on the DNA channels. For the time course and acute 

inhibition validation, the raw data was cleaned to remove cells that had spuriously high 

levels of certain signaling markers and transcription factors (pCREB, pSTAT5, pMEK1/2, 

pNFκΒ, Twist, Snail1 and Slug). An example between pCREB and pMEK1/2 is shown in 
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Supplementary Figure 8A. The effect is seen only in the markers whose metal antibodies 

have similar masses (Supplementary Table 1), hence indicating that the high correlation 

could be experimental noise.  Further uninformative cells that had low levels of all 

markers were removed. For this, cells were clustered using Phenograph [5] on a set of 

phenotypic markers and transcription factors (E-cadherin, Vimentin, CD24, CD44, 

βcatenin, Snail1, Slug and Twist). The clusters of cells with low levels of markers were 

discarded thereafter (Supplementary Figure 8B). The junk cells present in the data used 

for validation via acute inhibition (Figure 5 and Supplementary Figure 6) were also 

removed using Phenograph on the set of available phenotypic markers and transcription 

factors (E-cadherin, Vimentin, CD24, CD44, β-catenin, Snail1 and Slug). 

 

Assessing cellular heterogeneity   

We quantified the proportion of cells that complete the transition (Figure 1C and 

Supplementary Figure 1, Supplementary Figure 2) by manually gating cells into various 

stages based on the expression levels of the canonical markers, E-cadherin and 

Vimentin. Cells with expression level of Vimentin < 2 were defined as epithelial cells, 

those with E-cadherin < 2.5 and Vimentin > 4 were defined as mesenchymal and rest of 

the cells as transitional. The same gates were used for all time-course data. 

 

Overview of computational methods to quantify edge dynamics 

The computational methods developed in this paper are geared towards learning time-

varying edge dynamics from static snapshot data. We study pairwise relationships as a 

function of time in cells undergoing the epithelial-to-mesenchymal transition. Studying 

such cell state dynamics from a single time point require computational techniques that 

can efficiently harness the rate variability within large samples of cells to capture the 

transient dynamics.  

 

We develop information theoretic techniques to study edge relationships as a function of 

pseudo-time. These methods quantify the edge strength and describe time-varying edge 

shape. In particular, we develop:  

1. 3D-DREVI (3D conditional Density Rescaled Visualization) to visualize and 

characterize the relationship between a pair of molecules, 𝑌 and 𝑍,  along time 𝑇. For 

this, we compute the conditional density estimate 𝑝 𝑍 𝑇,𝑌   to capture the dependency 

of  𝑍 on 𝑇 and 𝑌 and use it visualize the average expression of 𝑍 given 𝑌 and 𝑇.  
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2. 3D-DREMI (3D conditional Density Resampled Estimate of Mutual Information) to 

quantify the strength of relationship of 𝑍 on both 𝑇 and 𝑌 by computing the differential 

entropy of 𝑍 when conditioned on 𝑇 and 𝑌. 

3. TIDES (Trajectory Interpolated DREMI Scores) to quantify the relationship between 

two molecules continuously along time. This involves computing 2D-DREMI on fixed-

time slices in the 3D space to derive the time-varying strength of the relationship.  

 

First, we use Wanderlust [6] to align cells along a one-dimensional EMT-trajectory, 

which we call EMT-time. We treat EMT-time (𝑇)  as the 𝑋  variable and a pair of 

molecules as 𝑌 and 𝑍  variables in order to compute 3D-DREVI, 3D-DREMI and TIDES. 

Underlying all our methods is the estimation of the joint density 𝑝 𝑇,𝑌,𝑍 , obtained using 

a fast heat-diffusion based kernel density estimate [7], which we extended to 3 

dimensions. The methods are detailed as follows.  

 

Kernel Density Estimation 

Kernel Density Estimation (KDE) is a data-driven approach for learning the underlying 

probability density function [8]. Given a set of points in 𝑥!, 𝑥!, 𝑥!,… , 𝑥!   ∈   ℝ, a kernel 

density estimate for the distribution of the points is given by, 

𝑓 𝑥 =
1
𝑛

𝐾! 𝑥 − 𝑥!

!

!!!

 

where, 𝐾! is the kernel function. A popular choice of kernel is the Gaussian kernel, given 

by, 

𝐾! 𝑥 =
1

ℎ 2𝜋
𝑒
!!!

!!! 

where, ℎ  is the bandwidth of the kernel. In higher dimensions, the kernel density 

estimate has the same form with points replaced by vectors. 

 

Heat-Equation based KDE. 

A standard method for computing a kernel density estimate amounts to evaluating a 

kernel function, 𝐾!, at every data point and summing the result.  However, this method 

can be computationally challenging for large data sets. Instead, we use a method based 
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on heat diffusion [7], which has previously been used successfully in single cell data sets 

[9] for 2D-KDE. The method estimates the underlying distribution by modeling it as the 

spreading of heat governed by the heat equation (with delta functions at the data points 

as the initial condition). The intuition is that the fundamental solution to the heat 

equation, in an infinite domain with Dirac delta function as the initial condition, is a 

Gaussian function. Mathematically, the solution to 

𝜕
𝜕𝑡
𝑓 𝑥, 𝑡 =   

1
2
𝜕!

𝜕𝑥!
𝑓 𝑥, 𝑡 ;                 𝑓 𝑥, 0 =   

1
𝑛

𝛿!!

!

!!!

𝑥 ,                    𝑥 ∈ ℝ 

is given by, 

𝑓 𝑥, 𝑡 =   
1
2𝜋𝑡

!

!!!

𝑒
! !!!! !

!! ,        𝑡 > 0. 

 

For practical purposes, we have finitely many data points, so we rely on the finite domain 

solution to heat equation approximation of the kernel density estimate. We enforce 

Neumann boundary conditions (derivative of the probability density function is 0 at the 

boundaries), which preserves the total probability mass (initial amount of heat) inside the 

boundary. Given the initial condition and the boundary conditions, the solution to the 

heat equation can be written as [10],   

𝑓 𝑥, 𝑡 =   
1
𝑛
   𝑒!!!!"/!𝑐𝑜𝑠 𝑘𝜋𝑥 𝑐𝑜𝑠 𝑘𝜋𝑥!

!

!!!!

.
!

!!!

 

The solution can be efficiently computed using a fast Fourier transform (FFT) [11]. This 

results in an estimate of the underlying probability density function. For 1- and 2-

dimensions, the bandwidth ( 𝑡) is obtained as a non-parametric solution to a fixed-point 

iteration [7, 11].  However, this method of obtaining bandwidth does not generalize 

beyond 2-dimensions [12] and becomes expensive to compute numerically.  To 

generalize these ideas to higher dimensions, in this case 3-dimensions, we choose the 

bandwidth using Silverman’s rule of thumb [13], 

ℎ! =
4
5𝑛

!
!
𝜎! , 

where 𝑛 is the number of points, 𝜎! is the standard deviation in 𝑗!! direction.  
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Algorithm. 

The algorithm starts by binning the data into a histogram (with number of bins set by the 

user). This is already a rough estimate of the underlying probability density. Although 

fast to construct, a histogram is not smooth, over-fits the data and depends heavily on 

the size of the bin. However, the strength of the presented algorithm lies in the fact that 

the resulting histogram is treated as delta functions on equally spaced points and this is 

used as the initial condition for solving the heat equation. This reduces the sample space 

from the original data size to the number of bins, hence achieving a considerable gain in 

speed.  Then we transform the data into the frequency domain using the discrete cosine 

transform (DCT), which can be implemented using FFT, applied onto this initial 

condition. This separates the signal present in the histogram into high frequency (noise) 

and low frequency (informative), thus allowing us to remove the noise and preserve 

meaningful information. The transform is then allowed to evolve for a time t (square of 

the bandwidth obtained using the rule of thumb), which is equivalent to multiplying by the 

exponential term (𝑒!!!!!!/!) in the equation above, which is equivalent to low-pass 

filtering of the DCT. The resultant is then inverted (inverse-DCT) to obtain a smooth 

kernel density estimate, see Supplementary Figure 9. The method extends naturally to 

higher dimensions. Computing kernel density estimates using heat diffusion can be 

performed in 𝑂(𝑛 +𝑚 log𝑚)  ~  𝑂 𝑛   for  𝑛 ≫ 𝑚, where 𝑛  is the number of data points, 

𝑚  is the number of bins. A sketch of the algorithm is as follows [11],  

1. Construct an equi-binned histogram 

2. Transfer histogram into frequency domain via a discrete cosine transform 

3. Evolve DCT (multiply DCT by 𝑒!!!!!!/!, where 𝑡  is the square of the bandwidth, 

𝑘 = 1,… ,𝑚,  and  𝑚 is the number of bins) 

4. Inverse DCT for solution. 

 

3D-DREVI 

As with 2D-DREVI [9], the joint high-dimensional density estimate can reveal areas of 

the state space that are densely and sparsely occupied by cells. However, as 

dimensionality increases, the sparsity of the data, relative to the state space, has 
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increasingly larger impact.  Already in 3 dimensions, the joint density of variables 

𝑝(𝑋,𝑌,𝑍) is often not good at revealing the underlying relationship between  𝑋,𝑌  and  𝑍 

because the majority of cells may be within a restricted portion of the dynamic range. 

Therefore, to accentuate the dependencies between molecules, we consider the 

conditional relationship of 𝑍 given  𝑋 and 𝑌, thus capturing the dependencies across the 

full dynamic range [9].  To compute conditional density  𝑝(𝑍 𝑋,𝑌), we normalize the joint 

density by the conditioning variables 𝑋  and  𝑌 . Since it is difficult to visualize a 3-

dimensional conditional density, we instead visualize the conditional mean of 𝑍 given  𝑋 

and 𝑌, resulting in a 2D surface (Figure 3C). 

Computing 3D-DREVI. 

We begin by computing a 3D kernel density estimate 𝑝 𝑋,𝑌,𝑍   on a cubic mesh grid 

𝑥! , 𝑦! , 𝑧! , 0   < 𝑖, 𝑗, 𝑘   < 𝑚,𝑚  is  the  number  of  bins  using our heat equation based 

approach described above.  Then each vector in the 𝑧-axis (corresponding to a fixed 𝑋- 

and 𝑌 -value, 𝑋 = 𝑥! ,𝑌 =   𝑦!)  is renormalized by the marginal density estimate of -

  𝑋 = 𝑥! ,𝑌 =   𝑦!, 

𝑝 𝑧 𝑥! , 𝑦! =
𝑝 𝑥! , 𝑦! , 𝑧
𝑝 𝑥! , 𝑦!

=
𝑝 𝑥! , 𝑦! , 𝑧
𝑝 𝑥! , 𝑦! , 𝑧!!

  . 

We thus obtain an estimate for the underlying conditional density 𝑝(𝑍 𝑋,𝑌) on the cubic 

mesh grid.  

 

Visualizing 3D-DREVI. 

Computing 𝑝 𝑍 𝑋,𝑌  results in a 3-dimensional array, where each entry represents the 

value of the density estimate at a particular vertex on the 3D-mesh grid, making it 

difficult to visualize what is essentially a solid cube. Instead, we visualize a surface 

through the conditional mean of 𝑍 given 𝑋 and  𝑌. This incidentally is often the area of the 

highest conditional density. The conditional mean can be computed as follows,   

𝐸 𝑧 𝑥! , 𝑦! =    𝑧!×𝑝
!

𝑧! 𝑥! , 𝑦! , 

which results in a matrix where each entry corresponds to the average value of 𝑍 

conditioned on the values of 𝑋 and  𝑌. This can be depicted as a surface plot on the 𝑋 

and  𝑌 mesh plane.  
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In this manuscript, we use 3D-DREVI to illustrate the relationship between two 

molecules along EMT-time (e.g. Figure 3D-E). We treat the Wanderlust derived EMT-

time (𝑇) as the 𝑋 variable and the two molecules as 𝑌 and 𝑍 variables. We estimated the 

joint density at 221 points (128 bins in each axis) and obtain the conditional mean of 𝑍 

given 𝑇 and 𝑌 as described above and render it as a red surface plot. Given a pair of 

molecules (𝑌  and  𝑍) and EMT-time, 50 cells from the right tail of the distribution of 𝑌 

were discarded to obtain a well-populated dynamic range of  𝑌, analogous to [9].  Finally, 

we remove wrinkles from the surface by smoothing the conditional mean using a linear 

sliding filter (of span 20 along both 𝑇 and 𝑌 axes), using the smooth function in MATLAB. 

 

3D-DREMI 

Once 3D-DREVI is computed, we compute 3D-DREMI, an extension of DREMI [9], to 

quantify the strength of Z’s dependency on X and Y.  Similarly to DREVI, we evaluate 

the strength of this dependency by re-weighing the contribution of each grid point 

uniformly thus taking the full dynamic range of the function into account [9].  

 

Computing 3D-DREMI. 

Given three variables 𝑋, 𝑌 and 𝑍 (we typically assume that 𝑋 and 𝑌 both influence 𝑍), we 

quantify the dependence of 𝑍 on both 𝑋 and 𝑌.  3D-DREMI is defined as the mutual 

information on data that is sampled from the rescaled denoised-conditional density, 

Rescale:              𝑝 𝑧! 𝑥! , 𝑦! =   
𝑝 𝑧! 𝑥! , 𝑦!   

max
!    𝑝 𝑧! 𝑥! , 𝑦!

, 

Denoise  by  setting  𝑝 𝑧! 𝑥! , 𝑦! <   𝜀  to  0  for  all  𝑖, 𝑗. 

We measure the change in entropy of 𝑍  when conditioned on both 𝑋  and 𝑌 , by 

computing the differential entropy between 𝑍 and 𝑍|𝑋,𝑌. That is, compute 

𝐼! 𝑍 𝑋,𝑌 = 𝐻! 𝑍 − 𝐻! 𝑍 𝑋,𝑌 ,      where, 

𝐻! 𝑍 =   −
𝑝 𝑥! , 𝑦! , 𝑧!
𝑝 𝑥! , 𝑦!!!!

log 𝑝 𝑧! ,  and 
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𝐻! 𝑍 𝑋,𝑌 =   −
𝑝 𝑥! , 𝑦! , 𝑧!
𝑝 𝑥! , 𝑦!!!!

log 𝑝 𝑧! 𝑦! , 𝑥! . 

 

This is a natural extension of 2D-DREMI as detailed in [9]. By treating EMT-time (𝑇) as 

the 𝑋-variable, we can assess the strength of relationship between 𝑌 and 𝑍 throughout 

EMT-time. Pairs with high 3D-DREMI scores have a strong relationship with each other 

and this relationship changes during the course of EMT-time. By ordering edges based 

on their 3D-DREMI score, we find candidate proteins that might be critical during EMT 

(Supplementary Table 3).  

 

TIDES 

3D-DREMI quantifies the relationship between two molecules throughout EMT-time. 

However, it does not provide information about the strength of the relationship at a given 

EMT-time. We developed a method based on 2D-DREMI to evaluate how a relationship 

changes continuously with EMT-time. We call this method TIDES for Trajectory 

Interpolated DREMI Scores. 

 

Computing TIDES.  

We start with the rescaled conditional density estimate of 𝑍 given 𝑇 and 𝑌, where we 

consider EMT-time (𝑇) , as the 𝑋 -variable. This 3-dimensional density estimate is 

projected onto a slice along the 𝑌-‐𝑍 plane, resulting in the conditional dependence of 𝑍 

on 𝑌 for various fixed values of 𝑇. The projections are obtained by linearly interpolating 

the 3D density estimate onto a 2-dimensional slice, 

𝑡! , 𝑦! , 𝑧! : 0   < 𝑗, , 𝑘   < 𝑚,  and  𝑖  is  a  fixed  value,  𝑚  is  the  number  of  bins , along 𝑌  and 𝑍 

direction, for which we use the “interp3” function in MATLAB. The resulting conditional 

density estimate is denoised at 𝜀  = 0.9 to eliminate the technical noise from 

measurement [9], 

  𝑝 𝑧! 𝑡! , 𝑦! <   𝜀  to  0  for  all  𝑗, 𝑘  and  fixed  𝑖. 

2D-DREMI computed on the slice quantifies the relationship at the fixed EMT-time 𝑇, 
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𝐼! 𝑍 𝑌 =   𝐻! 𝑍 − 𝐻! 𝑍 𝑌 ,      where 

𝐻! 𝑍 =   −
𝑝 𝑦! , 𝑧!
𝑝 𝑦!

log 𝑝 𝑧!
!

,        and
!

 

𝐻! 𝑍 𝑌 = −
𝑝 𝑦! , 𝑧!
𝑝 𝑦!!

log 𝑝 𝑧! 𝑦!
!

. 

 

 

Visualizing TIDES.  

Repeatedly computing TIDES for several values along EMT-time allows continuous 

tracking of edge strength during the EMT transition, resulting in a TIDES curve. We 

compute TIDES values at 256 locations along EMT-time, which is twice the number of 

bins used to estimate the density. Once computed, the TIDES curves were smoothed 

using a Gaussian filter. For this, a Gaussian centered at each value of EMT-time (on 

which TIDES is computed) is used to estimate the weighted average at each location. 

Averaging the values results in a smooth TIDES curve. The weights are determined as 

follows,  

𝐾!" =
1
2𝜋𝜎!

𝑒𝑥𝑝 −
𝜏! − 𝜏!

!

𝜎!
, 

where,  𝜏! is the TIDES value at EMT-time 𝑗,  𝜏!   is the mean TIDES value in the bin 𝑙 and 

𝜎  is the bandwidth of the Gaussian chosen using Silverman’s rule of thumb [13]. The 

weighted average is then calculated as, 

𝑇! = 𝐾!" ∗
!"#

!!!

𝜏! . 

 

Deriving Wanderlust pseudo-time 

We used Wanderlust [6], a graph-based trajectory detection algorithm, to align the cells 

onto a one-dimensional axis representing the transition of cells from epithelial to 

mesenchymal phenotype. We call the resulting pseudo-time axis as EMT-time. EMT-

time is normalized to 0-1, where epithelial cells are near 0 and mesenchymal cells near 

1. We compute EMT-time by running Wanderlust on a set of phenotypic markers and 

transcription factors: E-cadherin, Vimentin, CD44, βcatenin, Snail1, and Slug. A shared 
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nearest neighbor graph was constructed using K = 60 nearest neighbors and shared 

nearest neighbor (snn) = 20. The parameter l which is used to choose l out of K 

neighbors (to avoid short circuits) was set to K/5 = 12. The constructed trajectory is 

robust to these parameters (Supplementary Figure 10). The start point was set to the set 

of the cell with low E-cadherin and high Vimentin. In particular, the cell with maximum 

expression of Vimentin from the set of cells whose expression of E-cadherin < 1.5 and 

Vimentin > 4.5 was chosen as the start point. The resulting trajectory was then inverted. 

The number of graphs (over which the result of the algorithm is averaged) was set to 5.  

 

Once generated, we study the expression of various markers along EMT-time (e.g. 

Figure 2B-C, Supplementary Figure 3A-C). The marker trends were generated by first 

partitioning EMT-time into 256 equally spaced bins, by dividing the range of the 

Wanderlust score by 256. Then the weighted average of the marker using a Gaussian 

filter centered at the bin is computed, as detailed in [14]. The weights are calculated as 

follows, 

𝐾!" =
1
2𝜋𝜎!

𝑒𝑥𝑝 −
𝑚! −𝑚!

!

𝜎!
, 

where,  𝑚! is the marker expression of cell 𝑗,  𝑚!   is the mean marker expression value in 

the bin 𝑙 and 𝜎  is the bandwidth of the Gaussian chosen using Silverman’s rule of thumb 

[13]. The weighted average is then calculated as, 

𝐸! = 𝐾!" ∗
!

!!!

𝑚! ,  where  𝑁  is  the  total  number  of  cells. 

 

 

Consistency of marker trends along EMT-time across replicates.  

We demonstrate that the marker trends are consistent across replicates (Supplementary 

Figure 3D). For a given day, the expression of a marker along EMT-time from one 

replicate was cross-correlated with the expression of the same marker along EMT-time 

from another replicate. This was repeated for all the markers and average correlation 

was computed. The computation was done for all 3 replicates from Day 2, 3 and 4. The 

markers used were: pCREB, pSTAT5, pFAK, pMEK1/2, Twist, cmyc, Snail1, pNFκB, 

pP38, pAMPK, pAKT, pERK1/2, Slug, Cyclinb1, cah, pGSK3β, pSMAD1/5, CD44, 
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Vimentin, pSMAD2/3, β-catenin, pMARCK, CD24, pPLCγ2, pPH3, pS6, E-cadherin, 

ccasp, pSTAT3, pRb, Survivin.  

 

Consistency of marker trends along EMT-time across days.  

We also find that the marker trends are consistent across days (Supplementary Figure 

3E). The expression of a marker along EMT-time on replicate 1 of Day 2 was correlated 

with the expression of the same marker along EMT-time on replicate 1 of Day 3. This 

was repeated for all the markers and average correlation was computed. The same is 

done to compare replicate 1 of Day 2 against Day 4 and replicate 1 of Day 3 against Day 

4. The final result is rendered as a heat-map. Similar heat-maps were generated for 

replicates 2 and 3. The markers used were: pCREB, pSTAT5, pFAK, pMEK1/2, Twist, 

cmyc, Snail1, pNFκB, pP38, pAMPK, pAKT, pERK1/2, Slug, Cyclinb1, cah, pGSK3β, 

pSMAD1/5, CD44, Vimentin, pSMAD2/3, β-catenin, pMARCK, CD24, pPLCγ2, pPH3, 

pS6, E-cadherin, ccasp, pSTAT3, pRb, Survivin. 

 

Consistency of signaling controlled for EMT-time.  

We demonstrat that signaling is similar across days when controlled for EMT-time 

(Figure 3A-B, Supplementary Figure 4A). Cells from days 2, 3 and 4 were divided into 

four groups based on EMT-time: cells with EMT-time < 0.25 (Group-1), between 0.25 

and 0.5 (Group-2), between 0.5 and 0.75 (Group-3) and greater than 0.75 (Group-4). 

DREMI on all pairs of signaling molecules in each of the groups was computed. Then 

the DREMI scores from a group was correlated with the DREMI scores from the same 

group on a different day, and the final result is rendered as a heat map. The markers 

used are: pCREB, pSTAT5, pFAK, pMEK1/2, Twist, cmyc, Snail1, pNFκB, pP38, 

pAMPK, pAKT, pERK1/2, Slug, Cyclinb1, pGSK3β, pSMAD1/5, pSMAD2/3, β-catenin, 

cah, pMARCK, pPLCγ2, pPH3, pS6, pSTAT3 and pRb. 

 

Validating short-term drug inhibition 

We used short-term drug inhibition to validate rewiring suggested by TIDES. For a given 

pair of molecules 𝑋  and 𝑌,  TIDES (𝑋 →  𝑌 ) quantifies the strength of the statistical 

relationship between 𝑋 and 𝑌 continuously along EMT-time. We assume that inhibiting 𝑋 

or some molecule immediately upstream of 𝑋 should have higher impact on 𝑌 in the 

region where the TIDES score is high, and analogously the impact should lower in 

regions of lower TIDES scores.  To validate TIDES, we compute TIDES curve of 𝑋 − 𝑌 
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and cross-correlate it with the impact curve of 𝑌, defined as the expression of 𝑌 under 

control minus the expression of 𝑌 under treatment. A high correlation would indicate that 

TIDES correctly predicts the regions of strong/weak relationship. For analysis, both the 

curves were normalized to -1 to 1 and cross-correlated on the EMT-time axis. The shift 

which provided the maximum cross-correlation was chosen and the Pearson correlation 

value was reported.  

 

Validating long-term drug inhibition 

We defined manual gates, based on the levels of E-cadherin and Vimentin, for 

computing the fraction of mesenchymal cells to validate the impact of long-term drug 

perturbation on EMT (Supplementary Figure 7). The gates used are: (1) TGFβ-receptor, 

MEK and AKT inhibition: E-cadherin < 3, vimentin > 4. (2) AMPK-perturbation: E-

cadherin < 3 and Vimentin > 3.5. (3) WNT-inhibition: E-cadherin < 3 and Vimentin > 4 

(Replicate 1), and E-cadherin < 3.5 and Vimentin > 4 (Replicate 2). Our predictions are 

validated across replicates. 

 

Runtime Analysis 

We performed runtime analysis of our methods. We first assessed how our method 

scales with size of the data. Since heat-diffusion based kernel density estimation starts 

off by computing the histogram of the data (Supplementary Figure 9), we fixed the 

number of bins to 128. For randomly generated data sets from uniform distribution, with 

sample size ranging from 5000 to 50000 (3 features for each data-point), the heat-

diffusion based method computes KDE within 1 second, Supplementary Figure 11A. The 

runtime is uniform across a range of data size because the algorithm is less dependent 

on the data size and more on bin size, which was kept constant here. Second, we 

studied the run time of our method against the number of bins in the initial histogram. 

We fixed the size of the data set to 5000 points (each with 3 features) and altered the 

number of bins in the initial construction of the histogram. For up to 256 bins in each 

direction (density estimated at 224 points), the heat-diffusion based method computes 

KDE within 10 seconds (Supplementary Figure 11B). We compared the runtime of our 

method to an alternative approach [15]. We used the code available at 

http://www.ics.uci.edu/~ihler/code/kde.html. As shown in Supplementary Figure 11C, our 

method scales better than the alternative against the number of bins of histogram. Using 
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the heat-diffusion based KDE, 3D-DREVI and 3D-DREMI can be computed within 25 

seconds for 128 bins (Supplementary Figure 11 (D)-(E)). Similarly, TIDES can be 

computed in less than 5 minutes (Supplementary Figure 11F). For all of these 

experiments, since the method depends mostly on the number of bins for the histogram, 

only an example pair of edges (pS6 -> pGSK3β) along EMT-time was chosen for three 

replicates from Day 3 (unless stated otherwise) and the average runtime was computed. 

 

Software Availability 

Our software and computational methods are available at 

https://github.com/roshan9128/tides. 
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Supplementary Figure 1.  

 
 
 
TGFβ treatment reproducibly induces EMT: (A-B) Contour plots of Vimentin and E-
cadherin after 2-4 days of TGFβ stimulation; biological replicates for main Figure 1C. 
Replicates confirm a shift in density of cells from epithelial to mesenchymal phenotype 
with time and illustrate a continuum of cells in transition on days 2-4.  
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Supplementary Figure 2. 
  

 
EMT characteristics are consistent across replicates: (A) Scatterplot where each 
point is a cell treated with TGFβ for 3 days. The cells are divided into three distinct 
categories: Epithelial, Transitional and Mesenchymal (see Methods). (B)-(E) A 
distribution of marker levels is shown for the three categories. Expression of E-cadherin 
(B) and CD24 (C) is high in epithelial cells, decreases in transitional cells, and is much 
lower in mesenchymal cells, consistently across replicates. Expression of Vimentin (D) 
and CD44 (E) is low in epithelial cells, increases in the transitional cells, and is higher in 
the mesenchymal cells, consistently across replicates.  
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Supplementary Figure 3.  

 
 
A spectrum of marker trends along EMT-time are seen consistently across 
replicates: (A)-(C) Plots show the expression of various markers along Wanderlust 
generated EMT-time in the cells treated with TGFβ on Day 2, 3 and 4 respectively. 
Smoothing was performed by a sliding-window Gaussian filter. The shaded region 
around each curve indicates one standard deviation across replicates indicating 
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consistency. (D) Plot showing the average cross-correlation of marker expression along 
EMT-time across replicates. For a given marker, the expression along EMT-time is 
cross-correlated across replicates. The average correlation over the set of markers is 
rendered as a heat map. (E) Average cross-correlation of marker expression along EMT-
time is similar across the different days within each replicate.  
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Supplementary Figure 4.  

 
 
 
Signaling relationships along EMT-time in replicates: (A) TGFβ-treated cells from 
Days 2, 3 and 4 are binned into four groups along EMT-time. DREMI score between all 
pairs of signaling molecules is computed in each group. Heat map shows the correlation 
of the DREMI scores for each group across days. Average correlation is 0.68 (Replicate-
2) and 0.73 (Replicate-3). (B) Dynamics of the relationship between pGSK3β and Snail1, 
similar to main Figure 3D across biological replicates. 3D-DREVI depicts the typical 
expression of Snail1 conditioned on pGSK3β and EMT-time. The modulation in the 
relationship is visualized by the 2D-DREVI slices along EMT-time and quantified the 
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TIDES curve (purple curve) shown along the z-axis. (C) Dynamics of the relationship 
between pPLCγ2 and pMEK1/2 similar to Figure 3E across biological replicates. 
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Supplementary Figure 5.  
 

 
 
 
Information transfer during EMT across transcription factors: Average TIDES curve 
of the relationship between several molecules (pCREB, pSTAT5, pFAK, pMEK1/2, 
pNFκB, pP38, pAMPK, pAKT, pERK1/2, pGSK3β, pSMAD1/5, pSMAD2/3, β-catenin, 
CAH IV, pMARCK, pPLCγ2, pS6, pSTAT3) and Snail1 (B) and Twist (C), across three 
replicates for Day 3. Similar to Slug in main Figure 4, the curves start rising steadily at 
near EMT-time ~ 0.25, and peak near EMT-time ~ 0.75. 
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Supplementary Figure 6.  

 
 
Validation of TIDES via short-term drug inhibition for direct and indirect edges in 
replicates: (A) Cross-correlation of TIDES curve between pMEK1/2-pP90RSK with the 
impact curve of pP90RSK results in a high correlation. This is a biological replicate of 
main Figure 5A. (B) Cross-correlation of TIDES curve between pMEK1/2-pP90RSK with 
the expression level of pP90RSK under control. Lower correlation than in (A) indicates 
that TIDES does not trivially follow the levels of pP90RSK. (C) Biological replicate of 
Figure 5B; cross-correlating TIDES curve between pMEK1/2-pERK1/2 with the impact 
curve of pERK1/2 results in a high correlation. (D)-(E) Cross-correlation of pERK1/2-
pP90RSK TIDES curve and pP90RSK impact curve under MEK-inhibition is 0.84 and 
0.80 across two replicates. 
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Supplementary Figure 7.  
 

 
 
Validation of critical edges for EMT via long-term drug inhibition in replicates: (A)-
(E) Shown are contour plots of cells treated with TGFβ (Control) and with TGFβ plus a 
chronic drug perturbation of the stated molecule for 5 Days, across biological replicates. 
Results of replicate 1 were shown as bar plots in Figure 6. Inhibition of TGFβ-receptor 
(A), MEK (B) and WNT (C) cause a substantial decrease in the fraction of cells that 
complete transition, while activation of AMPK (D) increases the proportion of cells that 
complete transition. AKT (E) on the other hand does not seem to impact the transition.   
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Supplementary Figure 8.  
 

 
 
Data clean-up: (A). Scatterplot showing the relationship between pCREB and pMEK1/2 
on Day 3 (shown is replicate 1). A spurious relationship between pCREB and pMEK1/2 
at high pCREB values is seen. These events were manually gated out from time course 
and acute inhibition validation data sets. (B) Shown are heat maps of the expression of 
markers on various clusters obtained using Phenograph [1] on a set of phenotypic 
markers and transcription factors. The data shown is from Day 3 (replicate 1). The cells 
comprising the clusters with low expression of markers (such events are found in most 
mass cytometry experiments) were removed (indicated by red rectangles) from further 
analysis.  
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Supplementary Figure 9.  

 
 
Computing Kernel Density Estimate: (Α) Plot shows histogram of a randomly chosen 
marker on Day 3. Constructing the histogram of the data is the first step in computing 
kernel density estimate. The histogram represents the initial condition for solving the 
heat equation. (Β) The histogram is then transformed into frequency domain by the 
Discrete Cosine Transform (DCT). (C) A low-pass filter smooths the DCT by removing 
the noisy parts. This is obtained by multiplying the DCT by an exponentially decaying 
term (exp(-k2π2t/2), see Methods) or in other words, evolving the initial condition in time. 
(D) The smooth density estimate is derived by inverting the smoothed-DCT. 
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Supplementary Figure 10.  

 
 
Robustness of Wanderlust generated EMT-time: (A) Heat-map shows the correlation 
between trajectories generated for various values of K-nearest neighbors. The shared 
nearest neighbor (snn) parameter was fixed at 20, while the l parameter (to avoid short 
circuits in the graph) was fixed at 12. (B) Heat-map shows the correlation between 
trajectories generated for various values of l parameter. K was fixed at 60 and snn was 
fixed at 20. (C) Heat-map shows the correlation between trajectories generated for 
various values of snn. K was fixed at 60 and l was fixed at 12. The results shown are for 
data on Day 3 (replicate 1), and holds true for all of our data. 
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Supplementary Figure 11.  
 

 
Runtime Analysis: (A) Runtime for computing heat-diffusion based KDE against data 
size. The data is uniformly generated with 3 features. The number of bins used to 
construct the initial histogram was fixed to 128 in each of the three directions. The green 
line shows the mean while shaded region shows one standard deviation for 100 
iterations. (B) Runtime against the log of number of histogram bins (in each of the three 
directions) for 5000 uniformly generated points. Computing density estimates on 224 
points takes less than 10 seconds. (C) Runtime comparison of our method against an 
alternate (based on computational geometry) [2] for computing three-dimensional KDE. 
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The shaded region shows the standard deviation across three replicates from the time-
course data Day 3 for an edge (pS6-pGSK3β) and EMT-time. Our method can compute 
3D density estimates at 224 points in less than 10 seconds while the alternative takes 
more than 10 minutes. (D)-(F) Plots show runtime of heat-diffusion based method 
against log of number of bins in computing 3D-DREVI, 3D-DREMI and TIDES 
respectively. The shaded region shows the standard deviation in runtime across three 
replicates of data from Day 3 for the edge used in (C), and the middle line shows the 
mean runtime. 
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Supplementary Tables: 
Table 1: List of molecules and antibodies used for all mass cytometry analysis 
except the acute inhibition experiment  

Isotope Antibody Clone 
Concentration 
[µg/ml] Supplier 

La-139 CREB (pSer133) J151-21 2 BD 

Pr-141 STAT5 (pTyr694) 47/STAT5 5 BD 

Nd-142 SHP2 (pTyr580) D66F10 4 CST 

Nd-143 FAK (pTyr397) Polyclonal 2.5 CST 

Nd-144 MEK1/2 (pSer221) 166F8 4 CST 

Nd-145 Twist poly ABD29 4 Millipore 

Nd-147 c-MYC D84C12 4 CST 

Nd-148 Snail ab180714 5 Abcam 

Nd-150 NFκB p65 (pSer529) polyclonal 9 3 Abcam 

Eu-151 P38 (pThr180/pTyr182) 36/p38 4 BD 

Sm-152 AMPK (pThr172) 40H9 4 CST 

Eu-153 AKT (pSer473) D9E 5 CST 

Sm-154 ERK1/2 (pThr202/pTyr204) 20A 2 CST 

Gd-155 Slug 666633 3 R&D 

Gd-156 CyclinB1 GNS-11 6 BD 

Gd-158 GSK3ß (pSer9) D85E12 1 CST 

Tb-159 SMAD1/5 (pSer463/pSer465) 41D10 6 CST 

Gd-160 CD44 IM7 0.01 BD 

Dy-161 Vimentin D21H3 1 CST 

Dy-163 

SMAD2/3 
(pSMAD2(Ser465/67)/pSMAD3 
(Ser423/425)) D27F4 2 CST 

Dy-164 β-Catenin D13A1 2 CST 

Ho-165 CAH IV AF2188 4 R&D 

Er-167 MARCK (pSer167/pSer170) D13E4 4 CST 

Er-168 CD24 30-F1 3 Biolegend 

Tm-169 PLCγ2 (pTyr759) K86-689.37 5 BD 

Er-170 Histone H3 (pSer28) HTA28 1 Biolegend 

Yb-171 S6 (pSer235/pSer236) N7-548 2 BD 

Yb-172 Cleaved Caspase 3 C92-605 5 CST 
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Yb-173 STAT3 (pTyr405) 4/p-stat3 5 BD 

Yb-174 E-cadherin 
36/E-
cadherin 1 BD 

Lu-175 Rb (pSer807/pSer811) D20B12 4 CST 

Yb-176 Survivin 71G4B7 4 CST 
 
 
Table 2: List of molecules used to construct wanderlust pseudo-time: 
E-cadherin 
Vimentin 
CD44 
β-catenin 
Snail1 
Slug 
 
 
Table 3: List of small molecules used for chronic perturbation 
X-molecule Y-molecule  Average score   

pSMAD2/3 β-catenin 0.967 

pAMPK β-catenin 0.891 

pERK1/2 β-catenin 0.886 

pGSK3β β-catenin 0.885 

pGSK3β pERK1/2 0.874 

pMEK1/2 β-catenin 0.866 

 
 
Table 4: List of small molecules used for chronic perturbation 
Target Small molecule  

TGFβ-R1 SB431542 

MEK PD318088 

WNT XAV-939 

AMPK  Phenformin  

AKT PHT427 
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