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Pablo Picasso, when first told about computers, famously quipped “Computers are useless. They can only
give you answers.” Indeed, the majority of effort in the first half-century of computational research has
focused on methods for producing answers. Incredible progress has been achieved in computational
modeling, simulation and optimization, across domains as diverse as astrophysics, climate studies,
biomedicine, architecture, and chess. However, the use of computers to pose new questions, or prioritize
existing ones, has thus far been quite limited.

Picasso’s comment highlights the point that good questions can sometimes be more elusive than good
answers. The history of science offers numerous examples of the impact of good questions. Paul Erdds, the
wandering monk of mathematical graph theory, offered small prizes for anyone who could prove conjectures
he identified as important (1). The prizes varied in cash amounts based on the perceived complexity of the
problem posed by Erdds.

Posing technical questions and allocating resources to answer them has taken on a new guise in the
Internet age. The X-Prize foundation (http://www.xprize.org/ ) offers multi-million dollar bounties for grand
technological goals, including goals for sequencing genomes or space exploration. Several companies provide
portals where customers can place cash bounties on educational, scientific or technological challenges, while
potential problem solvers can compete to produce the best solutions for these problems. Amazon’s Turk site
(https://www.mturk.com/mturk/welcome) links people requesting performance of intellectual tasks to people
willing to work on them for a fee. Such crowd-sourcing systems create markets of questions and answers, and
can help allocate resources and capabilities efficiently.

This paradigm suggests a number of interesting questions for scientific research. In a resource limited
environment, can funds and research capacity be allocated more efficiently? Can knowledge demand provide
an alternative or complementary mechanism to traditional investigator-initiated research grants?
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The fathers of Artificial Intelligence (Al) and Herbert Simon in particular envisioned the application of
Al to Scientific Discovery in different forms and styles (focusing on physics). We follow on these early dreams
and describe a novel approach aimed at remodeling of the biomedical research infrastructure and catalyze
gene function determination. We aim to start a bold discussion of new ideas aimed towards increasing the
efficiency of the allocation of research capacities, reproducibility, provenance tracking, removing redundancy
and catalyzing knowledge gain with each experiment. In particular, we describe a tractable computational
framework and infrastructure that can help researchers assess the potential information gain of millions of
experiments before conducting them. The utility of experiments in this case is modeled as the predictive
knowledge (formalized as information) to be gained as a result of performing the experiment. The
experimentalist would then be empowered to select experiments that maximized information gain if they
wished, recognizing that there are frequently other considerations, such as a specific technological or medical
utility, that might over-ride the priority of maximizing information gain. The conceptual approach we develop
is general, and here we apply it to the study of gene function.

What are the best genes to study? Prioritizing gene function research.

The newly established initiative in Biological Data to Knowledge Transfer (BD2K)
(http://commonfund.nih.gov/bd2k/index) aims to develop transformative approaches to maximize the
integration and utility of Big Data into biomedical research. While a conservative view might suggest that
knowledge is just a set of experimentally validated facts, modern sciences are often driven by predictive
models that organize facts, which cumulatively enhances our ability to predict behavior of complex physical or
biological systems.

The field of genomics provides an interesting case study for the allocation of research resources to BD2K.
High-throughput sequencing has led to the discovery of a plethora of new genes, many of which are poorly
understood. Each gene gives rise to a set of questions: what is its function (2, 3)? If it codes for an enzyme,
what substrates does it act on? If it codes for a regulator, what does it regulate (4)? What is its role in the life
of the organism (5)? Is the function maintained across conditions and across species? How did it evolve? Does
the gene have an important clinical relevance such as contributing to antibiotic resistance (6) or cancer (7)?

A fairly typical protein cluster contains hundreds of evolutionary related proteins. While each one of the
guestions above can produce a unique answer for each gene in this cluster, we will never be able to
experimentally test all possible proteins. If there is a hypothesis or a prediction about the biochemical function
performed by any of the proteins in this cluster, which specific experiments should we conduct, among
hundreds of possible options? While numerous bioinformatics systems offer an ability to predict the function
of a protein, none answer the question: “What is the best experiment to perform?” Should the experiment be
exclusively driven by curiosity, interest in a particular bacterial organism or specific properties of the protein
family? Is there a general paradigm that can be deployed in guiding the choice for experiments?

We describe one solution to this question in the context of bacterial gene function determination. The
impact of the biochemical characterization of newly sequenced bacterial enzymes can be very high. Two
recent “Breakthroughs of the Year” have been Optogenetics (Nature, 2010) and CRISPR (Science, 2015), both
of which rely on bacterial enzymes! As is well known, optogenetics relies on light-regulated ion channels, and
genome editing with CRISPR relies on sequence-guided nucleases. Currently on NCBI (8) and other protein
databases, there are protein clusters that contain mixtures of nucleases and proteases. However, we are not
able to discriminate which is which, in part because the essential experiments have not yet been conducted.
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There are hundreds of similar examples - an immense knowledge mine of possible technology drivers in the
form of bacterial proteins used to produce energy, catalyze natural product synthesis, perform sensory
activities, and which could play a key role in synthetic biology applications.

Does the power-law “curse” inhibit knowledge growth in molecular biology?

Although many high-throughput technologies for generating data related to aspects of gene function
have been developed (expression levels, interacting molecules, phenotype, etc.), most experiments specifically
on the molecular function of a hypothetical protein are answered using low throughput methods. How does
the scientific community collectively decide which genes and gene families to focus on for function
elucidation? There are thousands of proteins clusters that lack any or specific annotation. Each of these
clusters may contain hundreds of proteins. Which proteins are the “best” to test?

Publication statistics show that the allocation of research attention across genes is far from uniform, and
instead follows a power law distribution (9, 10) In other words, most genes have zero or few citations, and a
very few genes are associated with very large number of citations (previously observed for human genes).
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have been discovered earlier, and so have had more time to accumulate publications; they may be “hubs” in
cellular networks that inherently affect more biological processes, or they may be more amenable to study
using the currently available methods. By far the most popular gene product, measured by number of
publications, is the tumor suppressor p53, for which many of the above criteria might apply. In bacteria, the
ten most popular genes are recA, rpoA-rpoD, rpoS, dnak, ftsZ crp and rne, which are also highly conserved e.g.
the rpo genes encode RNA polymerases.

However, the bias in favor of particular genes may be self-reinforcing. Peer review of grants and
publications favors the currently fashionable and familiar genes, thereby encouraging additional allocation of
resources to them. The result can be a self-perpetuating “power law curse”: a fashion-driven science, with a
biased allocation of attention and resources that deflects attention away from the least characterized genes.
The distribution of publications per E. coli gene at left is roughly linear on a log-log plot, characteristic of a
“power-law curse”. Such distributions are often due to preferential attachment, also known as the “rich get
richer” or “Matthew” effect (11). The right plot shows a positive power law relationship between publications
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per gene and protein cluster size, showing that more conserved and/or widespread proteins tend to have
more publications.

COMBREX: A Computational Bridge to Experiments

The COMBREX project (http://www.combrex.org/, http://combrex.bu.edu ), sponsored by the National
Institutes of Health, is a transformative effort designed to accelerate the acquisition of gene function
knowledge in bacteria by a novel funding mechanism and Artificial Intelligence. COMBREX awarded modest
funding for experimental tests of gene function, that were prioritized in parallel by (1) explicit, theoretically
grounded criteria, or (2) by a selection of practical, biomedically motivated criteria (e.g. essentiality, conferring
antibiotic sensitivity, etc.) (12, 13). COMBREX, an acronym for “COMputational BRidges to EXperiments,”
forged links among computational and experimental communities. The project was built on many years of
experience gained by both groups, doing transformative work on biochemistry, genome sequencing, gene
discovery, and gene function prediction, coupled with an organizing call for community action (14). The
project initially focused on biochemical, molecular function (e.g. enzymatic activity), but similar approaches
can be developed for other biological function annotation classes (e.g., pathway membership or phenotype).
Similar to other resources, such as Gene Ontology (GO) or model organism databases, COMBREX has amassed
a database of bacterial gene function assignments from both experimental evidence and computational
predictions, along with information on the quality and type of evidence supporting each assignment (15).
Unigue to COMBREX-DB is the influence and implementation of revolutionary Al proposals made more than
40 years ago to develop intelligent systems able to guide the Scientific Discovery process (16). The database
and the webserver are intended to function as a Science Hub to coordinate activities required for the
generation and tracking of microbial gene function knowledge. The overall effort seeks to drive this database
towards correctness and completeness by developing the four following principles.

Computable Function Descriptions: 64% of bacterial gene functions are described only by narrative text
gene descriptions, which among other issues, rarely describe the specific substrates of a protein. It can be
challenging for a computer to determine when two textual function descriptions that are not worded precisely
identically are describing the same function, or when one description adds additional details to an otherwise
identical description. Formalization of gene descriptions using controlled vocabularies such as the Gene
Ontology Molecular Function hierarchy (17), the Enzyme Commission numbering scheme, and explicit reaction
descriptions is essential for enabling automated reasoning over functions, including logical (e.g. equality or
similarity), statistical (e.g., accuracy assessment) and biological (e.g. metabolic reconstruction) comparisons
and analysis of predictions. COMBREX is developing and encouraging the community to produce strategies to
increase the extent of structured annotation using both automated and manual curation methods. Such
systems (translating text to structured descriptors) are under development in multiple bioinformatics and
natural language processing groups and will continue to improve the formal knowledge of gene function (13).
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Traceable Evidence: The evidentiary basis of many gene function assignments is either poorly recorded
or missing. Although some gene function assignments are based directly on experiments, the vast majority are
inferred from sequence similarity: the function assigned to a protein is based on an experiment carried out on
a protein with some degree of homology, typically from another species. The expected accuracy of such
propagated or predicted biochemical function predictions often depends on the degree of sequence similarity
between the homologous proteins, but details are important. Single amino acid changes in catalytic residues
can alter an enzyme’s function, while other times, numerous substitutions in a protein may have no effect.
There is mounting evidence (18) that propagation of function by sequence similarity is error prone and creates
a significant mis-annotation problem that is exacerbated by the number of genes added daily to NCBI and
other genomic databases.

Surprisingly, COMBREX determined that less than 1% of bacterial function assignments to genes are
supported by experimental evidence that can be explicitly traced to a publication (see Figure 2). Often it is
unclear which function assignments are based on experimental evidence rather than homology, which protein
sequence was used in an experiment, what the publication is, or how assignments were made. This lack of
traceability, or provenance, makes it difficult to detect and correct errors; it can even lead to self-supporting
cycles of evidence, as functions are propagated back to their starting points, often across databases. To
address this, COMBREX has developed a color code for annotating evidence quality: gold for experimentally
validated functions that have been manually curated, green for functions that have been experimentally
validated but await curation, blue for computationally predicted functions, and black for genes with no
functional information. The scheme is borrowed from ranking the degree of difficulty in downhill skiing, and is
aimed to suggest the challenge level in experimental testing. In addition to the COMBREX database (15), this
color scheme has recently influenced the SMART BLAST engine built by NCBI (8). Evidence propagation trails
are either recorded or predicted in the COMBREX database to provide traceability. COMBREX color codes are
an experiment centric refinement of the GO evidence codes, but COMBREX is the first to implement a simple
(straw man) algorithm to predict an experimental source for a predicted annotation to drive an integrated
process of evidence tracking and improvement. This is done simply by BLASTing to all experimentally
determined proteins and providing a link to the best matches.

Computational Predictions: In its
first iteration, the COMBREX project
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Figure 2: Function annotation rates for bacterial genes, using
the COMBREX evidence color codes. Fewer than 1% of bacterial
sequences have high quality experimental evidence of function.
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profile-based approaches (20), module-based approaches (21), evolutionary modeling (22, 23), functional
linkage (2, 24), genomic context (25, 26) gap filling in metabolic networks (27), genomic role filling (28),
structural remote homology modeling , threading (29), protein-ligand docking (30, 31) and combinations of
these (32). In addition to publishing predictions generated by consortium members, COMBREX solicited
predictions from the larger computational community, with the goal of serving as a central archive of
predictions. Predictions can be readily uploaded into COMBREX-DB. Function prediction is a relatively well
established area in computational biology with many competing algorithms and benchmarks (33). There are
many benefits to such competitions, which have generally shown that no single algorithm is likely to be best in
biochemical function prediction for every type of enzyme. In most cases, specialized protein sequence-
structure-function approaches that take into account specialized evolutionary and functional constraints are
needed to produce the best predictions of putative substrates. COMBREX will continue to collaborate broadly
with multiple specialized teams and will aim to fund small computational projects that specialize general
computational approaches (e.g. SIFTER (34)) to a specific protein families.

Prioritized Targets for Experimental Validation: At present writing ~2.6 million bacterial genes in the
COMBREX database have computational predictions, while fewer than 1% have documented experimental
validations. In the absence of reliable high throughput methods for gene function testing, there are many
more predictions than can be experimentally tested on any reasonable timescale using current methods. This
suggests that for the foreseeable future, knowledge of gene function is going to be fundamentally
probabilistic, that is, inferred computationally from known experiments and analysis using methods of varying
reliability. Can we assess probabilistic knowledge by some formal measure and use it to guide the selection of
experiments? Can we prioritize gene targets in a way that integrates the desire to focus on practically
important genes with the goal of maximizing the overall growth in knowledge?

COMBREX implemented a proof-of-concept, automated recommendation system to help
experimentalists identify proteins to include in a planned experiment on a given protein family.
Recommendations take into account a number of factors, but a key consideration is information gain; i.e., the
expected impact of a validation on the annotation of homologous or functionally linked (24, 35) proteins.
Information gain can take different forms depending on the method or model used for gene function
prediction. The simplest measure is the number of proteins in a protein family. This metric will bias gene
exploration towards more conserved and widespread genes, genes that are essential for living organisms or
specific species. Alternatively, for function prediction methods that report probabilities with their predictions
(24), the information gain from an experiment can be quantified as the reduction in the estimated probability
of prediction error, summed across all predictions. Similarity-based prediction methods can estimate
prediction probabilities based on the BLAST distances to experimentally validated proteins, if one assumes
that functional divergence is related to sequence divergence. When functional selection is present, positive
selection drives a higher rate of sequence divergence away from a cluster center.
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In the initial COMBREX-DB, we implemented a novel yet simple feature that attempted to guide
experimentalists towards validations of “consensus” proteins. The logic supporting the feature can best be
illustrated by considering the example of a large cluster of proteins that has several hundreds of proteins but
no experimental annotation. A simple histogram provides an estimate of how many proteins need to be
tested to sample the evolutionary span and functional divergence found in a protein family. This preliminary
work was implemented for approximately 500,000 protein clusters annotated by NCBI in COMBREX-DB (12,
13, 15, 36-38). The proteins are ranked based on the average phylogenetic tree distance to all other proteins
in the cluster, and a ranked list of all proteins in the family are prioritized by shortest average distance. For
some protein families characterization of a single protein might be a good overall representation of the
protein family's activity (Fig 1, Panel A) which shows no underlying structure to the cluster. If one were to test
a second protein from that family, one might pick an outlier, a protein with a large average distance from the
centroid. If the activity is found to be essentially similar, it increases the confidence that the family is likely to
have relatively homogeneous function. We built this into the original version of COMBREX displaying the
histograms based on multiple alignments and evolutionary trees, and returning a ranked list of members
within a protein family (Fig 3, bottom).

When the histograms become multi-modal (Fig 3, Panel B - 2 subclusters; Fig 3, Panel C - 3 subclusters)
we can be reasonably certain that characterization of a single protein from these would not be adequate, and
that testing multiple proteins would be required. This type of information is not available on any existing
database and we feel could have a significant impact if available to biologists.

There are many other possible considerations for the prioritization of experiments testing protein
function. An experimentalist might be interested in a specific organism, pathogenic bacteria, proteins that
confer drug resistance or susceptibility, proteins that have solved structures, proteins with homology to
human proteins, or proteins with PFAM domains of unknown function. Experimentalists were able to consider
all of these selection criteria, which were incorporated into the first prototype of COMBREX working closely
with many collaborators (13).
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experimental evidence or models we can only use the relative empirical frequencies to estimate these
probabilities. As one very simple example we illustrate the fairly simple mathematics needed measure the
probabilistic knowledge learned from a single experiment as it pertains to all related inferences we can make
based on the new data.

The entropy of each binary protein class variable is defined as usual: H(x) = - Sum; p(x;) log, p(xi)

The reduction in the entropy, E, of the prediction is the Information Gain (IG) obtained by learning the
class label of the protein. The |G is (E before experiment — E after experiment). The experimental testing of a
single protein will cause a cluster-wide decrease in entropy that is the sum of the decreases in entropies of all
proteins that are functionally linked (by any method) to the tested protein. The value of the overall decrease
in entropy is the information gain (1G) associated with any planned or conducted experiment.

The KL-divergence is a measure of how different two distributions P and Q are:
Di(P || Q) = Sum; P(x;) log (P(x;)/Q(xi)).

While KL-divergence is formally not a distance, it can be used as a proxy to quantify the reduction in entropy
of all predicted variables (functional labels) in the protein cluster given a single experiment or more. More
formally, one would measure the sum of the divergences between the posterior distributions (after an
experiment) and the prior distributions for all proteins in a cluster as the IG of an experiment on every protein
and prioritize experiments based on these scores. This formally quantifies what we learned or might learn
from an experiment.

To make our proposal concrete we describe a specific implementation of this principle using protein
profiles (39). A protein profile is really a simple multinomial model that specifies the probability of any residue
occurring at a given position in the profile (40-42). Given a profile, we can determine the log-likelihood that a
protein belongs the functional family (i.e. matches the profile) by summing the log probabilities at each
position and normalizing by the logs of prior probabilities. Profiles have been generalized to Hidden Markov
Models (HMM), and disseminated using PFAM (39). HMM-style models are routinely used for inferring
functional labels (e.g. TIGRFAM). We will describe our information gain principle for a position-specific scoring
matrix, PSSM, here, but a similar approach is readily extended to HMM models or their various generalizations
in the form of graphical models proposed by us and others.

Assume we have computed a PSSM profile for a family of proteins. This means that for each protein in
the protein cluster or family we can compute a probabilistic score of a protein being a member of this family
(39, 43). This probability is computed for each column in the PSSM matrix and then the log-probabilities of
each column are summed across the entire alignment (39). Let us refer to this probability as P(Prot | PSSM)
(39, 43). We compute the entropy of this prediction for both single proteins and the entire cluster (by
summing entropies). Under simplifying but realistic assumptions, one can show that the best single
experiment is the “center” of the cluster defined formally by the protein X* such as: X* = arg max P(X |
PSSM) .

One can generalize this approach to non-homology functional linkage and prediction. Probabilistic
Functional Linkage Network Graphs (PFLG), introduced by us and others (44-46) to formalize and
systematically implement Guilt-By-Association inference in Functional Linkage Networks (FLNs) (previously
introduced by David Eisenberg, Ed Marcotte and Matteo Pellegrini). FLNs (26, 32, 35, 47-49) employ nodes to
represent proteins and edges to represent evidence of common function. Edges can be weighted to represent
the strength of that evidence (3, 50). Edges may come from protein-protein interaction (PPI) data, correlated
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gene or protein expression profiles, correlated term usage in literature, or others (51, 52). The most popular
resources for FLNs are available in STRING (53) and VISANT (54) or by using methodologies reported in (52, 55-
57). Genomic context methods provide information complementary to sequence homology such as
phylogenetic profiles (58, 59), chromosomal gene clustering (60-62), and protein fusion (63-65) , metabolic
networks (20) and others (26, 58-63, 65-67).

There are several natural ways to define maximally informative proteins in FLNs. Kleinberg and
coworkers (68) introduced the theoretical foundation for this network problem for issues associated with the
internet, called influence networks. Intuitively, all measures related to high degree or centrality in FLNs are
good straw-man heuristics for choosing graph “centroids” as best experiments (69). Choosing K-best
experiments becomes computationally intractable (similar to warehouse location problems in distribution
networks), but simple heuristics for graph partitioning usually work.

Other things equal, prioritizations might also be biased towards biomedically important or specific
bacterial model organisms. Other criteria include medically-important gene phenotypes such as essentiality,
pathogenicity, antibiotic resistance, biofilm formation, and growth. These considerations may not break the
existing power-law “curse” or replace it by another (9), but we emphasize that these computed prioritizations
are intended as suggestions to the experimental scientist, and are not mandated by the system or required in
order to participate in COMBREX. There will always be a place for creativity and curiosity in the choice, design
and execution of experiments; COMBREX's prioritizations simply help raise awareness of information gain and
medical relevance for experimentalists to take into account in the search for gaps in gene function knowledge.

These experimental prioritization criteria complete a cycle of increasing knowledge (Fig. 4). In the field
of machine learning, a cyclic process that attempts to optimize the choice of the next experiment to maximize
information gain or predictive accuracy is termed active learning (70). COMBREX appears to be the first
implementation of a science informatics systems using a community-based active learning paradigm, coupling
the vast capability and expertise of human research communities with integration of predictions and web-
based communication, thereby creating an active learning loop for bacterial genomics. However, while it is too
early to say if this approach will result in a more productive utilization of research capital than more traditional
funding mechanisms, COMBREX provides a rejoinder to Picasso’s critique of the limits of computers in
providing answers but not questions. It is hoped that these approaches, as implemented in COMBREX, will
catalyze an increased rate of growth in biological knowledge, while enhancing the bridge between

=] COMBREX Database
propagation
¥ Experimental Computational . ' /FP
e ; Validations Predictions
Experimental prioritization Computational
Community Community

Figure 4: The COMBREX Active Learning Loop. The database acts as a bridge between the
computational and experimental communities, storing computed function predictions and
experimental validations. Propagation of experimental results through predictive inferences
yields new predictions, while intelligent prioritization of predictions leads to new “most
informative” experiments.
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experimentalists and bioinformaticians.

Last but not least we want to highlight three philosophically important ideas intimately intertwined
with our proposal. Computational Biology is a fast evolving field that made enormous contributions to life
sciences. The advent of genome sequencing and other high-throughput omics technologies shifted
bioinformatic emphasis towards the development of specific technical algorithms to interpret the rapidly
growing BIG data. The current focus on comparing and improving the interpretation algorithms are not
sufficient on their own to produce biological knowledge. It would be beneficial to shift some emphasis to the
development of systems that manage, monitor and track the entire Science Informatics and Discovery process,
including driving the “most informative” experiments that will catalyze growth in knowledge, track
provenance, remove redundant research and improve reproducibility. In order to most effectively support the
BD2K pipeline, systems need to also track knowledge gaps, not just experimental data and predictions. The
revolutionary “Robot Scientist “proposal (71) proposed an “extreme” solution, leading to robot scientists
performing the “best” experiments replacing experimentalists. The COMBREX model is a compromise
supporting an Amazon Turk — Citiizens Science model, which builds a system that tracks knowledge,
knowledge gaps and provides Al based active learning strategies to help guide informative experiments. If
computers can recommend movie selections and stock picks, they can also recommend experiments.

A second point is to “liberate” computational biology, and position bioinformatics as a driver of science
helping design experiments. This is in contrast to the existing pipeline in which experimentalists generate
data, whereas bioinformaticians and biostatisticians devise algorithms to interpret it (24, 33, 53, 72, 73). In the
approach highlighted by COMBREX, computational systems generate prioritized experimental questions, and
biologists are funded to experimentally test specific regions in the “gaps” of biological knowledge.

The COMBREX webserver and database created a broad computational science informatics
infrastructure, envisioned by early Al, and specialized to gene function prediction and management of the
scientific discovery process, by including predictions, prioritizations, management of bids, and other activities.
COMBREX advances the concept of “Citizen Science.” In addition to reaching out to experimental laboratories,
COMBREX also worked with undergraduate classroom laboratories with expert supervision (74) .

As a proof of concept COMBREX also established a novel micro-granting mechanism to support
experimental validations of prioritized gene functions, a major focus for COMBREX. Experimentalists can
search the database for prioritized gene function predictions in their areas of expertise, and submit brief
proposals to experimentally validate those predictions. During the initial proof of concept period, proposals
went through a rapid peer review, grants from a few thousand to a few tens of thousands of dollars were
awarded to experimentalists to test predictions for a small number of genes including prioritized targets.
Awards included grants to foster educational activities for experimental testing by undergraduates under
expert supervision in classroom or research labs. As of this writing, over 150 genes have had functions tested
in response to many bids from experimentalists.

The COMBREX proposal was presented at a Common Fund Workshop organized by the office of the
NIH Director to solicit particularly transformative and broadly useful ideas in biomedical sciences (across all
funded disciplines at NIH). It was presented as a package that included other Citizen’s Science proposals, such
as the Connectome project (75) and the Foldit Protein Folding game (76). So far, these proposals have not
generated a robust Citizens Science infrastructure to advance biomedical sciences. Recently, several
prominent scientists have called for related ideas and paradigm changing transformations. We hope that the
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renewed interest in Al, coupled with the experience gathered in Bioinformatics, will create a movement in the
community towards recognizing this uniqgue new opportunity in biological sciences, and lead to a new
paradigm in which Al and computational biology can help drive biology, in part by enabling a faster and more
robust growth in critical biomedical knowledge.
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