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Abstract

Motivation: Cross-linking technique coupled with mass spectrometry (MS) is widely used in the analysis
of protein structures and protein-protein interactions. In order to identify cross-linked peptides from MS
data, we need to consider all pairwise combinations of peptides, which is computationally prohibitive when
the sequence database is large. To alleviate this problem, some heuristic screening strategies are used
to reduce the number of peptide pairs during the identification. However, heuristic screening criteria may
ignore true findings.
Results: We directly tackle the combination challenge without using any screening strategies. With the
additive scoring function and the data structure of double-ended queue, the proposed algorithm reduces
the quadratic time complexity of exhaustive searching down to the linear time complexity. We implement the
algorithm in a tool named Xolik, and the running time of Xolik is validated using databases with different
number of proteins. Experiments using synthetic and empirical datasets show that Xolik outperforms
existing tools in terms of running time and statistical power.
Availability: Source code and binaries of Xolik are freely available at http://bioinformatics.ust.hk/Xolik.html.
Contact: eeyu@ust.hk
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Cross-linking technique in combination with mass spectrometry (MS)
is commonly used to analyze protein structures and protein-protein
interactions (Young et al., 2000). Various computational tools have
been developed to analyze cross-linking MS data. These tools include
MS2Assign (Schilling et al., 2003), xQuest/xProphet (Rinner et al., 2008;
Walzthoeni et al., 2012), crux (McIlwain et al., 2010), xComb (Panchaud
et al., 2010), Xlink-Identifier (Du et al., 2011), Protein Prospector (Chu
et al., 2010; Trnka et al., 2014), pLink (Yang et al., 2012), MeroX (Götze
et al., 2014), MXDB (Wang et al., 2014), Kojak (Hoopmann et al., 2015),
XlinkX (Liu et al., 2015) and ECL (Yu et al., 2016, 2017).

Compared with the identification of single peptides (Eng et al., 1994;
Perkins et al., 1999; Tanner et al., 2005), the identification of cross-linked
peptides requires a much larger search space because we need to examine
all pairs of candidate peptides. To be more precise, the search space of

identifying cross-linked peptides is quadratic with respect to the number
of candidate peptides in a database (Liu et al., 2015). Therefore, it is
computationally prohibitive to examine all possible candidate pairs in a
large database.

To tackle this problem, MS-cleavable cross-linkers, such as
disuccinimidyl sulfoxide (DSSO) (Kao et al., 2011), BuUrBu
(Müller et al., 2010) and cyanurbiotindipropionylsuccinimide (CBDPS)
(Petrotchenko et al., 2011), have been introduced. With MS-cleavable
cross-linkers, the identification of cross-linked peptides can be finished
in linear time (Liu et al., 2015). However, the time complexity is still
quadratic when non-cleavable cross-linkers are used.

To reduce the quadratic time complexity when non-cleavable cross-
linkers are used, most of the existing tools use some heuristic screening
strategies to reduce the number of candidates. For example, pLink (Yang
et al., 2012) first conducts a coarse-grained scoring on all single peptides,
and then selects top 500 of them as candidates for further fine-grained
scoring. In the fine-grained scoring, only these 500 candidate peptides are
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paired together as candidates of cross-linked peptides. Kojak (Hoopmann
et al., 2015) uses a similar strategy to select only the top 250 of single
peptides. Both tools limit the number of candidates when enumerating
combinations, so the running time can be reduced to an acceptable level.

Instead of reducing the number of candidates, Chen et al., 2001
proposed a general algorithm for identifying cross-linked peptides and
provided theoretical analysis of their method. Their method can be
decomposed into two stages. In the first stage, they generate possible
solutions that satisfy the requirement of precursor mass. In the second
stage, they measure the similarity between the experimental mass spectrum
and each pair of peptides. Because of the large number of combinations,
the authors suggested a speed-up implementation by removing low-score
candidates in measuring similarities of single peptides. This is also a
screening strategy.

Yu et al., 2017 proposed an algorithm whose time complexity is linear
with respect to the number of peptides in a database to solve the problem
described above. They use the additive property of the scoring function,
and a binning strategy to assign peptides into small bins according to their
mass. Afterwards, they search and record the peptide with the maximum
score in each bin, and enumerate bin pairs to figure out the most similar
cross-linked peptides. As the number of bins can be defined beforehand,
the computational cost on enumerating bin pairs will be fixed.

However, their method suffers from the following issues. The time
complexity of enumerating bins in ECL2 isO(Mϵ1

w2 ), whereM is the total
range of peptide mass, ϵ1 is the MS1 tolerance and w is the MS1 bin width
(Yu et al., 2017). This time complexity can be rewritten as O( ϵ1

M
(M
w
)2),

where M
w

is the total number of bins, and 2ϵ1
M

M
w

is the number of candidate
bins within the MS1 tolerance range. Both are proportional to 1

w
, so

the time complexity of their method is still quadratic with respect to the
MS1 mass precision 1

w
. Since peptide combinations are replaced by bin

combinations, i.e., the time complexity O( ϵ1
M

n2) by enumerating peptide
pairs (n peptides and average 2ϵ1

M
n candidate peptides within the MS1

tolerance range) becomes O( ϵ1
M

(M
w
)2) in ECL2, the time complexity is

still quadratic with respect to the objects being enumerated. That is to
say, the high complexity issue of enumerating combinations has not been
fully solved. Besides, because the binning strategy is used in ECL2, the
precursor mass constraint may not be strictly satisfied.

In this work, we propose a new linear-time algorithm to solve the
problem of identifying cross-linked peptides. The proposed algorithm not
only overcomes the above issues, but also shows an novel advantage on
reducing the computational cost on scoring peptides. By using the additive
property of the scoring function and the data structure of double-ended
queue, the proposed algorithm exhaustively searches cross-linked peptides
in linear time. The time complexity of the proposed algorithm is not only
linear with respect to the number of peptides in a database, but also constant
with respect to the MS1 tolerance. We implement this algorithm in a tool
named Xolik. The correctness proof and the time complexity analysis
are given in the Supplementary Notes. Experiments using synthetic and
empirical datasets show that Xolik outperforms existing tools in terms of
running time and statistical power.

2 Methods

2.1 Problem formulation

Given a scoring function that measures the similarity between the query
MS2 spectrum and the candidate cross-linked peptides, we have the
following cross-linking problem:

maximize
i,j

Sorigin(i, j)

subject to |PM − (M [i] +M [j] +XM)| < ϵ1,

(1)

where PM is the precursor mass, XM is the mass of the cross linker, ϵ1
is the MS1 tolerance, and i and j are peptide indices. For the ith peptide,
M [i] is its mass. Sorigin(i, j) is the similarity score between the query
MS2 spectrum and the cross-linked peptides formed by the ith and jth
peptides.

Suppose the scoring function satisfies the following additive property:

Sorigin(i, j) = S(i) + S(j). (2)

S(i) and S(j) denote the scores of the ith and jth peptide, respectively,
with a pseudo-modification at the cross-linked site (Yang et al., 2012).
This additive property means that we are able to decouple the score of the
cross-linked peptide as a sum of two scores corresponding to two single
peptides. Therefore, the cross-linking problem becomes

maximize
i,j

S(i) + S(j)

subject to |PM − (M [i] +M [j] +XM)| < ϵ1.

(3)

With the additive scoring function, the proposed algorithm finds the cross-
linked peptides in linear time with respect to the number of candidate
peptides in the database.

2.2 Linear-time search algorithm

Any scoring functions satisfying the above additive property can be used
in our algorithm. In the default implementation, we use a modified version
of the XCorr scoring funtion (Eng et al., 2008). The modification is that
we don’t incorporate theoretical ions from two peptides if they are within
the same MS2 bin.

To identify cross-linked peptides from MS data, peptides in a sequence
database are first digested in silico and sorted based on the mass in advance.
(Sorting the mass requires O(n logn) time. However, since it is done
offline, we don’t include it in the time complexity of analyzing a spectrum.)
With the proposed algorithm, finding the cross-linked peptides given a
query MS2 spectrum takes O(n) time. We only calculate the similarity
score between the query spectrum and a candidate if the comparison
between them is necessary. This allows us to reduce the computational cost
on scoring because we merely score peptides that are necessary to solve
the problem, rather than blindly score all candidates in the whole database.
In the next subsetction, we will describe the benefits of this strategy. To
search the peptide pairs that satisfy the precursor mass constraint, we use
three pointers (i.e., If , Ibf , Ibe) to denote the current examined peptide,
the lower bound and the upper bound of the index range of candidate
peptides that satisfy the requirement of precursor mass, respectively (see
Fig. 1 and Fig. 2). If is initially pointed to the peptide with the smallest
mass, Ibf , Ibe are initially pointed to the peptide with the largest mass.
We use a double-ended queue to maintain the order of scores compared in
previous iterations. In each iteration, we examine one peptide and compute
the range of the other peptide that satisfies the mass constraint. For each
examined score, finding the other peptide with the maximum score in
the valid range can be solved in a constant amortized time with the help
of the double-ended queue. Therefore, after all iterations, the maximum
score among all peptide pairs corresponding to the query MS2 spectrum
is available in linear time with respect to the number of candidate peptides
in the database.

The improvement of the proposed linear-time algorithm comparing
with the algorithm proposed in ECL2 (Yu et al., 2017) is at the overhead
on enumerating bin pairs. The time complexity of ECL2 is O(n+ Mϵ1

w2 ),
where O(n) is the time complexity of scoring peptides and assigning
peptides into bins, andO(Mϵ1

w2 ) is the time complexity of enumerating bin
pairs. Xolik directly solves the problem inO(n) time, without any binning
strategies. Therefore, the overhead O(Mϵ1

w2 ) in ECL2 is suppressed in

.CC-BY-NC-ND 4.0 International licensethe author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) isthis version posted June 24, 2017. ; https://doi.org/10.1101/155069doi: bioRxiv preprint 

https://doi.org/10.1101/155069
http://creativecommons.org/licenses/by-nc-nd/4.0/


Xolik 3

XolikMatch(M,PM,XM, ϵ1, S() with memoization)

1 If = 0 // Forward
2 Ibf = M.size // Backward front
3 Ibe = M.size − 1 // Backward end
4 Ilast = max{i | M [i] ≤ (PM −XM + ϵ1)/2}
5 max = NULL
6 D = new Deque
7 while If ≤ Ilast
8 Ml = PM −M [If ]−XM − ϵ1
9 Mu = PM −M [If ]−XM + ϵ1

10 // Step 1. Remove deque front
11 while M [Ibe] > Mu

12 Ibe = Ibe − 1

13 while !D.empty() and D.front > Ibe
14 D.PopFront()
15 // Step 2. Append deque end
16 if Ibf > Ibe + 1

17 Ibf = Ibe + 1

18 while Ibf > 0 and M [Ibf − 1] ≥ Ml

19 while !D.empty() and S(Ibf − 1) > S(D.back)
20 D.PopBack()
21 D.PushBack(Ibf − 1)
22 Ibf = Ibf − 1

23 // Step 3. Get local maximum
24 if !D.empty()
25 local = S(If ) + S(D.front)
26 if max == NULL or local > max[0]

27 max = (local, If , D.front)
28 If = If + 1

29 return max

Fig. 1: The pseudocode of the algorithm that finds the cross-linked peptides
in linear time. Given the mass of all candidate peptides M (M is sorted
in ascending order beforehand), the precursor mass PM of the query
MS2 spectrum, the cross-linker mass XM , the MS1 tolerance ϵ1, and the
scoring function S() with memoization, the XolikMatch algorithm finds
the cross-linked peptides in linear time. The basic idea of this algorithm
is to use a double-ended queue D to store the order of scores compared in
previous iterations.

Xolik. Besides, because no binning strategy is used, Xolik doesn’t relax
the constraint of the precursor mass.

2.3 Lazy evaluation on scoring single peptides

A nice property of the algorithm is that, when we retrieve a similarity score
of a peptide, we are sure that this peptide must be in some valid solutions of
cross-linked peptides that meet the requirement of precursor mass. So the
score of this peptide is necessary for the algorithm to figure out the most
similar cross-linked peptides. At the same time, if a peptide is not in any
valid solutions of cross-linked peptides, we will never retrieve the score
of it. Therefore, we can postpone the computations of similairty scores
of single peptides until we retrieve the scores for comparison. This lazy
evaluation strategy saves resources on computing the similarity scores of
those “useless” peptides. Along with the memoization on the computed
scores, all similarity scores will be computed at most once. To implement
the memoization technique, we only need an additional cache layer to
store the flags indicating whether scores have been calculated or not. This
additional layer only requires a small amount of memory space. For a

typical number of peptides in a large database, e.g., 2,000,000 peptides,
a naive implementation using 64-bit int as flags merely needs 8 bytes ×
2000000 ≈ 16 MB extra memory.

3 Results

3.1 Running time validation

In this subsection, we will examine whether Xolik can complete the
identification task in linear time. As a comparison, we also run ECL (Yu
et al., 2016) and ECL2 (Yu et al., 2017) to finish the same tasks. We use
a MS data file (20111221_ananiav_DPDS_lib1_90min_CID35.mzXML)
from a synthetic dataset (Wang et al., 2014) to search against random
databases with different sizes (i.e., different number of proteins). Random
databases are generated by randomly selecting proteins from the human
protein database, with protein numbers ranging from 100 to 20000. The
MS1 tolerance is set at 50 ppm. Also, to validate the effect when the MS1
tolerance changes, we also search the data file against a random databases
containing 10000 proteins, with MS1 tolerance ranging from 50 ppm to
500 ppm. The MS2 bin size for XCorr is set at 0.5 Da (roughly 0.25 Da
MS2 tolerance), and the maximum number of missed cleavage is 2. The
mass range of candidate peptides is [500 Da, 5000 Da]. In this experiment,
we want to compare the running time in a common scenario, so we set
BS3 as the cross-linker and enable the E-value estimation, even though
the MS spectra in the data file are synthetically cross-linked by SS-bond
(Wang et al., 2014). We also search against the decoy database, which is
constructed by reversing the protein sequences in the target database. The
MS data file contains 16557 MS2 spectra. The running time versus the
database size is shown in Fig. 3a, and the running time versus the MS1
tolerance is shown in Fig. 3b. All tools are deployed on an Intel Core i5
3.20GHz Linux desktop computer with 16GB memory, which is a regular
PC with a basic configuration, and run in 4 threads (if applicable) with all
memory assigned to the process.

Fig. 3a shows that the running time of ECL increases quadratically, the
running time of ECL2 increases linearly, and the running time of Xolik also
increases linearly, with respect to the number of proteins in the database.
All tools are consistent with their time complexities, respectively. Most
notably, Xolik searches a MS data file against 20000 proteins in around
30 minutes on a regular PC. This allows us to search against a large
database within an acceptable period of time, which especially benefits
the analysis of complex protein samples. We also show the performance of
Xolik in searching a real dataset against a large protein database in the last
experiment. The running time of Xolik is stable when the MS1 tolerance
ϵ1 increases. In contrast, the running time of ECL2 with 0.001 Da MS1 bin
width increases roughly linearly. Comparing with the running time with
0.01 Da MS1 bins, when the MS1 tolerance is large, e.g., 500 ppm, one
additional order of magnitude on the MS1 mass precision requires 55 min
extra running time for ECL2.

We provide the theoretical analysis for Xolik’s linear-time algorithm in
the Supplementary Notes. It proves that it is indeed a linear-time algorithm
and the time complexity will not change with respect to the MS1 tolerance.

3.2 Analysis of synthetic disulfide-bridged peptides

We run Xolik on a synthetic disulfide-bridged peptide dataset (Wang et al.,
2014) to examine its statistical power. As a comparison, we also run
Kojak, pLink and ECL2 on the same dataset. Since pLink reports few
identifications (163 peptide-spectral matches (PSMs)) and ECL2 currently
does not support the customization on the cross-linked site (SS-bond links
at Cysteine (C)), we skip the comparison with pLink and ECL2. The
dataset we analyze contains three synthetic peptide libraries, which have
the following three specific sequence patterns:

• K[AW][DE]F[VSHY]A[DY]SCVA[KR]
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Fig. 2: Graphical illustration of the linear-time algorithm in each iteration. The graph shows the change of program states starting from the previous
iteration at Line 24 of the pseudocode (Fig. 1). If indicates the position of the current examined peptide. Ibf and Ibe indicate minimum and maximum
indices that meet the requirement of precursor mass, respectively. D is a double-ended queue (deque), in the opposite direction to M (the sorted mass
array). The circled numbers denote the steps. In Step 0, If moves right (the end of the previous iteration). Step 1 adjusts Ibe and pops elements out from
the front of the deque D. Step 2 moves Ibf to the left and pushes elements into the back of the deque D if the elements are with scores less than or equal
to the back of the deque D, or recursively pops elements out from the back of the deque D if the score of the new element is greater until the new element
meets the requirement to be pushed into the back of the deque D. With the completion of Step 2, the front of the deque D is the index that indicates the
maximum score in the range [Ibf , Ibe].
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Fig. 3: The running time v.s. the database size (#Protein) (Fig. 3a) and the MS1 tolerance (Fig. 3b). (a) The databases are searched with MS1 tolerance
at 50 ppm and MS2 bin size for XCorr at 0.5 Da. As the number of proteins increases, the running time of Xolik increases linearly. When searching a
database containing 20000 proteins, Xolik takes about 30 min. For ECL2, the curves in both settings increase linearly. However, the running time of ECL2
with a smaller MS1 bin width is less than that with a larger MS1 bin width. The curve of ECL increases quadratically, which is consistent with its time
complexity. Not only because of its quadratic time complexity, but also because of the lack of multithreading, ECL spends around 5540 min (92 hours)
searching a database with 4000 proteins. (b) The database contains 10000 random proteins. As MS1 tolerance increases, Xolik roughly maintains the
same running time. For ECL2, as the MS1 tolerance increases, the running time with 0.001 Da MS1 bin width increases linearly. In contrast, the running
time with 0.01 Da MS1 bin width only slightly increases, which reflects that enumerating 0.01 Da MS1 bins only costs one-hundredth comparing with
enumerating 0.001 Da MS1 bins. ECL is skipped in this experiment because it cannot handle 10000 proteins within an acceptable period of time.

• [TW]A[LE]H[FV]SCVT[PSGY]F[KR]
• [WA]VK[FL]C[DE]T[VSGY]FA[KR]

Please refer to the original paper (Wang et al., 2014) for a detailed
description of the sample preparation and the XL-MS analysis.

To validate the statistical power of Xolik, we search these libraries
against a target database containing all peptide sequences matching the
above patterns. Total 704 peptide sequences are in the target database.
The MS1 tolerance is set at 50 ppm and the MS2 bin size for XCorr
is set at 0.5 Da. The maximum number of missed cleavage is 2. The
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Table 1. Comparisons between Xolik and Kojak on a synthetic disulfide-
bridged peptides dataset (Wang et al., 2014). Both tools run on an Intel Core
i5 3.30GHz Windows desktop computer with 12GB memory in 4 threads.
Accuracy is defined as #Correct / #PSMs.

#PSMs #Correct Accuracy Time (s)

Dataset Kojak Xolik Kojak Xolik Kojak Xolik Kojak Xolik

1 1673 2374 1559 2184 93.2% 92.0% 53 12
2 2962 3647 2797 3296 94.4% 90.4% 36 9
3 1685 1260 625 676 37.1% 53.6% 43 5

Total 6320 7281 4981 6156 78.8% 84.5% 132 26

mass range of candidate peptides is [500 Da, 5000 Da]. The cross-linker
used in the database search is SS-bond. The decoy database is constructed
by reversing the protein sequences in the target database, and the false
discovery rate (FDR) is controlled at 5%. The FDR controlling procedure
implemented in Xolik is the same as the method used in xQuest/xProphet
(Walzthoeni et al., 2012) and pLink (Yang et al., 2012). For Kojak, we
follow the whole identification procedure using Percolator (Kall et al.,
2007) to control the FDR of the findings. Since Kojak will output multiple
PSMs for one spectrum, for a fair comparison, we only keep the top match
for each query spectrum on the controlled identifications. Because the
sequences in the database follow certain patterns, the basic assumption of
the randomness for E-value estimation is violated. Controlling FDR on
E-value significantly degrades the performance, even though most of the
dropped records can be validated by the above sequence patterns (data
not shown). Therefore, we run Xolik without E-value estimation in this
experiment. Both tools run in an Intel Core i5 3.30GHz Windows desktop
computer with 12G memory in 4 threads. The detailed comparison on the
search results is shown in Table 1.

Each library only contains peptides following one specific sequence
pattern, so we are able to evaluate the reported PSMs by comparing the
identified sequences with the sequence pattern corresponding to the library.
Only when both sequences of a cross-linked PSM match the sequence
pattern is the reported peptide pair considered as a correct identification.

As shown in Table 1, Xolik identifies more PSMs than Kojak in total.
After manual examination on the identified sequence patterns, we find that
Xolik also identifies more correct PSMs than Kojak in all datasets. This
indicates that Xolik has a higher statistical power. Even though Xolik has
lower accuracy than Kojak in the first two datasets, Xolik is more accurate
than Kojak on average among all datasets. Moreover, Xolik searches all
candidate peptides exhaustively but still runs faster than Kojak.

3.3 Analysis of Escherichia coli 30S and 50S ribosomal
subunits

To illustrate the performance on real datasets, we run Xolik on a E.coli
ribosome dataset (Lauber and Reilly, 2011). There are 48 mass spectra files
analyzed in total. As a comparison, we also run ECL2, pLink and Kojak
on the same dataset. All proteins in E.coli 30S and 50S ribosomal subunits
are included in the target database (55 proteins), and the decoy database
is constructed by reversing the protein sequences in the target database.
The MS1 tolerance is set at 5 ppm, and the MS2 bin size for XCorr is set
at 0.02 Da. The maximum number of missed cleavage is 2. We set a fixed
modification +57.02146 at Cysteine (C), and no variable modification. The
allowed mass range of candidate peptides is [500 Da, 5000 Da]. Since
pLink cannot set the MS2 tolerance and the mass range of candidate
peptides, we use the default setting when running pLink. The cross-linker
used in the database search is diethyl suberthioimidate (DEST) (Lauber and

Reilly, 2011). The E-value estimation and the multithreading are enabled
if applicable. All tools are deployed on an Intel Core i5 3.30GHz Windows
desktop computer with 12G memory. When running ECL2, all memory
(12G) are assigned to the process. We control the FDR on the reported
identifications at 5% using the methods bundled in each tool. The search
results of all tools are shown in Fig. 4. As shown in the figure, Xolik
shows significant improvement in terms of running time. Also, in terms
of the number of identified PSMs, Xolik reports more PSMs than pLink
and Kojak, and slightly outperforms ECL2. Although Xolik reports more
PSMs than ECL2 in this experiment, it is not clear whether a strict precursor
mass constraint will lead to an increment of identifications or not.

3.4 Analysis of Homo sapiens HeLa cell dataset

We also run Xolik on a human sample dataset (Makowski et al., 2016) to
evaluate the performance when searching a large protein database. This
dataset contains around 3×105 MS2 spectra, and the whole human protein
database (downloaded from UniProt at 2016.03.10, total 20198 proteins) is
used in the database search. The decoy database is constructed by reversing
the protein sequences in the target database, and the FDR is controlled at
5%. The MS1 tolerance is set at 5 ppm, and the MS2 bin size for XCorr is set
at 0.02 Da. The maximum number of missed cleavage is 2. We set a fixed
modification +57.02146 at Cysteine (C), and no variable modification.
The mass range of candidate peptides is [500 Da, 5000 Da]. The cross-
linker used in the database search is BS3. We also run ECL2, pLink and
Kojak on the same dataset for comparison. ECL2 cannot handle a database
with more than 20000 proteins because the Java platform used by ECL2
requires more than 32G memory during the analysis. As a consequence,
ECL2 spends most of time waiting for spare memory. Neither ECL2 nor
pLink can finish the analysis within a week. Therefore, we only show the
results of Xolik and Kojak. We enable the E-value estimation in Xolik and
enable multithreading in both tools (8 threads). All tools are deployed on
an Intel Core i7 3.50GHz Windows desktop computer with 32G memory.
The result is shown in Fig 5. Xolik runs much faster than Kojak even
though Xolik searches exhaustively. Also, Xolik reports more PSMs than
Kojak.

4 Conclusion
In this paper, we propose a linear-time algorithm for finding cross-linked
peptides with maximum paired scores in a protein sequence database.
It is implemented in a tool named Xolik. Instead of adopting screening
strategies to reduce the search space, the proposed algorithm exhaustively
searches the original search space by utilizing the additive property of the
scoring function. Using the double-ended queue to store the order of scores
compared in previous iteration, the proposed algorithm achieves the linear
time complexity with respect to the number of candidate peptides in the
database. Moreover, utilizing the lazy evaluation strategy together with the
memoization technique, Xolik further reduces the computational cost on
computing similarity scores. Experiments on a synthetic dataset and two
empirical datasets show that Xolik outperforms existing tools in terms of
running time and statistical power.
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Fig. 4: Identification results on the E. coli ribosome dataset (Lauber and Reilly, 2011) under 5% FDR control. All tools run on an Intel Core i5 3.30GHz
Windows desktop computer with 12GB memory. Xolik reports more PSMs than other tools. Also, Xolik outperforms other tools in terms of running time.
The difference between ECL2 and Xolik is only at the matching algorithm for pairing two single peptides. However, because the algorithm used in ECL2
relaxes the constraints of the MS1 tolerance, peptides outside the MS1 tolerance range are possibly reported by ECL2. Therefore, around the boundary of
the tolerance range, ECL2 and Xolik may assign different labels to the query spectrum. This also affects the threshold determined by the FDR controlling
algorithm. As a consequence, after controlling the FDR, the identification results between Xolik and ECL2 are partly different.
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Fig. 5: Identification results on the human protein dataset (Makowski
et al., 2016) under 5% FDR control. Both tools run on an Intel Core
i7 3.50GHz Windows desktop computer with 32GB memory in 8 threads.
Xolik outperforms Kojak in terms of running time, even though Xolik
searches cross-linked peptides exhaustively. In terms of identified PSMs,
Xolik also outperforms Kojak by reporting more PSMs at the same FDR
level.
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