
On the dynamics of reproductive values and phenotypic traits in

class-structured populations

Sébastien Lion

June 26, 2017

Centre d’Écologie Fonctionnelle et Évolutive, CNRS UMR 5175

1919, route de Mende 34293 Montpellier Cedex 5, France

sebastien.lion@cefe.cnrs.fr

Abstract

Natural populations are structured according to the physiological, demographic or ecological2

state of individuals. This class structure has important evolutionary consequences because the

fitness of individuals with the same genetic background may vary depending on their class. These4

intrinsic differences between classes are classically taken into account by weighting classes by their

reproductive values, which are generally constant weights calculated in exponentially growing pop-6

ulations or in invasion dynamics in populations at demographic equilibrium. This yields a simpler

Price equation where the non-selective effects of between-class transitions are removed from the8

dynamics of the trait. Here, I show that, for large populations and clonal reproduction, this result

can be extended using time-dependent reproductive values. In contrast to previous studies, this10

holds in a large class of ecological scenarios, out of equilibrium and for arbitrary trait distributions.

I discuss the role of these reproductive values for prospective and retrospective analyses of the12

dynamics of phenotypic traits. This study extends and clarifies the central role of reproductive

values in evolutionary ecology.14

Keywords: reproductive value, Price equation, selection gradient, population dynamics, neu-

trality16

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2017. ; https://doi.org/10.1101/155879doi: bioRxiv preprint 

https://doi.org/10.1101/155879
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evolution is fuelled by the genetic variance of populations. However, natural populations also

display non-genetic sources of heterogeneity, when individuals of a given genotype belong to distinct18

classes representing different demographic, physiological or ecological states, with different demo-

graphic or ecological impacts on the population dynamics. This occurs for instance in in age-structured20

populations (e.g. when older individuals have a lower fecundity than younger individuals), in species

with distinct developmental stages (e.g. when a species’ life cycle may consist of a dispersing and a22

sessile morph), or in size-structured populations. The spatial location of an individual, or the quality

of its habitat, may also be used to partition the population into distinct classes. In demography and24

ecology, this has led to a vast theoretical literature aiming at describing the population dynamics of

such class-structured populations (Metz & Diekmann, 1986; Caswell, 2001).26

In most theoretical analyses, intrinsic differences between classes of individuals are taken into

account by weighting individuals by their reproductive values (Fisher, 1930; Price & Smith, 1972;28

Taylor, 1990; Rousset, 1999; Leturque & Rousset, 2002; Rousset, 2004; Rousset & Ronce, 2004;

Engen et al., 2009; Engen et al., 2014). These reproductive values are typically calculated as a left30

eigenvector associated with the dominant eigenvalue of a constant projection matrix (Tuljapurkar,

1989; Taylor, 1990; Caswell, 2001; Rousset, 2004). Hence, the reproductive values are associated to32

the long-term growth rate of an exponentially growing population. Reproductive values play a key

role in evolutionary game theory and inclusive fitness theory, where one seeks to compute the invasion34

fitness of a rare mutant arising in a monomorphic resident population that has reached its ecological

attractor (Metz et al., 1992; Rousset, 2004; Metz, 2008; Gardner et al., 2011; Lehmann & Rousset,36

2014). Under weak selection, the resulting selection gradient takes the form of a weighted sum of

selective effects, where the weights are the class frequencies and the reproductive values calculated in38

the resident population (Taylor & Frank, 1996; Frank, 1998; Rousset, 1999; Rousset, 2004; Lehmann

& Rousset, 2014; Gardner, 2015).40

Reproductive values have also been used in combination with the Price equation (Price, 1970) in

attempts to isolate the effect of natural selection from the effects of transitions between demographic42

classes (Crow, 1979; Engen et al., 2014; Grafen, 2015b). The motivation for doing so is the realisation

that, in class-structured populations, the mean trait may change even in a neutral model where the44

vital rates do not depend on the trait, due to the dynamics of class structure itself. Following Grafen

(2015b), I will refer to this latter effect as “passive changes”, to distinguish it from the effect of selection.46

In models with constant projection matrices, passive changes in mean trait are typically transient and

disappear when a stable class structure is reached (reviewed in Tuljapurkar, 1989; Caswell, 2001). As48

first suggested by Fisher (1930), it is possible to get rid of this transient effect from the start if one
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uses reproductive values as weights when calculating the average phenotypic trait (Engen et al., 2014;50

Gardner, 2015). However, it is not clear how this property extends to models with density dependence

or environmental feedbacks.52

In this manuscript, I derive a class-structured Price equation coupled with a general ecological

model in both continuous and discrete time. This extends previous works by Day & Gandon (2006)54

and Gandon & Day (2007), and gives an ecological underpinning to some results of Grafen (2015b).

I then show, using only minimal ecological assumptions, that the purely demographic effect of class56

dynamics can be removed from the dynamics of the mean trait if one weights the mean trait in each

class at time t by the reproductive value of that class at time t. This result is valid for large population58

sizes and clonal reproduction, but holds generally for any out-of-equilibrium ecological model, allowing

for density-dependence, environmental feedbacks and environmental stochasticity. The requirement is60

that reproductive values are not calculated asymptotically in a population at equilibrium, but from

a dynamical equation depending on average transition rates between classes, where the average is62

taken over all the genotypes. Related dynamical equations have been derived before in monomorphic

populations (Tuljapurkar, 1989; Rousset, 2004; Rousset & Ronce, 2004; Barton & Etheridge, 2011),64

but to my knowledge their implications for the Price equation under general ecological scenarios have

not been discussed. I discuss the usefulness of reproductive-value weighting for more practical studies,66

distinguishing between backward studies where one is interested in detecting selection in a known

temporal series, and forward studies where one is interested in making predictions about the future68

change in a trait of interest. In particular, I show how these results extend previous results on the

selection gradient calculated from traditional invasion analyses (Taylor, 1990; Metz et al., 1992; Taylor70

& Frank, 1996; Rousset, 1999; Rousset, 2004).

1 Ecological dynamics72

The key points of the argument are easier to grasp using a population with a discrete structure and

continuous-time dynamics. These assumptions will therefore be used in the primary derivation of the74

results, but extensions to discrete-time dynamics and continuous population structure will be discussed

at a later stage. Table 1 provides a summary of the mathematical symbols used in this article.76

I consider an infinitely large population, such that demographic stochasticity can be ignored. The

population consists of M clonally reproducing types. A type can represent an allele, a genotype, or78

a phenotype, depending on the level of interest. The population is further structured into K classes.

Throughout the article, I use the subscript i to refer to types and superscripts j and k to refer to80

classes. Hence, I denote the total density of individuals in class k as nk and the density of type i
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individuals in class k as nki . These densities are collected in the vectors ni =
(
n1
i . . . nKi

)>
and82

n =
(
n1 . . . nK

)>
.

Apart from clonal reproduction and large population densities, I will make only minimal ecological84

assumptions. The results are only expressed in terms of the transition rates rkji of i individuals from

class j to class k. These transitions may be due to reproduction, survival, maturation, or dispersal86

depending on the biological context. In general, the rates rkji will depend on the vital rates of the

focal type (fecundity, mortality, migration, infection...), but also on the vital rates of the other types.88

More importantly, the rates rkji also depend on the environment E(t). The environment is defined

from an individual-centred perspective (Metz et al., 1992; Mylius & Diekmann, 1995) and collects all90

the relevant information necessary to compute the reproduction and survival of individuals. Basically,

the vector E(t) collects the densities of the various types in the population, through the vectors ni,92

but also any ecological effects that are external to the focal population, which are collected in a vector

e. These external effects may represent predation, parasitism, interspecific competition, or changes in94

abiotic factors.

In continuous time, the dynamics of the total densities in each class can be written in matrix form96

as
dn
dt = R(E(t))n. (1)

The matrix R has element r̄kj on the kth line and jth column, where r̄kj =
∑
i r
kj
i n

j
i/n

j is the average98

transition rate from class j to class k. Coupled with a dynamical equation for the vector of external

densities e, equation (1) forms the basis for ecological studies of class-structured populations (e.g.100

Caswell, 2001). For simplicity, I will omit the dependency of the transition rates on the environment

E(t) in the following, but it is important to keep in mind the generality of this formulation.102

2 Dynamics of a phenotypic trait

2.1 The class-structured Price equation104

To study evolutionary change, I will focus on the change in the average of a focal trait, z̄, which can

be calculated as a weighted sum of class means, z̄ =
∑
k f

kz̄k, where z̄k is the mean trait in class k,106

and fk is the relative frequency of class k. The relative frequencies of each class can be calculated

as fk = nk/n, where n =
∑
k n

k is the total density of individuals. In Appendix A, I show that the108
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Table 1: Definition of mathematical symbols used in the text

Mathematical symbol Description
nki Density of individuals of type i in class k
nk =

∑
i n

k
i Density of individuals in class k

n =
∑
k n

k Total density of individuals
fki = nki /n

k Relative frequency of i individuals within class k
fk = nk/n Relative frequency of individuals in class k (with respect to the total

population)
fi =

∑
k n

k
i /n =

∑
k f

k
i f

k Relative frequency of type i (with respect to the total population)
z̄k =

∑
i zif

k
i Mean value of trait z within class k

z̄ =
∑
i zifi =

∑
k f

kz̄k Mean value of trait z in the total population
z̃ =

∑
k c

kz̄k Weighted average of trait z with time-dependent weights ck(t) for each
class.

rjki Rate at which type-i individuals in class k produce type-i individuals
in class j.

r̄jk =
∑
i r
jk
i f

k
i Average rate at which individuals in class k produce individuals in class

k.

dynamics of z̄ are given by the following differential equation,

dz̄
dt =

∑
k

fkcov
k

(
zi, r

•k
i

)
+
∑
k

(z̄k − z̄)r̄•kfk + mutation term. (2)

Equation (2) is the class-structured version of Price equation and shows that the change in mean110

trait can be partitioned into three components. The first term is the weighted average of the within-

class covariances between the trait and the total contribution of individuals of type i in class k,112

r•ki =
∑
j r

jk
i . The second term is the between-class covariance between the mean trait in a class and

the total contribution of individuals in that class. This term depends on the phenotypic differentiation114

between a given class and the total population, z̄k − z̄, and on the total contribution of individuals

in class k, r̄•k. Hence, equation (2) partitions the change in mean trait into a within-class and116

a between-class component. Finally, the third component of equation (2) represents the effect of

mutation, recombination, or possibly external immigration events. In the following, I will neglect the118

mutation term and focus on the effects of natural selection and demographic changes on the dynamics

of the mean trait, but a more complete description of the mutation term can be found in Appendix120

A.

Equation (2) confirms that, even in the absence of selection (for instance if the per-capita growth122

rates are independent of the trait, so that the covariances in the first term are zero), one may still

observe directional change in the mean trait due to the second term. Following Grafen (2015b), I will124

refer to this effect as the “passive changes in mean trait”.

Further insight can be gained by writing the equation giving the dynamics of the mean trait in126
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class k, z̄k (Appendix A). Dropping the mutation term for simplicity, this gives:

dz̄k

dt =
∑
j

cov
j

(
zi, r

kj
i

) f j
fk

+
∑
j

(
z̄j − z̄k

)
r̄kj

f j

fk
. (3)

This shows that there are two components driving the dynamics of between-class differentiation. Even128

when the per-capita growth rates rkji are independent of the trait, so that the covariance terms are

zero, the mean trait within class k may still change due to between-class demographic transitions130

between class k and the other classes. This can lead to changes in the phenotypic differentation across

classes, measured by the deviation of the class averages z̄k from the population average z̄. Hence, the132

second term of equation (2) conflates the consequences of natural selection and of other ecological or

genetical mechanisms causing phenotypic differentiation between classes.134

2.2 The class-structured Price equation for a weighted average

Equation (2) is derived by giving each individual weight unity. In order to extract the signal of136

natural selection from equation (2), a common approach has been to consider the dynamics of a

weighted average of the focal trait, by giving each individual a class-specific weight (Fisher, 1930;138

Crow, 1979; Taylor, 1990; Leturque & Rousset, 2002; Rousset, 2004; Rousset & Ronce, 2004; Engen

et al., 2014; Grafen, 2015b). Here, I follow this approach but I consider that the weights are not140

constant through time. I therefore consider the weighted average at time t

z̃(t) =
∑
k

ck(t)z̄k(t) (4)

where the weight ck(t) = vk(t)fk(t) is assigned to class k at t and scaled such that
∑
k c

k(t) = 1.142

(Note that, when all the vk’s are set to the constant value 1, we recover the results of the previous

paragraph.) Then, the change in the weighted mean trait can be written as (Appendix A)144

dz̃
dt =

∑
k

fkcov
k

zi,∑
j

vjrjki

+
∑
k

z̄k

dck

dt − c
k
∑
j

r̄kj
f j

fk
+
∑
j

cj r̄jk
fk

f j

 . (5)

Equation (5) shows that if the ck’s satisfy the following system of differential equations

dck

dt = ck
∑
j

r̄kj
f j

fk
−
∑
j

cj r̄jk
fk

f j
, (6)

6
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the change in weighted mean trait takes the following simple form:146

dz̃
dt =

∑
k

fkcov
k

zi,∑
j

vjrjki

 . (7)

Hence, for a well-chosen set of weights, we can write the change in mean trait as the average across

all classes of the covariance between the trait and the (weighted) mean contribution of individuals in148

that class. The change in a neutral trait with no effect on the vital rates will therefore be exactly

zero. Comparing the covariance term in equation (7) to the covariance term in equation (2), we note150

that the only difference is that the sum r•ki =
∑
j r

jk
i is replaced with the weighted sum

∑
j v

jrjki .

Importantly, the elimination of passive changes holds if the ck’s satisfy equation (6), irrespective of152

initial or final conditions. As a result, the vector of weights is not unique, and additional considerations

are required to choose the relevant initial condition. I will come back to this point when presenting154

the numerical applications of this approach.

3 Dynamics of reproductive values156

3.1 General ecological scenarios

Equation (6) takes the form of a master equation describing the time-evolution of a vector of proba-158

bilities. The previous analysis shows that these probabilities can be used as time-dependent weights

that guarantee the elimination of the passive changes in mean trait at any time.160

A biological interpretation of ck(t) can be given as the probability that a random gene sampled at

some time in the future has its ancestor in class k at time t when we look backward in the past. In162

other words, ck(t) represents the (relative) number of descendants left by genes present in class k at

time t, from t onwards (Tuljapurkar, 1989; Caswell, 2001; Rousset, 2004; Barton & Etheridge, 2011).164

This is exactly the definition of reproductive value as a measure of relative long-term contribution

used in population genetics and demography (going back to Fisher (1930) and Goodman (1968)).166

Following previous terminology, the weights ck(t) will be called “class reproductive values”, and the

weights vk(t) the “individual reproductive values” (Taylor, 1990; Rousset, 2004).168

In matrix form, equation (6) can be written compactly as

dc>

dt = −c>Q(E(t)) (8)

where E(t) is the vector of environmental variables and Q(E(t)) is the matrix with elements qjk =170

r̄jkfk/f j for j 6= k and qkk = −
∑
j 6=k qkj (Appendix B). A similar equation holds for individual
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reproductive values (Appendix B)172

dv>

dt = −v>R(E(t)). (9)

Equations (8) and (9) can be seen as generalisations of previous dynamical equations proposed in the

literature (Tuljapurkar, 1989; Rousset, 2004; Barton & Etheridge, 2011; Lehmann, 2014). However,174

while Tuljapurkar (1989) explicitly defined reproductive values as a function of time, usage in evolu-

tionary theory has typically reserved the word “reproductive value” for the asymptotic behaviour of176

the dynamical equations, yielding a time-independent definition (Charlesworth, 1994; Rousset, 2004;

Barton & Etheridge, 2011; Lehmann, 2014). This asymptotic definition of reproductive values hinges178

on additional demographic or genetic assumptions, although it has been noted that, in principle, re-

productive values could be defined as time-dependent weights (see Lehmann & Rousset (2014), note180

3). Equations (8) and (9) provide a general construction of these time-dependent reproductive values

from purely demographic considerations.182

Compared with most classical accounts of reproductive value, the definition of reproductive values

given by equation (8) and (9) holds for a broad class of models, irrespective of the genetic composition184

of the population, of the trait distribution, and of the underlying population and environmental

dynamics. In particular, the ck(t) are not calculated in a neutral or monomorphic population, nor186

under any limiting assumption of mutant rarity. The next section discusses the connection with

previous usages of reproductive values.188

3.2 Recovering classical limiting cases

The classical asymptotic definition of reproductive value can be recovered from equation (9) under190

additional ecological assumptions. This is most easily seen if we assume that the matrix R is constant

(in which case population growth is exponential). Then, it is well known that, asymptotically, the192

vector v will become proportional to the left eigenvector associated with the dominant eigenvalue of

the matrix R (Goodman, 1968; Tuljapurkar, 1989; Caswell, 2001). Reproductive value can then be194

defined as this left eigenvector, which gives the long-term contribution of individuals in a given class

to the future of the population, relative to the contribution of other individuals in the population.196

When the matrix R explicitly depends on a density-independent environment, a similar result holds

more generally provided the environment is ergodic (Tuljapurkar, 1989).198

Another frequent assumption in the literature is that the population is at a stable demographic

equilibrium. Then, the dynamics of reproductive values also depend on constant projection matrices200

Q(Ê) and R(Ê), where the environmental vector Ê is calculated at equilibrium. The class and

individual reproductive values at demographic equilibrium can be easily obtained from equation (6).202
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We then have dck/dt = 0, dn/dt = 0 and dfk/dt =
∑
j r̄

kjf j = 0. As a result, the cj ’s are the solutions

of204 ∑
j

cj r̄jk
fk

f j
= 0. (10)

Equation (10) shows that the vector c is a left eigenvector of the matrix Q associated with eigenvalue

0. Similarly, the individual reproductive values are given by a left eigenvector of R associated with206

eigenvalue 0. These results are continuous-time versions of some widely used results in evolutionary

game theory and inclusive fitness theory (Taylor, 1990; Rousset, 2004). In contrast with previous stud-208

ies, however, equation (10) holds good for polymorphic populations with arbitrary trait distribution,

instead of being calculated in a monomorphic population.210

4 Reproductive values for predictive theoretical analyses

The previous results show that the effect of selection in class-structured populations is best captured by212

weighting each class with time-dependent reproductive values. Using this weighting yields a compact

expression for the dynamics of mean phenotypic traits, (7), which can also be written in matrix form214

as follows
dz̃
dt = v>Cf , (11)

where C is the matrix of covariances with components Cjk = cov
k

(zi, rjki ). The aim of this section is216

to give a brief overview of the potential usefulness of equation (11) to make predictions on long-term

evolution.218

4.1 Separation of time scales

By construction, reproductive values quantify class contributions to the future demography of the220

population. Equations (8) and (9) show that they can be calculated from backward dynamical equa-

tions. As a result, equation (11) appears to have little predictive power as the change in the mean222

trait at a given time depends on the whole future we are precisely trying to predict. However, this

problem can be solved if we are only interested in long-term evolution and assume a separation of time224

scales between evolutionary and ecological time scales, as is typical when computing invasion fitness

(Metz et al., 1992; Geritz et al., 1998; Lehmann & Rousset, 2014; Van Cleve, 2015). If evolution is226

slow compared to the ecological dynamics, we only need to evaluate equation (11) on the population’s

ecological attractor, which can be a point equilibrium, a limit cycle, or more complicated objects. On228

the ecological attractor, the future is predictable, and the reproductive values give information about

the long-term contribution of each class, as required to analyse long-term evolution.230
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Assuming such a separation of time scales, previous studies have derived important results for

the invasion fitness of a mutant strategy in populations at demographic equilibrium that are formally232

similar to equation (11) (e.g. Taylor, 1990; Taylor & Frank, 1996; Rousset, 2004). Equation (11)

allows to generalise these previous results in two important ways. First, equation (11) is valid for234

polymorphic populations with arbitrary trait distributions, whereas previous results were derived for

quasi-monomorphic populations. Second, the time-dependent definition of reproductive values allows236

to consider more complex ecological attractors, such as periodic environments. I will illustrate these

ideas in the remainder of this section.238

4.2 Equilibrium ecological attractor

I will first recall a classical result of evolutionary game theory obtained under the assumption of240

a vanishingly small variance in the population. Consider two types w and m with traits zw and

zm = zw + ε. When ε = 0, we assume that the population settles on a demographic equilibrium. If242

ε is small (i.e. the mutation has a small phenotypic effect), the covariances can be approximated as

Cjk ≈ σzzdr
jk
M/dε + O(ε3), where σzz is the trait variance and the derivative is evaluated at ε = 0.244

Because the variance is small, the dynamics of the mean trait unfolds on a slow time scale compared

to the ecological dynamics and we can approximate equation (11) as246

dz̃
dt = σzzv̂>

dRm

dε f̂ +O(ε3), (12)

where the vectors v̂ and f̂ in equation (12) are the equilibrium values of v and f computed in the

monomorphic resident population.248

Equations (11) and (12) have the same form, but the second is only valid as an approximation under

weak selection. Expanding the matrix product in equation (12) then yields the classical expression for250

the selection gradient as a weighted sum of the effects of selection on class transitions (Taylor, 1990;

Rousset, 1999; Rousset, 2004),252

S =
∑
k

∑
j

f̂kv̂j
drjkm
dε . (13)

Note that Barfield et al. (2011) provide a related expression which takes the form of Lande (1982)’s

theorem. Their approach uses the mean demographic matrix, as I do here, but with the additional254

assumption of normally distributed traits and exponentially growing populations. Finally, similar

expressions can be obtained for a rare mutant and arbitrary strength of selection, provided the pop-256

ulation is quasi-monomorphic (i.e. the resident population contains only one type) (Taylor, 1990;

Lehmann et al., 2016). Quasi-monomorphism typically arises in two-allele models when the mutant258
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allele is rare compared to the resident allele (as in Taylor, 1990), or in models with a continuous trait

distribution, when the trait distribution is assumed to be tightly clustered around the mean (weak260

selection).

4.3 Periodic ecological attractor262

Using equation (11), we can generalise this classical result in two ways. First, although many theoret-

ical models consider populations at equilibrium, realistic ecological dynamics may converge to more264

complex ecological attractors, such as limit cycles or chaotic attractors. Limit cycles can be thought

of as a continous-time description of periodic environments, as needed for instance for taking into266

account seasonality. Equation (11) provides a straightforward extension of the selection gradient for

periodic attractors. Assuming as before that selection is weak and the population has settled on a268

limit cycle with period T , it follows directly from equation (11) that the average change in the mean

trait over one period is proportional to270

S =
∑
k

∑
j

∫ T

0
f̂k(t)v̂j(t)drjkm (t)

dε dt. (14)

The reproductive values and class frequencies are time-dependent and computed using the matrix

R(Ê(t)), where Ê(t) for 0 ≤ t ≤ T is the periodic environment generated by the resident population.272

The use of time-dependent reproductive values for periodic matrix models has been suggested before

for continuous-time exponentially growing populations (Bacaër & Abdurahman, 2008) and discrete-274

time density-regulated populations (Brommer et al., 2000) but to my knowledge equation (14) has not

been previously derived. Compared to earlier approaches that have dealt with complex demographies276

by incorporating the demographic states into the class-structure (Brommer et al., 2000; Rousset &

Ronce, 2004; Lehmann et al., 2016), equation (14) provides a lower-dimensional invasion criterion278

in which classes are defined independently of the population dynamical model. For instance, if we

study an ecological model with different attractors depending on parameter values, we do not need to280

change the class structure and the dimension of the projection matrix to analyse the different regions

of parameter space. The connections between this result and previous characterisations of invasion282

fitness in periodic environments (Tuljapurkar, 1985; Ferrière & Gatto, 1995) is left for future work.

4.4 Polymorphic populations284

A second generalisation of classical theory is possible from equation (11) when we relax the assumption

that the population is quasi-monorphic. Consider for instance a polymorphic population with traits286

zi and frequencies fi for i ≤ 1 ≤ M . Assuming stable coexistence of this population, we ask what is
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the effect of a slight perturbation of the trait distribution on the change in mean trait. For example,288

we may consider that a new mutant type arises from type M , with trait zM + ε. If we can further

assume that the effect of the mutation on the population demography is negligible compared to the290

perturbation of the covariance matrix C, we can approximate equation (11) as

dz̃
dt ≈ v̂dC

dε f̂ . (15)

As in equation (13), the vectors v̂ and v̂ are computed at equilibrium for ε = 0. However, equation (15)292

is valid for arbitrary trait distributions in the resident population. The reproductive values and class

frequencies must therefore be computed from the mean demographic matrix of the resident population,294

which is the natural extension of the “neutral” reproductive values typically considered when the

resident population contains only one type. Of course, additional work is needed to investigate the296

domain of validity of this approximation, which is far beyond the scope of this paper. However,

the present considerations shed light on the potential utility of equation (11) for deriving analytical298

expressions for long-term measures of selection in class-structured populations.

5 Reproductive values for retrospective data analyses300

The previous section has emphasised that, to predict long-term evolution, we can neglect transient

ecological dynamics and focus on the ecological attractor. However, when studying short-term eco-302

evolutionary dynamics, these transient dynamics can be critical. The concept of reproductive value

may then lose its predictive power, although it is still potentially useful for retrospectively analysing304

time series. In this section, I first provide a discrete-time extension of equations (7) and (8), before

applying them to simulated data as a proof-of-concept.306

5.1 Discrete time dynamics

So far, I have considered a continous-time model, but the cancellation of passive changes from the308

dynamics of the mean trait also holds for discrete time dynamics. In Supporting Information S.1, I

show that the change in weighted mean trait can be written in discrete time as310

z̃(t+ 1)− z̃(t) =
∑
k

fk(t)cov
k

zi,∑
j

vj(t+ 1)w
jk
i (t)
w̄(t)

 . (16)

Compared to equation (7), the per-capita growth rates rjki are replaced by the relative fitnesses

wjki /w̄(t), where w̄(t) is the average fitness in the population. Equation (16) more clearly shows312
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that the reproductive-value weighting needs to be applied to the offspring generation: each offspring

is valued by its current contribution to the future of the population. The class reproductive values314

satisfy the following recursion:

cj(t) =
∑
k

ck(t+ 1) w̄
kj(t)nj(t)
w̄k(t)nk(t) , (17)

which is a discrete-time analog of equation (6) (see also Rousset, 2004; Rousset & Ronce, 2004, where316

related recursions are derived).

5.2 Numerical illustrations318

As a proof-of-concept, I consider a discrete-time three-class model, with class densities n1
t , n2

t and n3
t .

The transition matrix for type i at time t is given by320

Wi(t) =


0 φ2F2(Et, t) φ3F3(Et, t)

s1 + ωzi 0 0

0 s2S2(Et, t) s3S3(Et, t)

 (18)

The elements of Wi are the wjki of equation (16). The reproduction and survival of stages 2 and 3

depend on the environmental dynamics through the fecundity functions F2(Et, t) and F3(Et, t), and322

the survival functions S2(Et, t) and S3(Et, t). Individuals are characterised by a trait z, which is a

property of the type and confers a survival advantage to the first stage. The parameter ω measures324

the strength of selection.

General method Starting from some initial conditions, the model can be run forward in time from326

time 0 to time T to provide a sequence of data. The details of the model are irrelevant, but what

matters in the end is that we get a time series for the mean traits in each class, z̄k(t), and for the328

average fitnesses w̄kj(t), which determine between-class transitions. These quantities can in principle

be measured in the field without any knowledge of the genetic variation in the population. Knowing330

this, recursion (17) can be iterated backward in time, starting from a given final condition c(T ),

yielding the weights c(t) that need to be applied to the mean traits z̄k(t) at each time step. I will first332

present some illustrating results using two distinct models, before discussing the choice of the final

condition.334

Model 1 The first model assumes that survival of stage 2 is density-dependent and that fecundities

of stages 2 and 3 are affected by environmental fluctuations in the availability of a resource, as follows:336
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F2(Et, t) = F3(Et, t) = G(t) (19a)

S2(Et, t) = e−αnt (19b)

S3(Et, t) = 1 (19c)

where G(t) = u(1 + cos(νt) + ρt) represents the density of the fluctuating resource, with a periodic338

component and a random component ρt representing environmental stochasticity. The dynamics of

the total density and mean trait in this model are shown in figure 1. In the neutral model (figure340

1a, ω = 0), a transient increase in mean trait is observed before stabilisation. A naive observer may

interpret this transient increase as directional selection, but in fact this is only due to demographic342

transitions between classes. The absence of selection is revealed by plotting the reproductive-value

weighted mean trait, which is a flat line. In the model with selection (figure 1b, ω = 0.05), the344

reproductive-value weighting also irons out the passive changes due to class structure and allows for

a more rigorous evaluation of the action of selection. For comparison, the lower panels of figure 1b346

also show the dynamics of the mean trait weighted with constant reproductive values calculated from

the time-averaged projection matrix (gray lines). In the model with selection, the blue dashed line348

also shows the trajectory of the mean trait calculated with the time-dependent neutral reproductive

values from figure 1ba. For this model, the effect of selection on the efficiency of the reproductive350

value weighting appears to be relatively weak.

Model 2 The second model is a variation on the classical Larva-Pupae-Adult (LPA) model for the352

dynamics of Tribolium populations (Dennis et al., 1995) and makes the following assumptions:

F2(Et, t) = S3(Et, t) = 1 (20a)

F3(Et, t) = e−celn
1
t−cean3

t (20b)

S2(Et, t) = e−cpan3
t , (20c)

where following traditional notation, cel (resp. cea and cpa) reflects the intensity of cannibalism of eggs354

by larvae (resp. eggs by adults and pupae by adults). Figure 2a shows that, even for a neutral trait

(ω = 0), the model exhibits sustained fluctuations in the mean trait. Applying reproductive value356

weighting to the trait reveals that these changes are solely due to passive changes due to between-

class transitions. In the model with selection (figure 2b), the change in mean trait initially shows358

some transient fluctuations before following a more linear trajectory. In contrast, the dynamics of the
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(a) Neutral model (ω = 0)
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(b) Model with selection (ω = 0.05)
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Figure 1: The dynamics of total population density and mean trait are shown for Model 1 at neutrality
(left panel) and in the presence of selection (right panel). The dynamics of the model are given by
equation ni(t+1) = Wi(t)ni(t), where the transition matrix is defined in equation (18) and (19). The
upper panel gives the dynamics of the total population size, n(t). The lower panel gives the dynamics of
the arithmetic mean of the trait (dots), of the weighted mean trait using time-dependent reproductive-
value (red line), and of the weighted mean trait using constant reproductive values computed from
the average matrix over time (gray line). In figure (b), the blue dashed line shows the dynamics of
the weighted mean trait using the neutral reproductive values. The initial densities for each class are
n1(0) = 0.3, n2(0) = 0.3, n3(0) = 0.4. The initial distribution of the types is Poissonian with means
z̄1(0) = z̄2(0) = 2 and z̄3(0) = 8, so that nki (0) = nk(0)(z̄k(0))ie−z̄k(0)/(i!) and 0 ≤ i ≤ 49. The effect
of environmental stochasticity, ρt, is modelled as a uniformly distributed random variable between
-0.5 and 0.5. Parameters: φ2 = 2, φ3 = 1, s1 = 0.6, s2 = s3 = 0.9, α = 0.5 and ν = 0.25.
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(a) Neutral model (ω = 0)
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(b) Model with selection (ω = 0.05)
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Figure 2: The dynamics of total population density and mean trait are shown for Model 2 at neutrality
(left panel) and in the presence of selection (right panel). The dynamics of the model are given by
equation ni(t+1) = Wi(t)ni(t), where the transition matrix is defined in equation (18) and (20). The
upper panel gives the dynamics of the total population size, n(t). The lower panel gives the dynamics
of the arithmetic mean of the trait (dots), of the reproductive-value weighted trait (red line), and of
the weighted mean trait using constant reproductive values computed from the average matrix over
time (gray line). In figure (b), the blue dashed line shows the dynamics of the weighted mean trait
using the neutral reproductive values. . The initial densities for each class are n1(0) = 0.3, n2(0) = 0.3,
n3(0) = 0.4. The initial distribution of the types is Poissonian with means z̄1(0) = z̄2(0) = 2 and
z̄3(0) = 12, so that nki (0) = nk(0)(z̄k(0))ie−z̄k(0)/(i!) and 0 ≤ i ≤ 49. Parameters: φ2 = 0, φ3 = 10,
s1 = 0.6, s2 = 1, s3 = 0.05, cea = 0.5, cpa = 1, cel = 0.4.

weighted mean trait shows that the trait is under directional selection from the start, and that these360

transient fluctuations are not driven by selection. Using constant reproductive values calculated from

the time-averaged projection matrix does not eliminate the passive changes in mean trait (gray lines).362

Furthermore, using the time-dependent neutral reproductive values as weights leads to a different

prediction for the trajectory of the trait (blue dashed line).364

Finally, the effect of non-linear dependencies of vital rates on the trait can be investigated by

replacing zi with zi/(1 + 0.2zi) in the matrix Wi(t) (equation (18)). Figure 3 clearly shows that only366

the time-dependent non-neutral reproductive values produce a good smoothing of the trajectory.

Choice of the final condition As noted above, the choice of the final condition is irrelevant when368

deriving equations (7) and (16). In fact, for a neutral trait, the dynamics of the weighted mean

trait should be a flat line, irrespective of the final condition. With selection, however, different final370

conditions will yield different trajectories for the weighted trait. In the two examples above, I used the

final condition c(T ) = f(T ) to compute the class reproductive values and weighted mean trait at each372
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Figure 3: The dynamics of total population density and mean trait are shown for Model 2 with a
non-linear effect of the trait. Compared with figure 2b, the only change is that the matrix Wi(t)
depends non-linearly on the trait, as explained in the main text.

time. The choice of this particular final condition is equivalent to setting the relative contribution of

each class to the present generation to 1 (Barton & Etheridge, 2011), but also guarantees that the374

trajectory of the weighted mean trait converges to the value measured at the end of the time series.

In other words, from the final state of the population under study, we trace backward in time the376

trajectory corresponding to the change in mean trait in an ideal population where the passive changes

have been removed.378

A further motivation for choosing this final conditions comes from the consideration of the limiting

regime where selection is weak. The influence of the passive changes in mean trait should decay rapidly380

under weak selection. As a result, if we have enough data points, we can expect the weighted dynamics

to converge to those of the unweighted mean trait, as in figure 2b.382

6 Discussion

In class-structured populations, changes in gene frequencies or mean phenotypes may be brought about384

through three distinct routes. First, natural selection may act within each class through the covariance

between the focal trait and the vital rates of each type within that class. Second, directional changes386

in the mean trait may occur due to the dynamics of between-class differentiation, as measured by the

difference between the mean trait in a class and the mean trait in the total population. The dynamics388

of between-class differentiation is itself the resultant of natural selection and of “passive changes”

due to transitions between classes. These passive changes may be observed even in the absence of390
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natural selection, either transiently or on longer time scales, depending on genetic constraints and

environmental feedback. Third, mutation or recombination may introduce some directional change392

in the mean trait, an effect that I have ignored in this article and should be kept in mind. In

the Price equation for class-structured populations, these three terms combine additively to give the394

evolutionary change in the mean phenotype. This article proposes a general formulation that clarifies

this decomposition of the Price equation, both in discrete time and in continuous time. A key aspect396

of my treatment is that the evolutionary dynamics encapsulated by the Price equation are explicitly

coupled with a set of equations describing the ecological dynamics.398

An influential idea in the theoretical literature, going back to Fisher (1930), is that the effect

of selection is best captured by tracking the change in a weighted average rather than the more400

intuitive change in the arithmetic mean of the phenotype of interest. So far, this idea has been

applied to exactly or approximately linear dynamics, where a focal population grows exponentially402

(Crow, 1979; Charlesworth, 1994; Engen et al., 2014). These systems are characterised asymptotically

by a stable class structure (a right eigenvector of the constant projection matrix) and a stable set404

of reproductive values (a left eigenvector) associated with the long-term growth rate. Using these

constant reproductive values as weights, the weighted density of the population grows from the start406

as it would when the stable class structure is reached. Furthermore, these constant weights can be

used to cancel out the passive changes in the mean trait and therefore extract the signal of natural408

selection from the purely demographic consequences of class dynamics (Engen et al., 2014; Grafen,

2015b).410

This article provides a general extension of this result, provided a dynamical and demographic

definition of reproductive values is used. At a conceptual level, we need a clear distinction between412

types and classes, but to compute reproductive values we only need to work at the demographic level,

using the between-class transition rates obtained by averaging over all types. The results hold for414

a large class of ecological models, allowing for density- and frequency-dependence, non-equilibrium

population dynamics and environmental fluctuations. In addition, although I have focussed on dis-416

crete trait and state distributions, the derivation of Appendix A carries out unchanged if the trait

averages are computed over a continuous distribution. This provides a direct connection with previous418

quantitative genetics models of age- and stage-structured populations (Lande, 1982; Barfield et al.,

2011). Furthermore, the result also extends to populations structured by continuous states, such as420

age-structured or size-structured populations studied by integral projection models (Rees & Ellner,

2016; results not shown). However, in practice, it may often be more useful to segregate a population422

into discrete classes, as this allows each class to be sufficiently populated.
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The definition of reproductive values used in this paper departs from the classical usage in two424

ways. First, class reproductive values are not defined asymptotically, but as functions of time. How-

ever, the classical computation of reproductive values as an eigenvector of a constant projection matrix426

is obtained as a special case of the dynamical definition when the transition matrix for the ecologi-

cal dynamics is constant. This occurs in particular when populations are at ecological equilibrium,428

as typically assumed in invasion analyses. Second, I emphasise a purely demographic notion of re-

productive value. In particular, there is no need to assign a reproductive value to each genotype in430

the population. Rather, the relevant weights need to be calculated from the demographic dynamics

where the genotype-specific vital rates are averaged within each class. This use of reproductive values432

contrasts with other definitions (e.g. Crow, 1979), but appears to match the definition attributed to

Fisher (1930) by Grafen (2015a) and Grafen (2015b). Defining reproductive values at a demographic434

level allows to circumvent the need for fitting models with phenotype- or genotype-dependent vital

rates. Instead, we only need to estimate demographic projection matrices from the aggregated data436

where individuals of different genotypes are grouped by classes.

An important question to ask is whether the properties of reproductive values discussed here438

are of relevance for practical studies of natural selection. The value of reproductive value clearly

depends on the biological question. First, one may be interested in detecting patterns of natural440

selection in demographic and genetic data, as collected for instance in field or controlled experimental

studies. Then, it is possible to compute reproductive values by iterating estimated projection matrices442

backward in time, and use them as weights to detect deviation from neutrality. This use of reproductive

values has been discussed by Engen et al. (2014), in the more restrictive setting of exponentially444

growing populations where reproductive values can simply be calculated as an eigenvector. In this

article, I present an illustration using simulated data. Thus, if we are interested in understanding past446

events, reproductive-value weighting provides a useful way to test for the presence of selection without

mistaking for selection the passive changes in mean trait resulting from class dynamics.448

Alternatively, one may be interested in predicting patterns of evolutionary change for a particular

trait of interest. If, for instance, one seeks to make predictions about how the virulence of a pathogen450

can be expected to change after the introduction of a vaccination campaign, the transient dynamics are

of direct relevance as they allow to capture a potentially deadly short-term epidemic by a virulent strain452

that will eventually go extinct in the long run. Whether these changes are caused by natural selection

or by class dynamics is a secondary issue. In addition, reproductive values can only be computed by454

backward iteration, so it is not clear how the concept is compatible with forward predictions on short-

term dynamics. For this type of forward-looking questions, the unweighted Price equation appears to456
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be more useful. In particular, the unweighted Price equation arises naturally when studying short-term

evolution in spatially structured population. For example, when studying the evolution of virulence458

during spatial epidemics on networks, Lion & Gandon (2016) found that the change in mean virulence

depends on the build-up of a difference between the (local) virulence measured in hosts that have460

at least one susceptible neighbour and the (global) virulence measured at the population level. This

term, which was interpreted as spatial differentiation in virulence, is the exact equivalent of the z̄k− z̄462

terms in equation (2).

For long-term evolution, the predictive power of reproductive values rests upon additional assump-464

tions. For instance, if ecological dynamics take place on a fast time scale compared to evolutionary

dynamics, the effect of transient ecological dynamics may be neglected and reproductive values can be466

computed on the ecological attractor. Thus, as for exponentially growing populations, we are inter-

ested in reproductive values in a “stable” population. Equation (11) gives a general description of the468

dynamics of a weighted mean trait that can be combined with other genetic or ecological assumptions

to derive expressions for the selection gradient. For example, when the population is close to monomor-470

phic (e.g., if the trait distribution is tightly clustered around the mean), it is sufficient to compute

reproductive values under the assumption that all types have the mean trait value. The results of472

this paper suggests that, for polymorphic populations with arbitrary trait distribution, reproductive

values should be calculated from the mean demographic matrix. In this case, the genetic variation is474

eliminated by averaging over all types, rather than letting the variance in the trait go to zero. Finally,

the time-dependent definition of reproductive values allows to consider complex population dynamics,476

such as periodic environments, without altering the class structure of the population.

The effect of class transitions on the mean trait has been named “passive changes” by Grafen478

(2015b), and “transient quasi-selection” by Engen et al. (2014). The former formulation appears

preferable, because the effect of class structure need not be transient, although they disappear quickly480

in haploid linear models. In more realistic models, ecological feedbacks and genetic constraints may

potentially sustain fluctuations in allele frequencies among classes on longer time scales, at least long482

enough for these fluctuations to become relevant for empirical or experimental studies. An example

is given in figure 2, based on the classical LPA model for Tribolium dynamics. Haplodiploid systems484

of inheritance provide another example of this phenomenon (Gardner, 2015).

Many results on evolution in class-structured populations have been derived using an inclusive486

fitness formalism (Taylor, 1990; Rousset, 2004; Lehmann & Rousset, 2014; Lehmann et al., 2016).

The results of this article are valid also when the rates rkji depends on the genetic or demographic488

spatial structure of the population. Spatial structure can be handled more explicitly in two ways. First,
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space can be incorporated in the class structure (Rousset & Ronce, 2004). Second, it can be dealt490

with through the environment, as is typically done in spatial moment equations (Lion, 2016). Then,

equations for ni should be thought of as giving the dynamics of the zeroth-order spatial moments,492

and the rkji would depend on the dynamcs of higher-order spatial moments. However, this has no

conceptual impact on the definition and property of reproductive values.494

The derivation of the weighted Price equation also extends to multiple traits and environmental

stochasticity. First, because the reproductive values do not depend on the trait one considers, the496

extension to several jointly evolving traits is straightfoward. However, potential correlations between

traits will need to be accounted for in the transition rates. Second, the results extend directly to498

environmental stochasticity. In practice, if we have a random sequence of environmental variables

Et and associated demographic and genetic data, we can still use the backward recursion to com-500

pute reproductive values at different time steps, and then compute the reproductive-value-weighted

mean forward. This is illustrated in figure 1. At a theoretical level, the asymptotic value of re-502

productive values under environmental stochasticity matches the results of Tuljapurkar (1989) in a

density-independent model.504

In contrast, the derivation is only valid for large populations of clonally reproducing types. More

precisely, we need to have a sufficiently large number of individuals in each class. To account for the506

effect of small population sizes, we would need to model demographic stochasticity explicitly. Dynam-

ical equations for reproductive values have been derived under demographic stochasticity (Rousset &508

Ronce, 2004; Lehmann, 2012), and this could provide a way forward. In principle, it should also be

possible to extend the results to other genetic systems, including sexual reproduction or recombina-510

tion, by using alleles as types and incorporating the genetic background into the class structure. Such

potential extensions are left for future work.512

Historically, the use of reproductive values has also been advocated in two ways. In demography,

reproductive values are often characterised as the weights vk that need to be applied to the densities of514

each class (or age) so that the total reproductive value
∑
k v

knk grows from the start with the long-term

growth rate r (Fisher, 1930; Price & Smith, 1972; Samuelson, 1977; Crow, 1979; Charlesworth, 1994).516

However, the generality of this result has been debated, as this property of reproductive values seems

tied to linear models (Samuelson, 1977; see also Bacaër & Abdurahman (2008) for an extension to518

periodic environments). Alternatively, in evolutionary theory, reproductive values have been discussed

in relation to Fisher’s Fundamental Theorem of Natural Selection (FTNS; Crow, 1979; Grafen, 2015a;520

Grafen, 2015b; Lessard & Soares, 2016), which states that the change in mean fitness due to natural

selection is given by the genetic variance in fitness. In this literature, a focus of attention has been522
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to determine whether Fisher’s intention in the FTNS was to use reproductive values as weights. In

principle, we could obtain two different FTNS by substituting the growth rate ri of type i for the trait524

zi in the two Price equations derived above (Gandon & Day, 2009). However, these Price equations

are derived for constant traits, whereas the growth rate ri is a function of the environment E(t), and526

possibly of time itself if vital rates are functions of time. This will contribute an additional term to the

Price equation, representing the feedback of the environment on the change in mean “fitness” (Frank528

& Slatkin, 1992; Gandon & Day, 2009). Hence, as has long been recognised, the FTNS only captures

a partial change in mean fitness, with or without reproductive-value weighting.530

The results of this article confirm that reproductive values are best viewed as weights allowing to

decouple the changes due to selection from the passive changes due to class dynamics. This allows532

to measure selection in distinct classes with potentially different evolutionary value using a single,

time-dependent currency. The power of this approach is that the relevant weights at each time can534

always be calculated from time series, even for complex population dynamics.
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Appendix A: Derivation of the class-structured Price equation

A.1 No mutation644

The mean trait in the K-class model is z̄ =
∑
k z̄

kfk where fk = nk/n is the frequency of class k, and

z̄k is the mean trait among individuals in class k. Introducing the frequency of i-individuals within646
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class k, which is fki = nki /n
k, we have z̄k =

∑
i zif

k
i . We first compute the dynamics of frequencies.

Using the fact that dnki /dt = rki n
k
i , we have648

dfki
dt = fki (rki − r̄k)

where the per-capita growth rate of type i in class k is

rki =
∑
j

rkji
nji
nki

=
∑
j

rkji
f ji
fki

f j

fk
.

Noting that fi =
∑
k f

k
i f

k, we have650

dfi
dt =

∑
k

fk
dfki
dt +

∑
k

fki
dfk

dt

=
∑
k

fkfki (rki − r̄k) +
∑
k

fki

∑
j

r̄kjf j − fk 1
n

dn
dt


=
∑
k

fkfki
∑
j

rkji
f ji
fki

f j

fk
−
∑
k

fkfki
∑
j

r̄kj
f j

fk

+
∑
k

fki
∑
j

r̄kjf j − fi
∑
k

∑
j

r̄kjf j

=
∑
k

∑
j

rkji f
j
i f

j − fi
∑
k

∑
j

r̄kjf j

=
∑
k

∑
j

(rkji − r̄
kj)f ji f

j +
∑
k

∑
j

(f ji − fi)r̄
kjf j

Multiplying by zi and summing over i yields the dynamics of the mean trait

dz̄
dt =

∑
j

cov
j

(zi,
∑
k

rkji )f j +
∑
j

(z̄j − z̄)
∑
k

r̄kjf j . (A.1)

The dynamics of the mean trait in class k can be derived from the dynamics of fki . This gives652

dz̄k

dt =cov
k

(zi, rki )

=
∑
i

∑
j

(zi − z̄k)rkji f
j
i

f j

fk

=
∑
j

∑
i

(zi − z̄j)rkji f
j
i

f j

fk
+
∑
j

(z̄j − z̄k)
∑
i

rkji f
j
i

f j

fk

=
∑
j

cov
j

(zi, rkji )f
j

fk
+
∑
j

(z̄j − z̄k)r̄kj f
j

fk
(A.2)

=
∑
j

cov
j

(zi, rkji )f
j

fk
+
∑
j

(z̄j − z̄)r̄kj f
j

fk
− (z̄k − z̄)

∑
j r̄

kjf j

fk
(A.3)
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From equations (A.1) and (A.3), we can also derive the dynamics of z̄k − z̄, which gives:

d
dt(z̄

k− z̄) =
∑
j

cov
j

(
zi,

rkji
fk
−
∑
k

rkji

)
f j+

∑
j

(z̄j− z̄)
(
r̄kj

f j

fk
−
∑
k

r̄kjf j
)
−(z̄k− z̄)

∑
j r̄

kjf j

fk
(A.4)

A.2 Mutation654

Let us consider the following mutation model: mutations occur at rate µ and with probability m`i

a parent of type i can produce an offspring of type `, conditional on mutation. The change in the656

density nki can then be written as

dnki
dt = (1− µ)rki nki + µ

∑
`

mi`r
k
`n

k
` = rki n

k
i + µ

(∑
`

mi`r
k
`n

k
` − rki nki

)

Thus, mutation contributes an additional term to the dynamics of z̄k658

dz̄k

dt = cov(zi, rki ) + µ
∑
i

zi

(∑
`

mi`r
k
` f

k
` − rki fki

)

which can be rewritten as

dz̄k

dt = cov(zi, rki ) + µ
∑
i

(∑
`

z`m`i − zi

)
rki f

k
i .

Hence, because z̄ =
∑
k f

kz̄k, mutation contributes the following additional term to the dynamics of z̄660

dz̄
dt = RHS of (A.1) + µ

∑
i

(∑
`

z`m`i − zi

)
rifi

where ri =
∑
k r

k
i n

k
i /n is the average growth rate of type i across all classes, and fi =

∑
k n

k
i /n is the

global frequency of type i. Note that the above derivation assumes that the rate and distribution of662

mutations are constant across classes.
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A.3 Weighted Price equation664

We now calculate the dynamics of a weighted average frequency, f̃i =
∑
k c

kfki , with weights ck(t)

such that ck = vkfk and
∑
ck = 1. In the absence of mutation, this yields666

df̃i
dt =

∑
k

ck
dfki
dt +

∑
k

fki
dck

dt

=
∑
k

ckfki r
k
i +

∑
k

fki

[
dck

dt − c
kr̄k
]

=
∑
k

ckfki
∑
j

rkji
f ji
fki

f j

fk
+
∑
k

fki

dck

dt − c
k
∑
j

r̄kj
f j

fk


=
∑
k

ckfki
∑
j

rkji
f ji
fki

f j

fk
−
∑
k

fki
∑
j

cj r̄jk
fk

f j
+
∑
k

fki

dck

dt − c
k
∑
j

r̄kj
f j

fk
+
∑
j

cj r̄jk
fk

f j


If the ck’s satisfy the system

dck

dt = −
∑
j

cj r̄jk
fk

f j
+ ck

∑
j

r̄kj
f j

fk
, (A.5)

we then have the following simple equation for the dynamics of the weighted frequency668

df̃i
dt =

∑
j

f j
∑
k

vk(rkji − r̄
kj)f ji .

Multiplying by zi and summing over i yields the dynamics of the weighted average z̃ =
∑
k c

kz̄k =∑
k c

k∑
i f

k
i zi:670

dz̃
dt =

∑
j

cov
j

(
zi,
∑
k

vkrkji

)
f j , (A.6)

or in matrix form as
dz̃
dt = v>Cf (A.7)

where C is the matrix of covariances with elements Ckj = cov
j

(zi, rkji ). Taking into account mutation672

would only contribute an additional term, which is simply the second term of equation (A.2) with r̃i

and f̃i substituted for ri and fi.674

Appendix B: Reproductive values

Equation (A.5) can be rewritten in matrix form as676

dc>

dt = −c>Q (B.1)
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where the matrix Q has elements

qjk = r̄jk
fk

f j
if j 6= k,

qkk = −
∑
j 6=k

r̄kj
f j

fk
= −

∑
j 6=k

qkj .

Similarly, we can find a dynamical equation for the vk’s. Because ck = vkfk by definition, we have678

dvk

dt f
k =dck

dt − v
k dfk

dt

=−
∑
j

cj r̄jk
fk

f j
+ ck

∑
j

r̄kj
f j

fk
− vk

∑
j

r̄kjf j

=−
∑
j

vj r̄jkfk

which gives us the following equation for the vector v

dv>

dt = −v>R (B.2)

Equations (B.1) and (B.2) show that the vector c (resp. v) can be calculated at equilibrium as the680

left eigenvector of the matrix Q (resp. R), associated with eigenvalue 0.
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Appendix S: Supporting Information for “On the dynamics of repro-682

ductive values and phenotypic traits in class-structured populations”

S.1 Discrete time dynamics684

Here I provide a derivation of the weighted and unweighted class-structured Price equations in discrete

time.686

S.1.1 Ecological dynamics

As for the continuous time, the ecological dynamics of a class-structured population are given by a688

matrix equation:

n(t+ 1) = W(t)n(t) (S.1)

where n(t) is the vector of densities in each class, nk(t), and W(t) collects the quantities w̄kj(t). This690

gives us

nk(t+ 1) =
∑
j

w̄kj(t)nj(t) = w̄k(t)nk(t) (S.2)

where w̄k(t) =
∑
j w̄

kj(t)nj(t)/nk(t). The total population size, n(t), obeys the following equation692

n(t+ 1) =
∑
k

nk(t+ 1) =
∑
k

w̄k(t)nk(t) = w̄(t)n(t) (S.3)

where w̄(t) =
∑
k w̄

k(t)nk(t)/n(t).

Similarly, the dynamics of type i in class k can be written as694

nki (t+ 1) =
∑
j

wkji (t)nji (t) = wki (t)nki (t) (S.4)

where

wki (t) =
∑
j

wkji (t)n
j
i (t)
nki (t)

(S.5)
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S.1.2 Change in frequency696

The frequency of type i in class k is fki = nki /n
k. The change in frequency is then

fki (t+ 1)− fki (t) = nki (t+ 1)
nk(t+ 1) − f

k
i (t)

=
∑
j w

kj
i (t)nji (t)∑

j w̄
kj(t)nj(t) − f

k
i (t)

=
(
wki (t)
w̄k(t) − 1

)
fki (t) (S.6)

S.1.3 Change in mean trait698

The change in the mean trait z̄k(t) =
∑
i zif

k
i (t) directly follows from the change in frenquency:

z̄k(t+ 1)− z̄k(t) =
∑
i

zi
(
fki (t+ 1)− fki (t)

)
=
∑
i

zi

(
wki (t)
w̄k(t) − 1

)
fki (t)

=
cov
k

(zi, wki (t))

w̄k(t) (S.7)

Using equation (S.5), this can be expanded as follows700

z̄k(t+ 1)− z̄k(t) =
cov
k

(
zi,
∑
j w

kj
i (t)n

j
i (t)
nk

i (t)

)
w̄k(t)

=
cov
k

(
zi,
∑
j w

kj
i (t) f

j
i (t)
fk

i (t)
nj(t)
nk(t)

)
w̄k(t)

= 1
w̄k(t)

∑
i

(zi − z̄k(t))
∑
j

wkji (t)f ji (t)n
j(t)
nk(t)


= 1
w̄k(t)

∑
i

∑
j

(zi − z̄j(t) + z̄j(t)− z̄k(t))wkji (t)f ji (t)n
j(t)
nk(t)


= 1
w̄k(t)

∑
i

∑
j

(zi − z̄j(t))wkji (t)f ji (t)n
j(t)
nk(t) +

∑
i

∑
j

(z̄j(t)− z̄k(t))wkji (t)f ji (t)n
j(t)
nk(t)


which gives finally

z̄k(t+ 1)− z̄k(t) = 1
w̄k(t)

∑
j

cov
j

(zi, wkji )n
j(t)
nk(t) +

∑
j

(z̄j(t)− z̄k(t))w̄kj(t)n
j(t)
nk(t)

 (S.8)
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S.1.4 Change in weighted mean trait702

We now introduce the following weighted average

z̃(t) =
∑
k

ck(t)z̄k(t). (S.9)

Using equation (S.8), the weighted average at t+ 1 can be written as704

z̃(t+ 1) =
∑
k

ck(t+ 1)z̄k(t+ 1)

=
∑
k

ck(t+ 1)

z̄k(t) +
∑
j

cov
j

(
zi,

wkji (t)
w̄k(t)

)
nj(t)
nk(t) +

∑
j

(z̄j(t)− z̄k(t)) w̄
kj(t)
w̄k(t)

nj(t)
nk(t)


=
∑
k

ck(t+ 1)z̄k(t) +
∑
j

cov
j

(
zi,
∑
k

ck(t+ 1)w
kj
i (t)
w̄k(t)

)
nj(t)
nk(t)

+
∑
k

ck(t+ 1)
∑
j

(z̄j(t)− z̄k(t)) w̄
kj(t)
w̄k(t)

nj(t)
nk(t)

=
∑
k

ck(t+ 1)z̄k(t) +
∑
j

cov
j

(
zi,
∑
k

ck(t+ 1)w
kj
i (t)
w̄k(t)

)
nj(t)
nk(t)

+
∑
j

z̄j(t)
∑
k

ck(t+ 1) w̄
kj(t)
w̄k(t)

nj(t)
nk(t) −

∑
k

ck(t+ 1)z̄k(t)
∑
j

w̄kj(t)
w̄k(t)

nj(t)
nk(t)

Because the sum over j in the fourth term is equal to one by definition, the first and fourth term

cancel out and we obtain:706

z̃(t+ 1) =
∑
j

cov
j

(
zi,
∑
k

ck(t+ 1)w
kj
i (t)
w̄k(t)

)
nj(t)
nk(t) +

∑
j

z̄j(t)
∑
k

ck(t+ 1) w̄
kj(t)
w̄k(t)

nj(t)
nk(t) (S.10)

Now if we choose the weights ck such that they satisfy the recursion:

cj(t) =
∑
k

ck(t+ 1) w̄
kj(t)
w̄k(t)

nj(t)
nk(t) , (S.11)

we obtain708

z̃(t+ 1) =
∑
j

cov
j

(
zi,
∑
k

ck(t+ 1)w
kj
i (t)
w̄k(t)

)
nj(t)
nk(t) +

∑
j

z̄j(t)cj(t) (S.12)

which gives us directly the change in the weighted average as

z̃(t+ 1)− z̃(t) =
∑
j

cov
j

(
zi,
∑
k

ck(t+ 1)w
kj
i (t)
w̄k(t)

)
nj(t)
nk(t) (S.13)
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A final rearrangement uses the fact that nk(t+ 1) = w̄k(t)nk(t) and the definition ck(t) = vk(t)fk(t),710

so we have

z̃(t+ 1)− z̃(t) =
∑
j

cov
j

(
zi,
∑
k

vk(t+ 1)fk(t+ 1) wkji (t)
nk(t+ 1)

)
nj(t)

=
∑
j

cov
j

(
zi,
∑
k

vk(t+ 1) w
kj
i (t)

n(t+ 1)

)
nj(t)

=
∑
j

cov
j

(
zi,
∑
k

vk(t+ 1) wkji (t)
w̄(t)n(t)

)
nj(t)

and we have finally712

z̃(t+ 1)− z̃(t) = 1
w̄(t)

∑
j

cov
j

(
zi,
∑
k

vk(t+ 1)wkji (t)
)
f j(t) . (S.14)

The latter equation thus shows that the change in the reproductive-value-weighted trait can be written

as a covariance between the trait and a weighted measure of fitness, obtained by weighting each714

offspring in the next generation by the reproductive value of the class in the next generation.
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