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   Many adult tissues are dynamically sustained by the rapid 
turnover of stem cells. Yet, how cell fates such as self-renewal 
and differentiation are orchestrated to achieve long-term 
homeostasis remains elusive. Studies utilizing clonal tracing 
experiments in multiple tissues have argued that while stem 
cell fate is balanced at the population level, individual cell fate 
– to divide or differentiate – is determined intrinsically by 
each cell seemingly at random ( 1 2 3 4 5). These studies leave 
open the question of how cell fates are regulated to achieve 
fate balance across the tissue. Stem cell fate choices could be 
made autonomously by each cell throughout the tissue or be 
the result of cell coordination ( 6 7). Here we developed a 
novel live tracking strategy that allowed recording of every 
division and differentiation event within a region of 
epidermis for a week. These measurements reveal that stem 
cell fates are not autonomous. Rather, direct neighbors 
undergo coupled opposite fate decisions. We further found a 
clear ordering of events, with self-renewal triggered by 
neighbor differentiation, but not vice-versa. Typically, 
around 1-2 days after cell delamination, a neighboring cell 
entered S/G2 phase and divided. Functional blocking of this 
local feedback showed that differentiation continues to occur 
in the absence of cell division, resulting in a rapid depletion 
of the epidermal stem cell pool. We thus demonstrate that the 
epidermis is maintained by nearest neighbor coordination of 
cell fates, rather than by asymmetric divisions or fine-tuned 
cell-autonomous stochastic fate choices. These findings 
establish differentiation-dependent division as a core feature 
of homeostatic control, and define the relevant time and 
length scales over which homeostasis is enforced in epithelial 
tissues.  

For decades, research on tissue homeostasis has been focused 
on understanding the behaviors of resident stem cell populations 
for high turnover tissues ( 8 9). Recent work on stem cell 
populations in tissues such as the esophagus and skin epithelium 
suggests that stem cells are capable of stochastically undergoing 
both self-renewal and differentiation ( 1 2 3). Models that describe 
stem cell fate choices as cell-autonomous have been successful at 
describing the fate of individual cells in vivo with quantitative 
accuracy over time scales from days to years ( 2 3 4 5 10). 
Autonomous stochastic decisions have also been recapitulated in 
primary cultures ( 11). On the other hand, studies focusing on 
epithelial cell biology have described models where changes in cell 
density promote cell delamination ( 12), and division ( 13). Such 
models suggest a mechanism by which stem cells could coordinate 
their fates in homeostasis through ongoing density-dependent 
feedback, counter to the cell-autonomous view invoked in lineage 
tracing analyses. Although the existence of coordinated fate choice 
was shown in isolated crypts ( 14 15) and in specialized male germ 
line stem cells ( 16), its generality to other tissues, and how 
coupling occurs even in these systems, is not known. Thus, we 

sought to directly test the role of cell-cell coordination in 
promoting stem cell behavior and tissue homeostasis. 

Figure 1 | Serial revisits in mouse skin allows for live tracking of all 
epidermal stem cells in a region. a, Left: example of an optical section of 
the basal cell layer in a live mouse. Scale bar = 100 μm. Top right: lateral 
view of the epidermis with examples of cell differentiation (delamination 
from basal layer). Scale bar = 10 μm. Bottom right: schematic of 
experiment/analysis. b, Top: live tracing of an aligned region of the basal 
layer. Scale bar =10 μm. Bottom: voronoi diagrams delineating cells based 
on their nuclear signal (H2BCerulean). Colours represent clones from the 
initial timepoint; division/differentiation events denoted as shown.  c, 
Left: time series of cell density, cell division rate, and cell differentiation 
rate obtained from a 90 μm x 90 μm region of basal layer. The density and 
rates fluctuate. Error bars represent sampling errors. Right: 
representative images of basal layer cells at high density (top) and low 
density (bottom). Scale bar = 10 μm. 
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To study stem cell behaviors in vivo, we utilized the highly 
accessible mouse skin epidermis which provides a well-defined 
model to directly interrogate homeostatic stem cell behaviors over 
time ( 10 17 18). We and others have demonstrated that the 
epidermis contains a single stem cell population in its basal layer 
( 2 3 10 19). Epidermal stem cell division is restricted to the basal 
layer, while differentiating cells delaminate from the basal layer 
and move into the suprabasal layer to contribute to the 
maintenance of the watertight skin barrier.  

Existing strategies to study stem cell behavior rely on lineage 
tracing of spatially isolated cell clones. Although clonal fate data in 
the epidermis shows strong statistical signatures known as scaling 
behaviors, which are consistent with cell-autonomous fate models 
( 2 3 4 5 6), it is less well appreciated that clonal statistics can 
appear to fit an autonomous model even when cells are strongly 
interacting. This result, recognized in statistical physics from the 
study of interacting systems known as Voter Models ( 6 7 20 21), 
is specifically predicted to confound single cell lineage tracing 
studies, but not the study of adjacent groups of cells. Therefore, to 
interrogate the existence of cell coordination in the epidermis, we 
required an alternative method that would track not only an 
isolated cell but all cells within a region of tissue. 

We thus developed a novel lineage tracing approach, which does 
not rely on clonal labeling but rather on serial revisits of the same 
epidermal tissue through the utilization of the live imaging 
approaches developed in our lab (Fig. 1a). We further devised a 
semi-automated cell tracking method based on cortical and 
nuclear fluorescent epithelial reporters (K14-GFPActin, K14-
H2BCerulean, respectively) to resolve individual cell behaviors 
across entire fields of view (Fig. 1b, Extended Data Fig. 1a,b). With 
this system, we tracked and identified the spatiotemporal 
distribution of basal cell self-renewal (cell division) and 
differentiation (basal layer delamination) events every 12 hours 
for seven days across a large region of epidermis. In total, we 
recorded 868 divisions and 849 differentiation events across three 
fields of cells from two mice. In addition, we recorded cell size, 
movement and density over time. This represents a 
comprehensive record of all events in each region. 

Using this data, we looked for evidence distinguishing between 
two models of cell fate: cell-autonomous, as proposed previously 
in the epidermis ( 2 3 4 5 10), or through extrinsic regulation. In 
both cases, division and differentiation rates could be globally 
tuned by tissue-wide cues, and indeed we observed global 
fluctuations in these rates (Fig. 1c). To resolve between the two 
spatial models, we conducted a statistical test to quantify the time- 
and length-scales over which fate coordination occurs, if at all (Fig. 
2a,b). Our test is based on the fact that cell-autonomous fate 
choices must give rise to stochastic imbalances in fate outcomes 
within a given region of tissue, akin to the imbalance in a coin flip 
between ‘heads’ (self-renewal) and ‘tails’ (differentiation). This 
imbalance, while averaging to zero in homeostasis, should 
nevertheless fluctuate in a mathematically predictable – binomial 
– manner over time and over extended regions of the tissue. In 
contrast, if cells coordinate their fates locally for instance, the 
number of self-renewal and differentiation events will be 
equalized much more precisely than binomial accuracy. We thus 
anticipated that if coordination occurs over a distance l and over a 
time , then the imbalance between the number of division and 
differentiation events would fluctuate as predicted by a cell-
autonomous model for distances smaller than l and over time 
scales shorter than , but these fluctuations would diminish in 
larger tissue patches over longer times (Fig. 2c).  

Figure 2 | Differentiation and division are coordinated locally with 
temporal order. a, Schematic of the net growth fluctuation analysis. b, 
Cell-autonomous and coordinated fate choice models. c, Cell-autonomous 
and coordinated fate models predict different behaviors in the time 
evolution and window size dependence in the net growth fluctuation. c is 
the cell density and  is the fate choice event rate per cell. d, Time 
dependence of net growth fluctuation supports the coordinated fate model. 
Data from two separate 90 μm x 90 μm regions of same mouse, 523 
divisions and 528 differentiations. Solid lines: model with the coordination 
time scale τ = 2.1 days and length scale l = 3.9 μm. Error bars: s.e.m. from 
bootstrapping. See Methods for the detail of theory and analyses. e,
Window size dependence of net growth fluctuation. Same data, model, and 
error bars from d. f, Examples of possible ordering of events in the 
coordinated fates model. g, Schematic of the neighbor net imbalance 
analysis to resolve the time ordering. In each fate choice event, we 
subsequently tracked the six neighboring cells and quantified their net 
imbalance between division and differentiation. h, Predicted outcomes of 
the neighbor net imbalance analysis for different scenarios. i, 
Quantification of the net imbalance of six nearest neighbor cells (based on 
distance) shows that the differentiation precedes division, within a short 
time scale. Solid line: 1-exp(-t/τ), with τ=2.1 days. Error bars: s.e.m. of 
primary divisions and differentiation events. 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 25, 2017. ; https://doi.org/10.1101/155408doi: bioRxiv preprint 

https://doi.org/10.1101/155408


Mesa, Kawaguchi et al, 2017; Stem cell self-renewal upon neighbor differentiation 3 
 

 

To formalize this insight, we defined the imbalance between the 
number of division and differentiation events as a function of 
window size w and time t, ΔN(w,t), and predicted the fluctuations 
for the two alternative hypotheses (see Methods for detail of the 
theory). Comparing the predicted fluctuations to our data, we 
found strong evidence for the presence of cell-cell coordination in 
fate choices (Fig. 2d,e, Extended Data Fig. 2a,b,c). By fitting to a 
model of spatio-temporal fate coordination, we found that the 
length scale for cell fate coordination was comparable to the cell 
radius (~4 μm), suggestive of direct nearest-neighbor 
interactions.  

 

We next sought to interrogate the sequence of self-renewal and 
differentiation events between neighboring cells over time (Fig. 
2f). If cell division induces differentiation of neighboring cells, we 
would expect to see a net imbalance toward differentiation 
adjacent to dividing cells, whereas if differentiation induces 
nearby cell division, a reciprocal increase in division would be 
expected (Fig. 2g,h). Additionally, both forms of feedback could be 
present, whereas if division and differentiation were uncoupled, 
we would expect no neighboring behavior compensation. We 
found a clear unidirectional bias, with one net additional stem cell 
division following a neighboring cell differentiation event, but no 
reciprocal compensation (Fig. 2i). This behavioral sequence bias is 
fast acting (~2 days) and occurs only at short range (nearest 
neighbor, Extended Data Fig. 3a), consistent with our fluctuation 
test (Fig. 2d,e). Thus, these results provide a simple and robust 
model for locally enforcing tissue homeostasis: stem cell 
differentiation (basal layer delamination) is directly followed by 
division of a neighboring stem cell to balance epidermal cell 
density. 

To better understand how division locally follows 
differentiation, we decided to investigate cell cycle progression of 
stem cells subsequent to neighboring differentiation events. We 
generated mouse lines that contained epithelial fluorescent 
markers in addition to a Fucci G1-reporter (hCdt1-mKO1) ( 22) 
which specifically accumulates fluorescent signal during G1 of the 
cell cycle and drops signal in progression from G1 to S/G2 (Fig. 3a, 
Extended Data Fig. 3b). By retrospectively tracking dividing cells 
we found bias in neighboring differentiation events preceding S 
phase commitment, (Fig. 3b), supporting a model where 
differentiation facilitates G1-to-S phase cell-cycle progression and 
subsequent division of neighboring stem cells. 

Previous studies have suggested that changes in epithelial cell 
density can drive cell division ( 12) and delamination ( 13). 
Therefore, we next asked whether the observed coordination of 
cell fates could be mediated indirectly by the degree of crowding 
experienced locally by cells. By estimating the average effective 
cell area prior to cell division or differentiation, we observed that 
dividing cells began to expand their basal footprint ~1.5 days prior 
to division, while differentiating cell basal area shrank (Fig. 3c). 
Notably, the cell density in the neighborhood of a dividing cell 

Figure 3 | Differentiation triggers local density drop which induces 
division commitment in neighboring cell.  a, Illustrative time series of a 
Fucci G1- reporter in epidermal stem cells. Arrows show two cells losing 
fluorescence after exiting G1 and progressing to division (double headed 
arrows) following neighbor cell delamination (indicated by *). Scale bar = 
10 μm. b, Accumulated net imbalance of division and differentiation events 
surrounding a dividing cell at times preceding G1 exit, showing cell 
delamination reliably occurring between 1-3 days prior to S phase entry 
(N=187 division events from two separate imaging regions). c, Dynamics 
of the average area of cells in the time leading up to 
division/differentiation, as well as the average area of the cells in the 
nearest neighborhood. Error bars represent s.e.m. (N=868 divisions and 
849 differentiations from 2 mice. d, The probability of a cell to commit to 
divide depends strongly on its fold-change in area following neighbor cell 
differentiation. Error bars represent sampling error (N=849 
differentiation events). e, Histogram of the time delay between peak area 
fold-change and G1 exit; The delay is always positive or too short to 
observe, showing that cell expansion always precedes G1 exit (N=187 
divisions). f, Correlation between average cell density across the entire 
region of observation (90 μm x 90 μm), and division/differentiation rates. 
Division rate was negatively correlated with density (R=-0.60, p<0.001), 
but the differentiation rate was not (n.s.). N=3 regions from two mice. g, 
Schematic of the proposed ordering of events in skin epidermal 
homeostasis. 
 

Figure 4 | Differentiation is independent from division. a, Schematic of 
possible outcomes in the basal layer following inhibition of epidermal 
proliferation. Red indicates differentiating cell.  b, Inhibition of stem cell 
divisions through Mitomyocin-C (MMC) treatment leads to progressive 
reduction in basal cell density. Scale bar = 10 μm. c, Epidermal basal 
density. Error bars represent s.d. (N=6 regions from 2 mice). d, Photo-
labeled cells traced during inhibition of cell division. Cell density in the 
basal layer decreased while no apparent change occurred in the 
suparabasal layers. e, Basal cell behaviors with and without MMC. Error 
bars represent s.d. (N=8 regions from 2 mice). 
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dropped prior to division, but no density change was observed in 
neighboring cells preceding a differentiation event (Fig. 3c). 
Moreover, following a differentiation event, the neighboring cell 
showing the greatest fractional increase in area had the highest 
probability to divide (Fig. 3d). We further found that the G1 phase 
exit in a dividing cell always happened at the same frame or after 
basal area increase (Fig. 3e). The local density responses were also 
reflected in the global tissue dynamics: we found that the global 
cell density negatively correlated with the cell division rate, but 
not with the cell differentiation rate (Fig. 3f).  Thus, a drop in basal 
cell density precedes cell division commitment (Fig. 3g), but over-
crowding does not precede delamination during homeostasis. 

Our analyses suggest that epidermal stem cell delamination 
drives the division of neighbors, but not the opposite. To 
functionally test this ordering of events, we asked how inhibiting 
cell division affects basal layer dynamics. We predicted that if cell 
delamination is unaffected by cell density or proliferation it should 
continue even when stem cell divisions are blocked, leading to a 
rapid drop in density in the basal layer (Fig. 4a). By inhibiting cell 
division using Mitomycin C (MMC) or Democolcine ( 23), we found 
indeed that the cell density progressively reduces in the basal 
layer, but not in the suprabasal layers when compared to vehicle 
control (Fig. 4b,c; Extended Data Fig. 3a,b). Cell tracking combined 
with inhibition of cell divisions showed that differentiation from 
the basal layer is largely unaffected when epidermal cell divisions 
are blocked and can persist for multiple days without epidermal 
cell divisions (Fig. 4d,e).  

Altogether, we have found that sustained epidermal tissue 
homeostasis relies on a local feedback mechanism whereby 
differentiating stem cells that delaminate from the basal layer lead 
to the G1 exit and subsequent self-renewal of neighboring stem 
cells. At the level of individual cells, and even clones, cell fate was 
previously observed to be stochastic; only by studying the spatial 
and temporal ordering of cell behaviors does it become apparent 
that fate choices are in fact tightly and directionally coordinated, 
providing a robust mechanism for balancing stem cell behaviors 
while allowing a rapid and sustained response to fluctuating tissue 
demand. Understanding how this homeostatic program breaks 
down in hyper-proliferative disease states, such as cancer, will be 
fundamental for future therapeutic interventions.  
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METHODS 
Transgenic mice. K14-H2BCherry and K14-H2BCerulean mice were 
generated by the Yale Transgenic Facility. K14-actinGFP mice were 
obtained from E. Fuchs. Bsi596mKO2 (Fucci G1-reporter) mice were 
developed by Dr. Asako Sakaue-Sawano and Dr. Atsushi Miyawaki 
(RIKEN). UBC-PA-GFP mice were obtained from Jackson Laboratories. All 
procedures involving animal subjects were performed under the approval 
of the Institutional Animal Care and Use Committee (IACUC) of the Yale 
School of Medicine. 

 
Experimental treatment of mice. Preparation of both mouse plantar and 
ear skin for intravital imaging was performed as described recently ( 10 17 
18). Briefly, mice were anesthetized with IP injection of ketamine/xylazine 
(15 mg/ml and 1 mg/ml, respectively in PBS). The ear epidermal areas 
were shaved using an electrical shaver and depilatory cream (Nair). After 
marking the area to be imaged for subsequent identification with a micro-
tattoo, mice where returned to their housing facility. For subsequent 
revisits the same mice were processed again with injectable anesthesia. 
The plantar and ear epidermal regions were briefly cleaned with PBS pH 
7.2, mounted on a custom-made stage and a glass coverslip was placed 
directly against the skin. Anesthesia was maintained throughout the 
course of the experiment with vaporized isofluorane delivered by a nose 
cone.  

 
Topical drug treatment. To inhibit cell proliferation in the epidermis, 
Mitomycin C (MMC) and Democolcine(23) were both delivered topically 
by applying it to ear skin. MMC was dissolved in a 15 mg/ml stock solution 
in dimethyl sulfoxide (DMSO), while Democolcine was dissolved in a 
25 mg/ml stock solution in the DMSO. The stock solution was diluted 100 
times in 100% petroleum jelly (Vaseline; final concentration is 150 μg/ml). 
One hundred micrograms of either working concentration were spread 
evenly on the skin area daily. A mixture of 100% DMSO in petroleum jelly 
(1:100) was used as a vehicle control. 

In the analyses of the treated regions, the stars in Fig. 4c,e and Extended 
Data Fig. 4b represent the statistical significance (**,***,****, and n.s. 
representing < 0.01,0.001.0.0001, and nonsignificant, respectively). 

 
In vivo imaging. Image stacks were acquired with a LaVision TriM Scope 
II (LaVision Biotec, Germany) microscope equipped with both Chameleon 
Vision II and Discovery (Coherent, USA) 2-Photon lasers. For collection of 
serial optical sections, a laser beam (940nm for GFP/Cerulean and 1100nm 
for mCherry, respectively) was focused through a 20X or 40X water 
immersion lens (Zeiss W-Plan-APOCHROMAT, N.A. 1.0; Zeiss W-LD C-
APOCHROMAT, N.A. 1.1 Zeiss) and scanned with a field of view of 0.5 mm 
x 0.5 mm  at 600Hz. z-stacks were acquired in 1 μm steps for a ~40-80 μm 
range, covering the entire thickness of the epidermis. Cell tracking analysis 
was performed by re-visiting the same area of the epidermis in separate 
imaging experiments, as described in Image Analysis. A micro-tattoo was 
introduced in addition to using inherent landmarks of the skin to navigate 
back to the original region; including the vasculature and distinctive 
clustering of hair follicles.  
 
Photo-activation. Photo-activation in UBC-PA-GFP mice was carried out 
with the same optics as used for acquisition. An 810 nm laser beam was 
used to scan the target area. Activation of the PA-GFP was achieved using 
3% laser power for 30 sec. 
 
Image analysis. Images which included the suprabasal layer, basal layer, 
and the extracellular matrix were obtained as large tiled image stacks at 
roughly the same positions every 12 hours for 7 days guided by the micro-
tattoo. We first manually aligned the images over the time course in Imaris 
(Bitplane) by using data from all three channels: K14-actinGFP, K14-
H2BCerulean, and Fucci G1. 

For the cell-tracking analysis performed by MATLAB scripts, we first 
cropped out three regions with size 115 um x 115  um which typically 
included more than 300 basal layer cells each. To correct for the difference 
of height positions of the basal layer within the 3D images, we first 
Gaussian blurred the signal from the K14-actinGFP channel spatially in the 
xy-plane (width 4 um) to create a 3D mask representing the region 
covering the whole epidermis (Extended Data Fig. 1a). We then defined the 
height of the interface between the epidermis and the dermis from the 3D 
mask, and subtracted this height from the original 3D data to level the basal 
layer position (Extended Data Fig. 1b).  

From the height-corrected 3D images, we took a single z-position 
containing the nucleus of all the basal layer cells (Extended Data Fig. 1b), 
and performed cell tracking in 2D over the time-course. For this, we first 
manually corrected the shifts in the 2D images to minimize the overall 
depositions of cells, and then ran an automatic cell tracking algorithm 
based on the 2D positions of local maxima in the H2BCerulean channel. The 
algorithm assigned each cell (represented by the local maxima, calculated 
after Gaussian blurring the 2D image with width 1 μm) to a closest cell in 
the previous time frame. Tracked cells were frequently lost or were 
associated with more than one cell in the subsequent time frame, which 
indicated cell differentiation (i.e., delamination from the basal layer) and 
cell division, respectively. After manually correcting the errors in the 
tracking with guide from the height-corrected 3D images in all three 
channels, the script outputted the positions of the local maxima in the 
H2BCerulean channel and the lineages of the cells present in the basal layer 
at each time point.  
 
Quantification of cell area and G1 reporter signal level. At each time 
frame, we created a voronoi diagram based on the cell positions (=local 
maxima of H2BCerulean channel). The areas of voronoi regions associated 
to cells were recorded as the cell areas. 

For the Fucci G1-reporter channel, we first z-score normalized the signal 
using all pixels at each time frame to account for the temporal fluctuation. 
Using this corrected signal, we calculated the signal per area of the cells at 
each time point using the voronoi diagram. We subtracted the background 
signal, defined as the average of the 10 cells with smallest signal per area 
at each time point. 

Extended Data Fig. 3b shows the traces of the signal/area values for 
dividing cells (after subtracting background). Not all the cells had strong 
Fucci signal, and many of them had a low signal throughout their lifetime. 
Nevertheless, by selecting the cells based on the maximum level of 
signal/area (threshold set to include 187 out of 581 dividing cells across 
two regions), we found the expected time courses of the G1-reporter: 
signal going up and rapidly dropping before cell division. For later 
convenience, we define ( )=1 or 0 as the function telling if the cell labeled 
as  is a selected cell with respect to this criterion of G1-reporter (=1) or 
not (=0). 

For the selected cells ( )=1, we defined the timing of G1 exit ( ) as 
the time where the cell experienced the largest fold change decrease in the 
signal/area value. We observed that all the drops in G1 signal happened 
right before or 1 frame before the cell division, indicating that after G1 exit 
the cell divides within 24 hours. 
 
Fluctuation analysis. In the lineage tracing of the basal layer, the xyt-
coordinate of a cell differentiation was identified as the cell position and 
the time frame right before the cell delaminated. Similarly, the xyt-
coordinate of a cell division was determined as the cell position and time 
frame right before the cell underwent cytokinesis into two daughters.  

Using these xyt-coordinates of the differentiation and division events, we 
conducted a fluctuation analysis by (1) randomly choosing 4096 positions 
of a window with size  within each region, (2) calculating the time 
course ( , ) for each sampled window as defined in the text, and (3) 
calculated the variance of ( , ) for each w and t. To avoid the tracking 
errors occurring near the boundary of the images, the windows were 
sampled from a fixed central region with size 90 μm x 90 μm. To generate 
the shuffled control (Fig. 2d,e), we used the same xyt-coordinates but with 
randomly permuted fates (differentiation or division). The final ‘shuffled’ 
curves in Fig. 2d,e are the average of 128 independent randomizations of 
the data set. 

The reported variances were then corrected for a bias resulting from 
window overlap. Randomly positioning windows with size  in a finite 
image region of size  will lead to overlaps. The overlap affects the number 
of independent windows that contribute to ( , ), and will effectively 
decrease the fluctuation. When randomly putting two windows inside a 
region of (2 ≤ ), the expected proportion of overlap in the area is 

( , ) =
( − )

1 −
3( − )

.       (1) 

We divided the variances calculated as described above by 1 − ( , )  to 
generate the corrected variance Var[Δ ( , )] plotted in Figs. 2d,e. 

Equation (1) is derived as follows. Randomly placing a line segment with 
length  to fit inside the region with length (≥ )  is equivalent to 
randomly sampling the left edge of the segment from [0, − ]. Taking 
two random positions  and  from [0, − ] , the probability 
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distribution of the distance between  and , = | − |, is ( ) =
( − − )/( − )  for 0 ≤ ≤ −  and zero otherwise. The 
overlapping fraction of the two segments with the left edges positioned at 

 and  is  1 − /w  for 0 ≤ ≤  and zero otherwise. We next 
introduce a second direction  to randomly place line segments with 
bottom edges placed at  and . We then have two windows with the 
bottom left corners with the coordinates ( , ) and ( , ) . Assuming 
that − ≥  ( 2 ≤ ), the average overlapping fraction of the two 
windows is then 

      ( , ) = ( ) 1 − 1 −  

                       =
 

( − )
1 −

3( − )

 

.       (2) 

 
Theory. Here we describe the theoretical model used in the fittings 
presented in Fig. 2d,e. We assume that the fate choice events, 
differentiation or division, will all happen in a coordinated manner but 
with stochastic time difference > 0 and xy-displacement ( , ) . We 
assume for simplicity that  is sampled from an exponential distribution: 

( ) = / / , and ( , )  is sampled from a Gaussian distribution: 
( , ) = ( )/  / 2  . Here,  and  are the time scale and length 

scale of the coordination, respectively, which are the fitting parameters. 
We also assume that  and ( , ) are independent from each other. This 
simple model is used to fit the key features of the data and to gain an 
intuition for the effect of lags and coordination distance on the observed 
behaviors, and is not intended to reflect any specific mechanism of fate 
coupling. 

We consider a three-dimensional box with width and height of the window size  
and the depth of the time length . Sampling the pairs of events randomly across space 
and time, and assigning the above probability for the time difference and the 
displacement between the fate-coordinated pairs, we count the divisions that 
happened inside this box as +1 and the differentiations as -1, corresponding to cell 
increase and decrease events, respectively. We are interested in the statistics of the 
net growth, ( , ), which is the sum of the +1 and -1’s that occurred inside the box.  

Since the contributions from the fate-coordinated events are zero (one 
differentiation and one division amounts to ±0), and since the isolated events (events 
inside the box that have a fate-coordinated pair outside the box) are binomially 
distributed between division (+1) and differentiation (-1) fates, the variance of 

( , ) is equal to the average number of isolated events. Given that one 
of the events is sitting inside the box, the probability of the fate-
coordinated event to be also sitting inside the box is 

( , ) = ( ) ( ),       (2) 
where ( ) is the probability of finding the fate-coordinated event inside 
the time frame , and ( )  is the probability of finding the fate-
coordinated event inside the window of size . 

The average number of total events inside the box is , where  =
 ( + ) is the rate per area of events with , , and  being the steady-

state cell division rate, differentiation rate, and cell density. The average 
number of isolated events, and thus the variance of ( , ), is obtained 
as 

Var[Δ ( , )] =
1 − ( , )

1 + ( , )
.       (3) 

Here, the factor arises from the ratio of the isolated vs coordinated cells in 
the total of events, 1 − ( , ): 2 ( , ). The factor 2 here arises from 
the pairs of cells that are both inside the box contributing as 2 cells in the 
total number. 

We first compute ( ). Assuming that the time difference between the 
two events is , the probability of finding both events within the time frame 

 under the condition that at least one is inside, is 1 − / . Taking the 
average of this probability over , we have 

( ) =  ( ) 1 − = 1 − 1 −  .       (4) 

Note that the integral is only taken up to t since for pairs of events which 
are further apart from , there is no possibility of finding both events inside 
the interval . 

Similarly, by assuming that the xy displacement between the two events 
is ( , ), the probability of finding both events fitting inside the window of 
size  under the condition that at least one is inside, is (1 − | |/ )(1 −
| |/ ). Taking the average of this probability over ( , ), we have 

( ) =   ( , ) 1 −
| |

1 −
| |

    

         = Erf
√2

+
2

− 1 .       (5) 

Here,  Erf(x) =
√

 is the error function. 

To understand how the coordination in fate affects Var[Δ ( , )], we 
consider two limiting cases: / , / →∞ and / , / → 0 . In the first 
case, since the fate-coordinated pairs are so far apart in time and space 
compared with  and , the fluctuation should be equivalent to the case of 
the cell-autonomous model. Indeed, ( ), ( ) → 0  in this limit, 
meaning that  

Var[Δ ( , )]
≃ .      for , →∞          (6) 

which is the statistics of the cell-autonomous model. In the second case, 
since  and  are much bigger than the coordination time and length 
scales, the isolated events can only be found near the surface of the box, 
meaning that the fluctuation should be one order smaller than the cell 
autonomous case in terms of  or . We obtain  ( ) ≃ 1 − / ,  and 

( ) ≃ 1 − 8/  /  in the lowest order of /  and / , which leads to  

Var[Δ ( , )]
≃

1
2

+
2

.          for , → 0        (7) 

Here, the first term is a constant that does not depend on , which is the 
contribution from the isolated events close to the initial timepoint or the 
final timepoint. The second term is linear in time but inversely 
proportional to , which is the contribution from the isolated events 
sitting close to the edge of the window. 

In Fig. 2d,e, Extended Data Fig. 2a,b, we show the best fit of Eq. (3) to the 
data of Var[Δ ( , )] obtained by the least-squares method while using 

= 9.4×10  events day-1 mm-2 for the first mouse (Fig. 2d,e) and =
1.3×10  events day-1 mm-2  for the second mouse (Extended Data Fig. 2a,b). 
The best fit parameters were = 2.1 days and = 3.9 μm (Fig. 2d,e) and 

= 1.0 day and = 4.9 μm (Extended Data Fig. 2a,b). 
 
Forward tracking of neighbor fate imbalance. For each cell, labeled by 
i, there is the birth time ( ), the fate choice time ( ), and the fate 

( ) = ±1. If the cell was present at the initial time point = 0, we set 
( ) = −∞.  If the fate was not chosen before  , which is the last time 

point of the image sequence, we set ( )= ∞ and ( ) = NaN.  Let us 
define the time course of imbalance for ( ) ≤   < : 

( , ) =
0            ≤ ( )

( )      > ( )
.          (8) 

For t outside of this defined region, ( , ) returns NaN. 
We denote the label of the k-th nearest neighbor of cell i (in terms of xy-

coordinate) at time t as ( , , ). For each fate decision event of cell i, we 
calculated the net imbalance of the K-nearest neighbor cells in the 
subsequent time course: 

( , , ) =
1

, ( ), , ( ) + ,        (9) 

where ( ) ≤ < . Again, for  outside of this defined region, 
( , , ) returns NaN. The sum in the right-hand side skips entries with 

NaN values. 
To obtain the background imbalance, we first define ( ) as the number 

of cells that existed at time t, and ( , ) as the label of the j-th cell at time t 
(1 ≤  ≤  ( )). The background imbalance within the imaged region is 
calculated as 

( , ) =
1
( )

 ( ( , ), ),

( )

           (10) 

for < . Note that ( , ) ≠ 0  even in the ideal case (i.e., infinite 
number of samples and time constant rates). This is because the number 
of dividing cells vs differentiating cells within a randomly selected 
population is not 0.5 when the average lifetimes of dividing cells and 
differentiating cells are different.  

By subtracting the background imbalance, we calculated the de-trended 
net imbalance around differentiation and division events as functions of K 
and ≥ 0: 

( , ) =
1
( )

[ ( , , ) − ( ), ( ) + ],

 

: ( )

       (11) 
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( , ) =
1
( )

[ ( , , ) − ( ), ( ) + ].

 

: ( )

     (12) 

Here, ( ) and ( ) are the total number of differentiation and division 

events that have , + ( ) ≠ NaN , respectively. The indices i of 

differentiating (dividing) cells is denoted as ∶ ( ) = −1 (+1)  for the 
sum. Again, the sum in the right hand side skips entries with NaN values. 

In Fig. 2i and Extended Data Fig. 2c, we plotted ( , ) and ( , ) 
as functions of time with = 6 . The errors come from fluctuations in 

( , , ) and ( , ). We also plot the expected theory line 1 − /   
assuming a stochastic process for the compensation, where = 2.1 days 
and = 1.0 day were the best fit of the fate-coordination time scale from 
the fluctuation analyses (Fig. 2d,e and Extended Data Fig. 2a,b). In 
Extended Data Fig. 3a, we plotted ( , ) as a function of  at various 
time points. The net imbalance quickly saturates at = 4 to 6, indicating 
that the fate-coordination is occurring within the nearest neighbors. 
 
Backward tracking of neighbor fate imbalance. For dividing cells with 
positive G1-reporter signal (cell label  with ( ) = 1), we obtained the 
timepoints of the cell cycle exit,  ( ) .  For  within ( ) < ( ) + ≤

( ), we computed the past accumulated imbalance:  

( , , ) =
1

( ( , ( ) + , ), ( ) + ).
( ) ( )

    (13) 

The background of this quantity is the net growth per cell calculated 
between two time points: 

( , ) =
( ) − ( )

( )
 .           (14) 

Note that in contrast to ( , ), the background ( , ) is zero in the 
ideal case where there are no fluctuations in division and differentiation 
rates, irrespective of cell lifetimes. By subtracting this background, we 
obtained the past accumulated net imbalance: 

( , ) =
1
( )

[ ( , , ) − ( ( ), ( ) + )]

 

: ( )

.     (15) 

Here, ( ) is the number of dividing cells that had positive G1-reporter 
signal and , + ( ) ≠ NaN . The sum in the right hand side skips 
entries with NaN values. 

In Fig. 3b, we plotted ( , ) as a function of  with = 6. The errors 
come from the fluctuations of  ( , , ) and ( , ). As a guide to the 
eye, we co-plotted − /  , with =1.7 days. This seemingly exponential 
behavior of ( , )  indicates that the time it takes from a cell 
differentiation to one of its neighbor cell exiting G1 phase is stochastic. 
 
Area growth analysis. We denote the cell area (voronoi area) of cell  at 
time  as ( , ). If cell  did not exist at time , then ( , ) = NaN. The time 
course of the average cell area for differentiating/dividing cells are ( ≤ 0) 

( ) =
1
( )

( , ( ) + ),

 

: ( )

       (16) 

( ) =
1
( )

, ( ) + .

 

: ( )

      (17) 

The sum in the right hand side skips entries with NaN values. Similarly, the 
average of the neighbor cell area of the differentiating/dividing cells are 
( ≤ 0): 

/ ( , ) =
1
( )

1
( , ( ) + , ), ( ) + ,

 

: ( )

     (18) 

/ ( , ) =
1
( )

1
( , ( ) + , ), ( ) + ,

 

: ( )

     (19) 

In Fig. 3c, we plotted ( ),  ( ), / ( , = 6) and / ( , =
6).  
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Extended Data Figure 1 | Outline of the image analysis. a, Left: example of a 3D structure of the epidermis reconstructed from the K14-actinGFP signal. 
Raw z-stack image was Gaussian blurred to represent an intact structure. Right: height of the interface between the epidermis (K14-actinGFP positive) and 
dermis (K14-actinGFP negative) for the left example 3D structure. b, Left: original K14-actinGFP image after height correction using information of a. Right: 
by selecting a z-plane close to the bottom in the height-corrected data, we obtain a 2D image of the basal layer in all channels. 
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Extended Data Figure 2 | Replicate of fluctuation and neighbor imbalance analyses in a different mouse. a,b, Net growth fluctuation analysis, c, 
neighbor net imbalance analysis conducted for a second mouse (321 differentiations and 345 divisions). The qualitative features were the same as the first 
mouse but with a faster rate ( = 1.3×10  events day-1 mm-2). Fitting parameters: = 1 day,  = 4.9 um. 
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Extended Data Figure 3 | Neighbor number dependence of net imbalance and  G1 reporter data. a, Left: Net imbalance of nearest neighbor ( ( , ) 
defined in Methods) as a function of the number of nearest neighbors. The number of nearest neighbors  that is required to saturate ( , ) is the 
number of relevant neighbors in terms of cell-compensation. We observe saturation at  =4 to 6, meaning that the fate-coordination is happening at the 
nearest neighbor level. Right: We find collapse of data for different  when scaled as ( , )/[1 − / ]. b, G1 phase reporter signal per area as a function 
of the time for each dividing cell. Endpoint of time ( = 0) is taken as the cell division time. Blue: G1-reporter positive cells. Dark red: G1-reporter negative 
cells. Dark blue solid line corresponds to the average of the signal/area for the G1-reporter positive population. Discrimination between G1 signal positive 
( ( ) = 1) and negative ( ( ) = 0) was based on a threshold in the maximum value of signal/area. See Methods for detail. 
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Extended Data Figure 4 | Democolcine cell division blocking data. a, Inhibition of stem cell divisions through Democolcine treatment leads to 
progressive reduction in basal cell density. b, Quantification of epidermal basal density. Error bars represent s.d. (10 regions from two mice). 
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