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Abstract 

Advances in mass spectrometry (MS) have enabled high-throughput analysis of 

proteomes in biological systems. The state-of-the-art MS data analysis relies on 

database search algorithms to quantify proteins by identifying peptide-spectrum 

matches (PSMs), which convert mass spectra to peptide sequences. Different database 

search algorithms use distinct search strategies and thus may identify unique PSMs. 

However, no existing approaches can aggregate all user-specified database search 

algorithms with a guaranteed increase in the number of identified peptides and control 

on the false discovery rate (FDR). To fill in this gap, we propose a statistical framework, 

Aggregation of Peptide Identification Results (APIR), that is universally compatible 

with all database search algorithms. Notably, under an FDR threshold, APIR is 

guaranteed to identify at least as many, if not more, peptides as individual database 

search algorithms do. Evaluation of APIR on a complex proteomics standard shows 

that APIR outpowers individual database search algorithms and empirically controls 

the FDR. Real data studies show that APIR can identify disease-related proteins and 

post-translational modifications missed by some individual database search algorithms. 

The APIR framework is easily extendable to aggregating discoveries made by multiple 

algorithms in other high-throughput biomedical data analysis, e.g., differential gene 

expression analysis on RNA sequencing data. The APIR R package is available at 

https://github.com/yiling0210/APIR. 

KEYWORDS: Shotgun proteomics; Peptide-spectrum match; Peptide identification; 

Aggregation of lists; FDR control 
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Introduction 

Proteomics studies have discovered essential roles of proteins in complex diseases such 

as neurodegenerative disease [1] and cancer [2, 3]. These studies have demonstrated 

the potential of using proteomics to identify clinical biomarkers for disease diagnosis 

and therapeutic targets for disease treatment. In recent years, proteomics analytical 

technologies, particularly tandem mass spectrometry (MS)-based shotgun proteomics, 

have advanced immensely, thus enabling high-throughput identification and 

quantification of proteins in biological samples. Compared to prior technologies, 

shotgun proteomics has simplified sample preparation and protein separation, reduced 

time and cost, and saved procedures that may result in sample degradation and loss [4]. 

In a typical shotgun proteomics experiment, a protein mixture is first enzymatically 

digested into peptides, i.e., short amino acid chains up to approximately 40-residue 

long; the resulting peptide mixture is then separated and measured by tandem MS into 

tens of thousands of mass spectra. Each mass spectrum encodes the chemical 

composition of a peptide; thus, the spectrum can be used to identify the peptide’s amino 

acid sequence and post-translational modifications, as well as to quantify the peptide’s 

abundance with additional weight information (Figure 1A). 

 Since the development of shotgun proteomics, numerous database search 

algorithms have been developed to automatically convert mass spectra into peptide 

sequences. Popular database search algorithms include SEQUEST[5], Mascot [6], 

MaxQuant[7], Byonic [8], and MS-GF+ [9], among many others. A database search 

algorithm takes as input the mass spectra from a shotgun proteomics experiment and a 

protein database (called the “target database”) that contains known protein sequences 

(called ``target sequences"). For each mass spectrum, the algorithm identifies the best 

matching peptide sequence, i.e., a subsequence of a protein sequence, from the 

database; we call this process "peptide identification," whose result is a "peptide-

spectrum match" (PSM). However, due to data imperfection (such as low-quality mass 

spectra, data processing mistakes, and protein database incompleteness), the identified 
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PSMs often consist of many false PSMs, causing issues in the downstream system-wide 

identification and quantification of proteins [10]. 

 To ensure the accuracy of PSMs, the false discovery rate (FDR) has been used as 

the most popular statistical criterion [11-18]. Technically, the FDR is defined as the 

expected proportion of false PSMs among the identified PSMs; in other words, a small 

FDR indicates good accuracy of PSMs. To control the FDR, the standard approach is 

the target-decoy search, which utilizes a “decoy database” consisting of known, non-

existent protein sequences (called “decoy sequences”) [10]. Two common strategies for 

target-decoy search are concatenated search and parallel search. The concatenated 

search strategy finds the best match of a mass spectrum in a concatenated database 

containing both target sequences and decoy sequences; hence, the match (i.e., PSM) 

corresponds to either a target sequence or a decoy sequence. In contrast, the parallel 

search strategy finds the best match of a mass spectrum in the target database and the 

decoy database separately; hence, the spectrum has two best matches, one with a target 

sequence (i.e., a target PSM) and the other with a decoy sequence (i.e., a decoy PSM). 

Based on the target-decoy search results (regardless of being concatenated or parallel), 

including target PSMs and decoy PSMs with matching scores, multiple procedures that 

are p-value-based or p-value-free have been proposed to control the FDR of a database 

search algorithm's identified target PSMs [14][19-21]. 

However, controlling the FDR is only one side of the story. Because shotgun 

proteomics experiments are costly, a common goal of database search algorithms is to 

identify as many true PSMs as possible to maximize the experimental output, in other 

words, to maximize the identification power given a target, user-specified FDR 

threshold (e.g., 1% or 5%). 

It has been observed that, with the same input mass spectra and FDR threshold, 

different database search algorithms often find largely distinct sets of PSMs [22-26]. In 

this study, we confirmed this observation using our in-house dataset, the first publicly 

available complex proteomics standard dataset from Pyrococcus Furiosus (Pfu) that 

approximates the dynamic range of a typical proteomics experiment. We first 

benchmarked five popular database search algorithms---Byonic [8], Mascot [6], 
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SEQUEST[5], MaxQuant [7], and MS-GF+ [9]---on the proteomics standard dataset 

using an FDR assessment approach similar to that in [27]. Our results confirmed that 

these five algorithms were designed to capture unique sets of PSMs (see Results for 

details). Hence, it is reasonable to use aggregation methods to combine individual 

database search algorithms' outputs to boost the power of identifying peptides from 

shotgun proteomics data. 

In the proteomics field, existing aggregation methods include Scaffold [25], 

MSblender [18], FDRAnalysis [28], iProphet [17], ConsensusID [16], PepArML [11], 

and a multi-stage method by Ning et al. [29]. Among these seven methods, except 

FDRAnalysis, which has been shown infeasible for high-throughput proteomics [22], 

the rest have at least one of the two major drawbacks: (1) limited compatibility with 

database search algorithms and (2) lack of guarantee for identifying more peptides 

under the same FDR threshold. For the first drawback, except ConsensusID, the other 

six aggregation methods unanimously limit the choices of database search algorithms. 

As for the second drawback, although empirical evidence shows that, on some datasets, 

these aggregation methods, except the multi-stage method by Ning et al. [29], may 

identify more peptides than those identified by individual database search algorithms, 

none of these aggregation methods is guaranteed to do so by algorithm design. 

In addition to the above aggregation methods developed for proteomics data, 

generic statistical methods developed for aggregating rank lists are in theory applicable 

to aggregating the PSM lists output by database search algorithms. However, none of 

these generic methods have been developed into software packages compatible with 

database search algorithms, nor are they guaranteed to identify more peptides given an 

FDR threshold (many generic methods aggregate rank lists without FDR control). 

Therefore, the field calls for a robust, powerful, and flexible aggregation method that 

allows researchers to reap the benefits of the diverse and ever-growing database search 

algorithms. 

Here we propose Aggregate Peptide Identification Results (APIR), a statistical 

framework that aggregates peptide identification results from multiple database search 

algorithms with FDR control. Compared to the existing aggregation methods, APIR 
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offers the following three advantages simultaneously: first, APIR is open-source and 

universally adaptive to database search algorithms that output PSMs with matching 

scores (e.g., q-values or posterior error probabilities); second, APIR is guaranteed to 

identify at least as many as, if not more, peptides than individual database search 

algorithms do; third, APIR empirically controls the FDR in simulation and real-data 

benchmark studies. Hence, APIR is a robust, flexible framework that enhances the 

power while controlling the FDR of peptide identification from shotgun proteomics 

data. 

Note that the framework of APIR could be easily extended to aggregate discoveries 

made by multiple algorithms in other high-throughput biomedical data analysis, such 

as differential gene expression analysis on RNA sequencing data. 

  

Method 

We propose APIR to aggregate multiple database search algorithms’ output PSMs. 

Designed to control the FDR of aggregated PSMs, APIR is a sequential framework 

applied to individual database search algorithms' output PSMs. To benchmark APIR 

and existing database search algorithms, we also generated the first publicly available 

complex proteomics standard from Pfu to approximate the dynamic range of a typical 

proteomics experiment. Below we first introduce the methodology of APIR, including 

APIR-FDR and the sequential framework for aggregating PSMs. Then we introduce 

the experimental details on how we generated the proteomics standard dataset and used 

it for benchmarking purposes. 

 

APIR methodology 

Aside from a user-specified FDR threshold 𝑞  (e.g., 5%), APIR takes as input the 

target-decoy search results from the database search algorithms users would like 

aggregate [10]. Specifically, APIR requires from each database search algorithm a list 

of target PSMs with matching scores and a list of decoy PSMs with matching scores. 

To maximize power, we recommend users to extract the entire lists of target PSMs and 
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decoy PSMs by setting the internal FDR of each database search algorithm to 100%. 

Note that the target-decoy search strategy referred to herein does not include the FDR 

estimation procedure criticized by [19]. 

 To facilitate downstream analysis, APIR also reports the master protein, the post-

translational modifications, and the abundance of each identified PSM, if applicable. 

See File S1 for details on these post-processing steps. 

 

APIR-FDR: FDR control on any individual search algorithm 

The core component of APIR is APIR-FDR, an umbrella FDR-control procedure for 

each individual database search algorithm's identified target PSMs. APIR-FDR takes 

as input an FDR threshold 𝑞, a list of target PSMs with matching scores, and a list of 

decoy PSMs with matching scores. APIR-FDR then outputs the identified target PSMs. 

As an umbrella FDR-control procedure, APIR-FDR can be p-value-based or p-value-

free, including all possible procedures that can control the FDR for an individual 

database search algorithm's identified target PSMs. Below we describe three exemplar 

options for APIR-FDR: a p-value-based option and two p-value-free options.  

To facilitate our discussion, we introduce some notations. Let 𝑚 and 𝑛 denote 

the numbers of target PSMs and decoy PSMs, respectively, outputted by a database 

search algorithm. We denote the matching scores of target PSMs and decoy PSMs as 

𝑇!, … , 𝑇" and 𝐷!, … , 𝐷#, respectively. Without loss of generality, we assume that the 

matching scores are positive, and a larger matching score indicates a higher chance for 

a PSM to be a true match. For instance, if the output of a database search algorithm 

contains PSMs with q-values or e-values (whose smaller values indicate more likely 

true matches), then we would define the negative log-transformed q-values or e-values 

as matching scores.  

First, a p-value-based FDR-control procedure applies to both concatenated and 

parallel target-decoy search strategies [14]. It assumes that the matching scores of decoy 

PSMs and false target PSMs are independently and identically distributed, and it 

constructs a null distribution by pooling the matching scores of decoy PSMs 𝐷!, … , 𝐷#. 

Then, it computes a p-value for the 𝑖-th target PSM as the tail probability right of 𝑇$, 
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i.e., 𝑝$ = ∑%&!# 𝕀0𝐷% ≥ 𝑇$2/𝑛, 𝑖 = 1,… ,𝑚 . Given the FDR threshold 𝑞  and the p-

values 𝑝!, … , 𝑝", this procedure applies the Benjamini-Hochberg procedure [30] to set 

a p-value threshold 𝑝'()*(𝑞) and outputs {𝑖 = 1,… ,𝑚: 𝑝$ ≤ 𝑝'()*(𝑞)} as the indices 

of the identified target PSMs.. 

Second, a p-value-free FDR-control procedure (as a clarification, this procedure 

was referred to as the target-decoy search strategy in [31], different from the 

terminologies we use) also applies to both concatenated and parallel search strategies. 

When used with concatenated search results, for a given matching score 𝑥 , this 

procedure counts the numbers of target PSMs and decoy PSMs with matching scores 

at least 𝑥  as 𝑁+(𝑥) = ∑$&!" 𝕀{𝑇$ ≥ 𝑥}  and 𝑁,(𝑥) = ∑$&!# 𝕀{𝐷$ ≥ 𝑥} respectively. 

This procedure then estimates the FDR of target PSMs with matching scores at least 𝑥 

as FDR?(𝑥) = -!(/)
-"(/)

 When used with parallel search results, the procedure needs to 

estimate 𝜋1, the proportion of false PSMs among the target PSMs. This proportion is 

unknown but can be conservatively estimated. This is done by examining PSMs with 

scores near zero and then calculating the ratio of the number of decoy PSMs to the 

number of target PSMs in this subset of PSMs, as outlined in reference [14]. With the 

estimated πB1, the procedure then estimates the FDR of target PSMs with matching 

scores at least 𝑥 as FDR?(𝑥) = πB1
-!(/)
-"(/)

. Given the FDR threshold 𝑞, this procedure 

outputs 0𝑖 = 1,… ,𝑚: FDR?(𝑇$) ≤ 𝑞2 as the indices of the identified target PSMs. 

Third, an alternative p-value-free FDR-control procedure is Clipper, which works 

for parallel search results by design (Clipper controls the FDR by contrasting two 

conditions, which correspond to a mass spectrum's target match and decoy match in 

parallel search) [10]. In parallel search results, we assume that the first 𝑠 ≤ min(𝑚, 𝑛) 

target PSMs can be paired one-to-one with decoy PSMs. Then we arrange the decoy 

PSM indices in the way that the 𝑖-th decoy PSM shares the same mass spectrum with 

the 𝑖-th target PSM for 1 ≤ 𝑖 ≤ 𝑠 (note that 𝑠/𝑚 is close to 1 in most parallel search 

results). Clipper first constructs a contrast score 𝐶$ = 𝑇$ − 𝐷$  for 𝑖 = 1,… , 𝑠; note 

that the contrast score may be defined in other forms [32]. Then given the FDR 
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threshold 𝑞 , Clipper finds a contrast score cutoff 𝐶'()*(𝑞) = min I𝑡 ∈ {|𝐶$|: 𝐶$ ≠

0}:	 |{$:5#678}|:!
;<=(|{$:5#>8}|,!)

≤ 𝑞P, and outputs {𝑖 = 1,… , 𝑠: 𝐶$ ≥ 𝐶'()*(𝑞)} as the indices of the 

identified target PSMs, where |{𝑖: 𝐶$ ≤ −𝑡}| indicates the number of 𝐶!, … 𝐶@ that are 

no greater than −𝑡. For the 𝑖-th target PSM, 𝑖 = 1,… , 𝑠, Clipper estimates its FDR as 

FDR?(𝐶$) = min	{𝑞 ∈ (0,1): 𝐶$ ≥ 𝐶'()*(𝑞)} . In comparison to the p-value-free 

procedure outlined previously, Clipper is more conservative (owing to the “+1” in the 

numerator) and flexible. Notably, Clipper is similar to the above p-value-free FDR-

control procedure if the contrast score is defined as 𝐶$ = max(𝑇$ , 𝐷$). Compared to the 

p-value-free FDR-control procedure outlined in the previous paragraph, Clipper has 

three advantages: (1) Clipper does not require the estimation of 𝜋1 in parallel search; 

(2) Clipper's estimated FDR FDR?(𝐶$) monotonically decreases as the contrast score 

𝐶$  increases, resulting in better power in numerous instances; (3) Clipper is more 

flexible because its contrast score 𝐶$ can be defined in various ways. 

The FDR-control procedures described above are just three examples. Any other 

procedures that control the FDR can also be used as options for APIR-FDR. 

 

APIR: a sequential framework for aggregating multiple search algorithms’ identified 

target PSMs with FDR control 

Given the FDR threshold 𝑞  and multiple database search algorithms' outputs 

(including all target PSMs and decoy PSMs with matching scores), 	the sequential 

framework of APIR identifies target PSMs (with the FDR controlled under 𝑞) by 

combining these database search algorithms' outputs based on a mathematical fact: if 

disjoint sets of discoveries all have the false discovery proportion (FDP; also known as 

the empirical FDR) under 𝑞, then their union set also has the FDP under 𝑞. Hence, the 

sequential framework of APIR is designed to find disjoint sets of target PSMs from 

database search algorithms' outputs. The final output of APIR is the union of these 

disjoint sets, which is guaranteed to contain more unique peptides than what could be 

identified by a single database search algorithm. 
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Suppose we are interested in aggregating 𝐾  algorithms. Accordingly, the 

sequential approach will consist of a maximum of 𝐾 rounds. Let 𝑊A denote the set 

of target PSMs output by the 𝑘-th algorithm, 𝑘 = 1,… , 𝐾. In Round 1, APIR applies 

APIR-FDR to each algorithm’s output with the FDR threshold 𝑞. Denote the identified 

target PSMs from the 𝑘-th algorithm by 𝑈!A ⊂ 𝑊A. Define 𝐽! ∈ {1,… , 𝐾} to be the 

algorithm index such that 𝑈!B$ contains the largest number of unique peptides among 

𝑈!!, … , 𝑈!C. We use the number of unique peptides rather than the number of PSMs 

because peptides are more biologically relevant than PSMs. In Round 2, APIR first 

excludes all target PSMs output by algorithm 𝐽!, identified or unidentified in Round 1, 

i.e., 𝑊B$, from the outputs of the remaining database search algorithms, resulting in 

reduced sets of candidate target PSMs 𝑊! ∖𝑊B$ , … ,𝑊C ∖𝑊B$ .	Then APIR applies 

APIR-FDR with FDR threshold 𝑞  to these reduced sets except 𝑊B$ ∖𝑊B$ = ∅ . 

Denote the resulting sets of identified target PSMs by 𝑈DA ⊂ \𝑊A ∖𝑊B$] , 𝑘 ∈

{1,… , 𝐾} ∖ {𝐽!}. Again APIR finds algorithm 𝐽D such that 𝑈DB% contains the largest 

number of unique peptides. APIR repeats this procedure in the subsequent rounds. 

Specifically, in Round ℓ with ℓ ≥ 2, APIR first excludes all target PSMs output by 

the selected ℓ − 1  algorithms from the outputs of remaining database search 

algorithms and applies APIR-FDR. That is, APIR applies APIR-FDR with FDR 

threshold 𝑞 to identify a set of identified PSMs 𝑈ℓA from 𝑊A ∖ (𝑊B$ ∪⋯∪𝑊Bℓ'$), 

the reduced candidate pool of algorithm 𝑘 after the previous ℓ rounds, for algorithms 

𝑘 ∈ {1,… , 𝐾} ∖ {𝐽!, … , 𝐽ℓ7!}. Then APIR finds the algorithm, which we denote by 𝐽ℓ, 

such that 𝑈ℓBℓ contains the largest number of unique peptides. Finally, APIR outputs 

𝑈!B$ ∪⋯∪ 𝑈CB(  as the set of identified target PSMs. By adopting this sequential 

approach, APIR is guaranteed to identify at least as many, if not more, unique peptides 

as those identified by a single database search algorithm; under the assumption that 

APIR-FDR controls the FDR for each algorithm’s identified target PSMs, APIR 

controls the FDR of the identified target PSMs under 𝑞, APIR controls the FDR of the 

identified target PSMs under 𝑞. See Figure 2 for an illustration of APIR's sequential 

approach. 
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Notably, APIR specifically controls the FDR of identified target PSMs so it 

excludes the identified target PSMs, instead of spectra, of one algorithm in each step. 

In instances where different algorithms match the same spectrum to distinct peptides, 

APIR may identify both PSMs as valid discoveries. While at least one of these two 

PSMs is a false discovery, the overall FDR for the identified PSMs remains controlled 

under this framework. 

 

Complex proteomics standard dataset generation 

We describe the experimental details of running the tandem MS analysis on a Pfu 

proteomics standard sample. The complex proteomics standard (CPS) (part number 

400510) was purchased from Agilent (Agilent, Santa Clara, CA, USA). CPS contains 

soluble proteins extracted from the archaeon Pfu. All other chemicals were purchased 

from Sigma Aldrich (Sigma Aldrich, St. Louis, MO, USA). The fully sequenced 

genome of Pfu encodes for approximately 2000 proteins that cover a wide range of size, 

pI, concentration level, hydrophobic/hydrophilic character, etc. CPS (500 μg total 

protein) was dissolved in 100 μL of 0.5 M triethylammonium bicarbonate (TEAB) and 

0.05% sodium dodecyl sulfate (SDS) solution. Proteins were reduced using tris(2-

carboxyethyl)phosphine hydrochloride (TCEP) (4 μL of 50 mM solution added to the 

protein mixture and sample incubated at 60℃ for 1 hour) and alkylated using methyl 

methanethiosulfonate (MMTS) (2 μL of 50 mM solution added to the protein mixture 

and sample incubated at room temperature for 15 minutes). 20 μg trypsin dissolved 1:1 

in ultrapure water was added to the sample, and this was incubated overnight (16 hours) 

in the dark at 37℃ to enzymatically digest the proteins. The tryptic peptides were 

cleaned with C-18 tips (part number 87784) from Thermo Fisher Scientific (Thermo 

Fisher Scientific, Waltham, MA, USA) following the manufacturer’s instructions. 

Peptides were LC-MS analyzed using the Ultimate 3000 uPLC system (EASY-Spray 

column, part number ES803A, Thermo Fisher Scientific) hyphenated with the Orbitrap 

Fusion Lumos mass spectrometry instrument (Thermo Fisher Scientific). Peptides were 

fragmented using low-energy CID and detected with the linear ion trap detector. 
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 After running tandem MS analysis, we obtained 49,303 mass spectra from Pfu. We 

then adopted an approach similar to that in [27] for benchmarking database search 

algorithms and aggregation methods. Specifically, we first constructed a target database 

by concatenating the Pfu database, the Uniprot Human database [33], and two 

contaminant databases: the CRAPome [34] and the contaminant databases from 

MaxQuant. In the target database construction, we removed human proteins that contain 

Pfu peptides (via in silico trypsin digestion). Contaminant databases consist of 

sequences commonly identified as contaminants in MS experiments. Given that PSMs 

resulting from unintended sources, such as contamination, are unavoidable in MS 

experiments, PSMs originating from both the Pfu database and contaminant databases 

are considered as true PSMs. Conversely, PSMs from the human database, after 

excluding all Pfu proteins, are cconsidered as false PSMs. Finally, we input the 49,303 

mass spectra and the reference database into database search algorithms. To evaluate a 

database search algorithm or an aggregation method, we consider its output PSMs, 

peptides, and proteins as true if and only if they belong to either Pfu or the two 

contaminant databases. The in silico digestion was done to take out any human proteins 

that contain peptides that could also be derived from Pfu. The in silico digestion was 

performed in Python using the pyteomics.parser function from pyteomics with the 

following settings: Trypsin digestion, two allowed missed cleavages, minimum peptide 

length of six amino acid residues [35, 36]. 

 

Results 

To verify the motivation and demonstrate the advantages of APIR, we conducted 

simulation and real data studies. First, we benchmarked five popular database search 

algorithms---Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+ — coupled with 

APIR-FDR options (p-value-based or p-value-free) on our Pfu proteomics standard 

dataset. Second, we designed simulation studies to benchmark APIR against two naïve 

aggregation approaches: intersection and union of different database search algorithms’ 

identified PSM sets. Third, to demonstrate the power of APIR, we applied it to five real 
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datasets, including our proteomics standard dataset, three acute myeloid leukemia 

(AML) datasets, and a triple-negative breast cancer (TNBC) dataset. Notably, we 

generated two of the three AML datasets from bone marrow samples of AML patients 

with either enriched or depleted leukemia stem cells (LSCs) for studying the disease 

mechanisms of AML. Finally, we investigated and verified additional proteins found 

by APIR and performed differentially expressed peptide analysis on the APIR results. 

 Although we focused on five database search algorithms, APIR is universally 

applicable to other database search algorithms such as MSFragger [37] and Open-pFind 

[38]. Because nearly all database search algorithms output q-values or posterior error 

probabilities (PEPs) of PSMs, we used − log!1 	-transformed PEPs from MaxQuant 

and − log!1 	-transformed q-values from the other four database search algorithms as 

PSMs’ matching scores to demonstrate the wide applicability of APIR. 

 

Benchmarking five database search algorithms on the Pfu proteomics standard 

We first benchmarked five popular database search algorithms---Byonic, Mascot, 

SEQUEST, MaxQuant, and MS-GF+---on the Pfu proteomics standard dataset. Our 

evaluation results in Figure 1B show that the five individual database search algorithms 

indeed capture unique true PSMs in this proteomics standard dataset at FDR thresholds  

𝑞 = 1% and 5%. Notably, at 𝑞 = 1%, the number of true PSMs identified by Byonic 

alone (2720) is nearly four times the number of true PSMs identified by all five 

algorithms (727). At 𝑞 = 5%, Byonic again identifies more unique true PSMs (1903) 

than the true PSMs identified by all five algorithms (1416). Moreover, MaxQuant and 

MS-GF+ also demonstrate distinctive advantages: MaxQuant identifies 147 and 520 

unique true PSMs, while MS-GF+ identifies 153 and 218 unique true PSMs at 𝑞 =

1% and 5%, respectively. In contrast, SEQUEST and Mascot show little advantage in 

the presence of Byonic: their identified true PSMs are nearly all identified by Byonic 

(Figure S1). Our results confirm that these five database search algorithms have 

distinctive advantages in identifying unique PSMs, an observation that aligns well with 

existing literature [22-26, 39]. 
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 In terms of FDR control, four database search algorithms---Byonic, Mascot, 

SEQUEST, and MS-GF+---demonstrate robust FDR control as they keep the FDPs on 

the benchmark data under the FDR thresholds 𝑞 ∈ 	 {1%,… ,10%}. In contrast, except 

at small values of 𝑞 such as 1% or 2%, MaxQuant fails the FDR control by a large 

margin (Figure 1C).  

To evaluate the effect of FDR-control procedures on each database search 

algorithm, we benchmarked two APIR-FDR options, one p-value-based and the other 

p-value-free, used with each database search algorithm. Specifically, as an exploration, 

if a database search algorithm uses p-value-based FDR control by default, we used 

Clipper as an alternative, p-value-free option; otherwise, if the algorithm's default FDR-

control procedure is p-value-free, we used the p-value-based option as an alternative. 

On the Pfu proteomics standard dataset, we examined the FDPs and power of the 

five database search algorithms with two APIR-FDR options for a range of FDR 

thresholds: 𝑞 ∈ {1%,… , 10%}. Our results in Figure 1C show that both p-value-based 

and p-value-free APIR-FDR options achieve the FDR control and similar power when 

applied to the outputs of Byonic, Mascot, SEQUEST, and MS-GF+, its default FDR-

control procedure, which is the p-value-free FDR-control procedure outlined in the 

Method section, fails to control the FDR under the target by a large margin. However, 

the alternative p-value-based FDR-control procedure we applied alleviates the FDR 

control issue by reducing the FDPs to be closer to the FDR thresholds, with FDPs 

controlled under 𝑞 when 𝑞 > 5%. Regarding the phenomenon that both the number 

of true PSMs and the FDP of MaxQuant (with p-value-based FDR control) stay 

unchanged as the FDR threshold 𝑞  increases from 1%  to 10% , we provide a 

detailed explanation in File S1 and Figure S2.  

  

 We also compared the performance of the five database search algorithms with two 

APIR-FDR options (p-value-based and p-value-free) on the proteomics standard 

dataset after excluding from each database search algorithm's output the 1416 shared 

true PSMs identified by all five algorithms at the FDR threshold 𝑞 = 5%. Our results 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2021.09.08.459494doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.459494
http://creativecommons.org/licenses/by-nc/4.0/


 16 

in Figure S4 show that that default p-value-free FDR-control procedure of MS-GF+ no 

longer controls the FDR. 

Based on the benchmark results above, we chose the p-value-based APIR-FDR 

option for Maxquant and MS-GF+ because the two algorithms' default p-value-free 

FDR-control procedure fail to guarantee the FDR control.  For Byonic, Mascot, and 

SEQUEST, both the p-value-based and p-value-free APIR-FDR options can be used. 

See Table S1 for details of the APIR-FDR options used with the five database search 

algorithms in each analysis. 

 

Set union and intersection operations do not guarantee to control the FDR 

In data analysis, there exists a common intuition: if multiple algorithms designed for 

the same purpose are applied to the same dataset to make discoveries, and all algorithms 

have their FDRs under 𝑞, then the intersection of their discoveries (i.e., the discoveries 

found by all algorithms) should have the FDR under 𝑞 [11]. However, this intuition 

does not hold in general. The reason is that if all algorithms find different true 

discoveries, then their common discoveries (i.e., the intersection) could be enriched 

with false discoveries and thus have the FDR larger than 𝑞. To demonstrate this, we 

designed a simulation study called the shared-false-PSMs scenario, where the set 

intersection operation fails to control the FDR. Although intuition says that the set 

union operation may not control the FDR, we designed another simulation study called 

the shared-true-PSMs scenario, where the set union operation fails to control the FDR, 

for completeness. 

 Under the shared-true-PSMs scenario, we designed three toy database search 

algorithms that tend to identify overlapping true PSMs but non-overlapping false PSMs 

(Figure 3A top). In contrast, under the shared-false-PSMs scenario, we designed 

another three toy database search algorithms that tend to identify overlapping false 

PSMs but non-overlapping true PSMs (Figure 3A bottom) (see File S1 for the detailed 

designs of the two scenarios). Under both scenarios, we first applied APIR-FDR to each 

toy database search algorithm’s output. Then we aggregated identified PSMs from the 

three algorithms under each scenario using set intersection, set union, or APIR, and we 
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evaluated the FDR of each aggregated PSM set. Figure 3B shows that, while set union 

fails to control the FDR in the shared-true-PSMs scenario and set intersection fails in 

the shared-false-PSMs scenario, APIR controls the FDR in both scenarios. 

These two scenarios serve as counterexamples, demonstrating that neither set union 

nor set intersection can control the FDR of identified target PSMs. In contrast, APIR 

has the theoretical FDR control. 

 

APIR has verified FDR control and outpowers Scaffold and ConsensusID 

To demonstrate that APIR controls the FDR by aggregating individual search 

algorithms on the Pfu proteomics standard, we benchmarked APIR against two existing 

aggregation methods, Scaffold and ConsensusID, because they are the only two 

aggregation methods compatible with the five database search algorithms we used: 

Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+. Since database search 

algorithms are time-consuming to run, we first focused on the 20  combinations 

consisting of no more than three of the five algorithms, including 10 combinations of 

any two algorithms and 10 combinations of any three algorithms. 

 Because of the trade-off between FDR and power, power comparison is valid only 

when FDR is controlled. Hence, for the three aggregation methods, APIR, Scaffold, 

and ConsensusID, we compared them in terms of both their FDPs and power on the Pfu 

proteomics standard dataset. Regarding the power increase of each aggregation method 

over individual database search algorithms, we computed the percentage increases in 

the aggregated true PSMs, peptides, and proteins by treating as baselines the maximal 

numbers of true PSMs, peptides, and proteins identified by the five database search 

algorithms. For example, to aggregate Byonic and MaxQuant, based on our 

benchmarking results in Figure 1C, we applied (with the default p-value-free FDR-

control procedure) and MaxQuant (with p-value-based FDR control) to identify PSMs 

in Round 1. We would calculate the percentage increase in the identified true PSMs by 

treating as the baseline the larger of two numbers: the numbers of true PSMs identified 

by Byonic and MaxQuant. 
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 Our results in Figure 4 and Figure S5 show that, at both FDR thresholds 𝑞 = 5% 

and 1% , APIR achieves consistent FDR control and power improvement over 

individual database search algorithms. In contrast, Scaffold controls the FDR but shows 

highly inconsistent power improvement, while ConsensusID neither controls the FDR 

nor has power improvement. Specifically, ConsensusID’s FDPs exceed the FDR 

threshold 𝑞 = 5%  by a large margin: they rise above 15%  in 9  out 20 

combinations. In summary, only APIR consistently achieves power increase over 

individual database search algorithms across the 20  algorithm combinations, an 

advantage that neither Scaffold nor ConsensusID offers. 

 A technical note is that Scaffold cannot control the FDR of aggregated PSMs; 

instead, it controls the FDRs of aggregated peptides and proteins, and it requires the 

FDR thresholds to be input for both. Hence, strictly speaking, Scaffold is not directly 

comparable with APIR in terms of FDR control because APIR controls the FDR of 

aggregated PSMs. For a fair comparison, we implemented a variant of Scaffold, which, 

compared with the default Scaffold, has an advantage in power at the cost of an inflated 

FDR (see File S1). Our results show that this Scaffold variant demonstrates a slightly 

inflated FDP in 5 combinations at 𝑞 = 5% (Figure S6A) and 11 combinations at 

𝑞 = 1% (Figure S7A). In terms of power, this Scaffold variant still fails to outperform 

the most powerful individual database search algorithm in 8 combinations at 𝑞 = 5% 

(Figure S6B) and 10 combinations at 𝑞 = 1% (Figure S7B). 

 Moreover, we have the results of APIR combining four and five database search 

algorithms in Figures S8–S9, which again confirm the FDR control and power 

advantage of APIR. In addition, we examined whether APIR might inflate the peptide-

level FDRs by selecting the set of identified PSMs containing the largest number of 

unique peptides in each round. Figure S10 shows that among the 52 cases (all 26 

algorithm combinations × 2 PSM-level FDR thresholds 1% and 5%), APIR either 

lowers or maintains the maximum peptide-level FDP achieved by an individual search 

algorithm. In other words, APIR does not inflate the peptide-level FDP. 

 

APIR empowers peptide identification on AML and TNBC datasets 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2021.09.08.459494doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.459494
http://creativecommons.org/licenses/by-nc/4.0/


 19 

We next applied APIR with the aforementioned 20 combinations of two and three 

algorithms to four real datasets: two in-house phospho-proteomics (explained below) 

AML datasets (“phospho AML-C1” and “phospho AML-C2”) we collected from two 

cohorts of AML patients (which were not randomly assigned and thus not biological 

replicates) for studying the properties of LSCs; a published nonphospho-proteomics 

AML dataset (“nonphospho AML”) that also compares the stem cells with non-stem 

cells in AML patients [40]; and a published phospho-proteomics TNBC dataset that 

studies the drug genistein’s effect on breast cancer [41]. Phospho-proteomics is a 

branch of proteomics; while traditional proteomics aims to capture all peptides in a 

sample, phospho-proteomics focuses on phosphorylated peptides, also called 

phosphopeptides, because phosphorylation regulates essentially all cellular processes 

[42]. See File S1 for the details on how we generated phospho AML-C1 and phospho 

AML-C2. 

 On each dataset, we applied APIR at two FDR thresholds 𝑞 = 1% and 5% and 

examined the percentage increases at four levels: PSMs, peptides, peptides with 

modifications, and proteins; we calculated the percentage increases in the same way as 

what we did for the proteomics standard dataset. Our results in Figure 5 (𝑞 = 5%) and 

Figure S11 (𝑞 = 1%) show that APIR leads to positive percentage increases at two 

levels (PSMs and peptides) on all four datasets, confirming APIR’s guarantee for 

identifying more peptides than individual algorithms do. At the peptide-with-

modification level, APIR also achieves positive percentage increases across 20 

combinations on all four datasets with only one exception: APIR falls short by a 

negligible 0.1% when aggregating the outputs of Byonic, Mascot, and SEQUEST on 

the TNBC dataset at 𝑞 = 5%. At the protein level, APIR still manages to outperform 

individual database search algorithms for all 20  combinations on both phospho-

proteomics AML datasets and for more than half of the combinations on the TNBC and 

nonphospho-proteomics AML datasets. Our results demonstrate that APIR could boost 

the usage efficiency of shotgun proteomics data. 

 We also applied APIR to combining four and five database search algorithms in 

Figures S12–S13, which again confirm the power advantage of APIR. 
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APIR identifies biologically meaningful proteins from AML and TNBC datasets 

Next, we investigated the biological functions of the proteins missed by individual 

database search algorithms but recovered by APIR from the phospho AML and TNBC 

datasets. We also performed additional analyses to confirm the existence of these 

biologically relevant proteins. Specifically, APIR adopts individual search algorithms’ 

mappings from PSMs to proteins. That is, APIR aggregates PSMs and maps them to 

proteins based on the PSM-protein mappings output by individual search algorithms. If 

a PSM is assigned to more than one protein by different search algorithms, APIR 

outputs a master protein by majority voting. See File S1 for details. 

 On the phospho AML-C1 and AML-C2 datasets, which contain patient samples 

with enriched or depleted LSCs, APIR identifies biologically relevant proteins that 

were missed by individual database search algorithms. Specifically, on phospho AML-

C1, APIR identifies from the 20  combinations (of two and three algorithms) 80 

additional proteins (the union of the additional proteins APIR identified from the 

combinations) at the FDR threshold 𝑞 = 1% and 121 additional proteins at the FDR 

threshold 𝑞 = 5%. These two sets of additional proteins recovered by APIR include 

some well-known proteins, such as transcription intermediary factor 1-alpha (TIF1a), 

phosphatidylinositol 4,5-bisphosphate 5-phosphatase A (PIB5PA), homeobox protein 

Hox-B5 (HOXB5), small ubiquitin-related modifier 2 (SUMO-2), transcription factor 

jun-D (JUND), glypican-2 (GPC2), dnaJ homolog subfamily C member 21 

(DNAJC21), mRNA decay activator protein ZFP36L2. Here we summarize the tumor-

related functions of these well-known proteins. High levels of TIF1a are associated 

with oncogenesis and disease progression in a variety of cancer lineages such as AML 

[43-49]. PIB5PA has a tumor-suppressive role in human melanoma [50]. Its high 

expression is correlated with limited tumor progression and better prognosis in breast 

cancer patients [51]. HOXB5 is among the most affected transcription factors by the 

genetic mutations that initiate AML [52-54]. SUMO-2 plays a key role in regulating 

CBX2, which is overexpressed in several human tumors (e.g., leukemia) and whose 

expression is correlated with lower overall survival [55]. JUND plays a central role in 
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the oncogenic process leading to adult T-cell leukemia [56]. GPC2 is an oncoprotein 

and a candidate immunotherapeutic target in high-risk neuroblastoma [57]. DNAJC21 

mutations are linked to cancer-prone bone marrow failure syndrome [58]. ZFP36L2 

induces AML cell apoptosis and inhibits cell proliferation [59]; its mutation is 

associated with the pathogenesis of acute leukemia [60]. Moreover, on phospho AML-

C2, APIR identifies 62 additional proteins at FDR 1% and 19 additional proteins 

at FDR 5% , including JUND and myeloperoxidase (MPO). MPO is expressed in 

hematopoietic progenitor cells in prenatal bone marrow, which are considered initial 

targets for the development of leukemia [61-63]. 

 On the TNBC dataset, APIR identifies 92  additional proteins missed by 

individual database search algorithms at the FDR threshold 𝑞 = 1%  and 69 

additional proteins at 𝑞 = 5%. In particular, at 𝑞 = 1%, APIR uniquely identifies 

breast cancer type 2 susceptibility protein (BRCA2) and Fanconi anemia 

complementation group E (FANCE). BRCA2 is a well-known breast cancer 

susceptibility gene; an inherited genetic mutation inactivating the BRCA2 gene is found 

in TNBC patients [64-69]. The FANC-BRCA pathway, including FANCE and BRCA2, 

is known for its roles in DNA damage response. Inactivation of the FANC–BRCA 

pathway is identified in ovarian cancer cell lines and sporadic primary tumor tissues 

[70, 71]. Additionally, at both 𝑞 = 1%  and 5% , APIR identifies JUND and 

roundabout guidance receptor 4 (ROBO4); the latter regulates tumor growth and 

metastasis in multiple types of cancer, including breast cancer [72-75]. We summarize 

the biological relevance of these proteins in Table 1. 

 To further evaluate the existence of the aforementioned known proteins, we 

performed two analyses. First, we examined the tandem MS spectra of the PSMs 

corresponding to these proteins identified from the phospho AML datasets. Our results 

in Table S2 and File S2 show that the PSMs rescued by APIR are likely true positives. 

The rescued PSMs fell broadly into three categories: 1) high-likelihood identifications 

with both accurate precursor mass and numerous fragment ions (40%) , 2) 

identifications based on accurate precursor mass and few (30%) or no fragment ions 

(10%), and 3) chimeric spectra (20%). Second, we examined the PSMs corresponding 
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to these proteins identified from the phospho AML datasets and the TNBC dataset 

(Tables S4–S6), and we found that these proteins all correspond to at least one target 

PSM with a high matching score (from at least one database search algorithm). These 

results, combined with the constituent nature and biological relevance of these proteins 

(Table 1), suggest the likely existence of these proteins and demonstrate APIR’s 

potential in identifying novel disease-related proteins. 

 

APIR empowers the identification of differentially expressed peptides 

An important use of proteomics data is the differential expression (DE) analysis, which 

aims to identify proteins whose expression levels change between two conditions. 

Protein is the ideal unit of measurement; however, due to the difficulties in quantifying 

protein levels from tandem MS data, an alternative approach has been proposed and 

used, which first identifies differentially expressed peptides and then investigates their 

corresponding proteins along with modifications. Because it is less error-prone to 

quantify peptides than proteins, doing so would dramatically reduce errors in the DE 

analysis. 

 We compared APIR with MaxQuant and MS-GF+ by performing DE analysis on 

the phospho AML-C1 dataset. We focused on this dataset instead of the TNBC dataset 

or the nonphospho AML dataset because the phospho AML datasets were generated for 

our in-house study and thus may yield new discoveries. This analysis is conducted to 

demonstrate that APIR could improve the identification power by aggregating 

dissimilar algorithms. Since MaxQuant and MS-GF+ identify drastically different 

PSMs on our real datasets (Figure S14) and are widely-used, open-source tools, we 

selected them as two example algorithms. 

 The phospho AML-C1 dataset contains six bone marrow samples: three enriched 

with LSCs, two depleted of LSCs, and one control. To simplify our DE analysis, we 

selected two pairs of enriched and depleted samples. Specifically, we first applied APIR 

to aggregate the outputs of MaxQuant and MS-GF+ on the phospho AML-C1 dataset 

using all six samples. Then we applied DESeq2 to identify DE peptides from the 

aggregated peptides of APIR, MaxQuant, and MS-GF+ using the four selected samples. 
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Our results in Figure 6 show that at the FDR threshold 𝑞 = 5%, we identified 318 

DE peptides from 224  proteins based on APIR, 251  DE peptides from 180 

proteins based on MaxQuant, and 242 DE peptides from 190 proteins based on MS-

GF+, respectively. In particular, APIR identified 6  leukemia-related proteins: the 

promyelocytic leukemia zinc finger (PLZF), serine/threonine-protein kinase B-raf (B-

raf), signal transducer and activator of transcription 5B (STAT5B), promyelocytic 

leukemia protein (PML), cyclin-dependent kinase inhibitor 1B (CDKN1B), and 

retinoblastoma-associated protein (RB1), all of which belong to the AML KEGG 

pathway or the chronic myeloid leukemia KEGG pathway [76-78]. In particular, PLZF 

and CDKN1B were uniquely identified from the APIR aggregated results but not by 

either MaxQuant or MS-GF+. 

 We next investigated the phosphorylation of the identified DE peptides of PLZF or 

CDKN1B. With regard to PLZF, APIR identified phosphorylation at Threonine 282, 

which is known to activate cyclin-A2 [79], a core cell cycle regulator of which the 

deregulation seems to be closely related to chromosomal instability and tumor 

proliferation [80-82]. As for CDKN1B, APIR identified phosphorylation at Serine 140. 

Previous studies have revealed that ATM phosphorylation of CDKN1B at Serine 140 

is important for stabilization and enforcement of the CDKN1B-mediated G1 checkpoint 

in response to DNA damage [83]. A recent study shows that inability to phosphorylate 

CDKN1B at Serine 140 is associated with enhanced cellular proliferation and colony 

formation [84]. Our results, summarized in Table 2, demonstrate that APIR can assist 

in discovering interesting proteins and relevant post-translational modifications. 

 

Discussion 

We developed a statistical framework APIR to combine the power of distinct database 

search algorithms by aggregating their identified PSMs from shotgun proteomics data 

with FDR control. The core component of APIR is APIR-FDR, an FDR-control method 

that re-identifies PSMs from a single database search algorithm’s output without 

restrictive distribution assumptions. APIR offers a great advantage of flexibility: APIR 
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is compatible with any database search algorithms. The reason lies in that APIR is a 

sequential approach based on a mathematical fact: given multiple disjoint sets of 

discoveries, each with the FDP smaller than or equal to 𝑞, their union also has the FDP 

smaller than or equal to 𝑞 . This sequential approach not only allows APIR to 

circumvent the need to impose restrictive distribution assumptions on each database 

search algorithm’s output, but also ensures that APIR would identify at least as many, 

if not more, unique peptides as a single database search algorithm does. 

 By assessing APIR on the first publicly available complex proteomics standard 

dataset we generated, we verified that APIR consistently improves the power of peptide 

identification with the FDR controlled on the identified PSMs. Our extensive studies 

on AML and TNBC data suggest that APIR can discover additional disease-relevant 

peptides and proteins that are otherwise missed by individual database search 

algorithms. 

We note that [29] developed a multi-stage method to combine PSMs identified by 

multiple database search algorithms, a seemingly similar framework. However, three 

major differences exist between APIR and the multi-stage method in [29]. First, APIR 

is an open-source and platform-agnostic framework that is universally compatible with 

all database search algorithms. In contrast, the multi-stage method is restricted to three 

database search algorithms: X!Tandem [85], InsPecT [86], and SpectraST [87]. Second, 

APIR adopts a data-driven approach to determine the combination order of database 

search algorithms (Figure 2). In contrast, the multi-stage method pre-determines the 

combination order of its three database search algorithms based on domain knowledge, 

making its generalization to other database search algorithms non-trivial. In particular, 

the last paragraph of [29] says, "We note, however, that routine application of iterative 

strategies such as the one utilized in this work, especially in a high throughput 

environment, will require further substantial work on the development of statistical 

FDR estimation methods applicable to a wide range of peptide identification 

approaches, including subset database searching, blind PTM analysis, and genomic 

searches." Hence, APIR makes contribution to the future work mentioned in [29]. 
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The current implementation of APIR controls the FDR at the PSM level. However, 

in shotgun proteomics experiments, PSMs serve merely as an intermediate to identify 

peptides and then proteins, the real molecules of biological interest; thus, an ideal FDR 

control should occur at the protein level. A fact is that FDR control at the PSM level 

does not entail FDR control at the protein level because multiple PSMs may correspond 

to the same peptide sequence, and multiple peptides may correspond to the same 

protein. To realize the FDR control on the identified proteins, APIR-FDR needs to be 

carefully modified. A possible modification would be to construct a matching score for 

each protein from the matching scores of the PSMs that correspond to this protein’s 

peptides. Future studies are needed to explore possible ways of constructing proteins’ 

matching scores. Once we modify APIR-FDR to control the FDR at the protein level, 

the current sequential approach of APIR still applies: applying the modified APIR-FDR 

to sequentially identify disjoint sets of proteins from individual database search 

algorithms’ outputs; outputting the union of these disjoint sets as discoveries. 

Notably, APIR adopts a statistical inference framework as opposed to a machine 

learning prediction framework for PSM aggregation. Hence, APIR is unlike existing 

machine learning methods (such as PepArML [11]), which could be categorized into 

two types. Methods of the first type require an external benchmark proteomics dataset, 

which contains known true PSMs and false PSMs, as the training data to train a 

classifier. Then they apply the trained classifier to a new proteomics dataset to predict 

whether a target PSM is true or false. Their underlying assumption is that the classifier 

trained on the benchmark dataset is generalizable to the new dataset. However, when 

this generalizability does not hold (a likely scenario given the vast diversity of 

biological samples), their predicted target PSMs would become questionable. Methods 

of the second type do not rely on an external benchmark dataset but have to label a 

subset of target PSMs as positive or negative for training a classifier. This labelling step 

requires multiple arbitrary thresholds, which would affect the classifier's prediction 

accuracy. In contrast, APIR requires no external training data or arbitrary labelling. 

 Although the applications in this work are based on tandem MS data collected by 

data-dependent acquisition (DDA), APIR is also applicable to tandem MS data 
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collected by data-independent acquisition (DIA), as long as the database search 

algorithms use the target-decoy search strategy. Moreover, although APIR is designed 

for proteomics data, its framework is general and extendable to aggregating discoveries 

in other popular high-throughput biomedical data analyses, including peak calling from 

ChIP-seq data, differential gene expression analysis from bulk or single-cell RNA 

sequencing data, and differentially interacting chromatin region identification from Hi-

C data [32]. For example, an extended APIR may aggregate discoveries made by 

popular differential gene expression analysis methods, such as DESeq2 [88], edgeR 

[89], and limma [90] to strengthen FDR control [91] and meanwhile increase the power. 

 

Data availability 

The Pfu mass spectrometry dataset is available at the PRoteomics IDEntifications 

Database (PRIDE) [92] with the dataset identifier PXD028558. 

 

Code availability 

The APIR R package is available at https://github.com/yiling0210/APIR or 

https://ngdc.cncb.ac.cn/biocode/tools/BT007298. The code and preprocessed data for 

reproducing the figures are available at https://doi.org/10.5281/zenodo.5202768. 
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Figures and tables 

 
Figure 1  The workflow of shotgun proteomics and benchmarking search 

algorithms on proteomics standard  

A. The workflow of a typical shotgun proteomics experiment. The protein mixture is 

first enzymatically digested into peptides, i.e., short amino acid chains up to 

approximately 40-residue long; the resulting peptide mixture is then separated and 

measured by tandem MS into tens of thousands of mass spectra. Each mass spectrum 

encodes the chemical composition of a peptide. Then a database search algorithm is 

used to identify the peptide’s amino acid sequence and post-translational modifications, 

as well as to quantify the peptide’s abundance. B. Venn diagrams showing the overlap 

of true PSMs identified by the five database search algorithms from the Pfu proteomics 
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standard dataset under the FDR threshold 𝑞 = 1% (left) or 𝑞 = 5% (right). C. The 

FDP and power of each database search algorithm on the Pfu proteomics standard 

dataset at the FDR threshold 𝑞 ∈ {1%,… , 10%} . MS, mass spectrometry; PSM, 

peptide-spectrum matches; FDR, false discovery rate; FDP, false discovery proportion; 

APIR, Aggregation of Peptide Identification Results. 

 
Figure 2 Illustration of APIR for aggregating three database search algorithms  

We use S1~P1 to denote a PSM of mass spectrum S1 matched to peptide sequence P1. 

In the output of a database search algorithm, a PSM with a higher matching score is 

marked by a darker color. White boxes indicate PSMs missing from the output. APIR 

adopts a sequential approach to aggregate the three database search algorithms. In 

Round 1, APIR applies APIR-FDR to identify a set of target PSMs from the output of 

each database search algorithm. APIR then selects the algorithm whose identified PSMs 

contain the largest number of unique peptides, and the identified PSMs are considered 

identified by APIR. In this example, APIR identified the same number of PSMs from 

algorithms 1 and 3 but more unique peptides from algorithm 3; hence, APIR selects 

algorithm 3. In Round 2, APIR excludes all PSMs, either identified or unidentified by 
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the selected database search algorithm in Round 1 (algorithm 3 in this example), from 

the output of the remaining database search algorithms. Then APIR applies APIR-FDR 

to find the algorithm whose identified PSMs contain the largest number of unique 

peptides (algorithm 1 in this example). APIR repeats Round 2 in the subsequent rounds 

until all database search algorithms are selected. Finally, APIR outputs the union of the 

PSMs identified in each round. PEP, posterior error probability. 
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Figure 3 Simulation studies showing that neither intersection nor union of 

discovery sets (with controlled FDR) controls FDR 

FDR control comparison of APIR, intersection, and union for aggregating three toy 

database search algorithms using simulated data. Two scenarios are considered: the 

shared-true-PSMs scenario (top) and the shared-false-PSMs scenario (bottom). A. 

Venn diagrams of true PSMs and false PSMs (identified at the FDR threshold 𝑞 = 5%) 

on one simulation dataset under each simulation scenario. B. The FDRs of the three 

database search algorithms and three aggregation methods: union, intersection, and 

APIR. Note that the FDR of each database search algorithm or each aggregation method 

is computed as the average of FDPs on 200 simulated datasets under each scenario. 
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Figure 4  On the proteomics standard dataset, comparison of APIR, Scaffold, 

and ConsensusID at the FDR threshold 𝒒 = 𝟓% 

We set both the peptide threshold and the protein threshold of Scaffold to be 5% FDR. 

FDPs (first column), the percentage increases in true PSMs (second column), the 

percentage increases in true peptides (third column), and the percentage increases in 

true proteins (fourth column) after aggregating two or three database search algorithms 

out of the five (Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+). The percentage 

increase in true PSMs/peptides/proteins is computed by treating as the baseline the 

maximal number of correctly identified PSMs/peptides/proteins by individual database 

search algorithms in Round 1 of APIR. Based on the benchmarking results in Figure 

1C, in Round 1 of APIR, we applied p-value-free APIR-FDR to Byonic, Mascot, 
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SEQUEST, and MS-GF+, and we applied p-value-based APIR-FDR to MaxQuant. In 

later rounds of APIR, we used p-value-based APIR-FDR for FDR control. 
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Figure 5  Power improvement of APIR over individual database search 

algorithms at the FDR threshold 𝒒 = 𝟓% 
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The percentage increases in PSMs (first column), the percentage increases in peptides 

(second column), the percentage increases in peptides with modifications (third 

column), and the percentage increases in true proteins (fourth column) of APIR after 

aggregating two or three database search algorithms out of the five (Byonic, Mascot, 

SEQUEST, MaxQuant, and MS-GF+) at the FDR threshold 𝑞 = 5%  on (A) the 

phospho AML-C1 dataset, (B) the phospho AML-C2 dataset, (C) the TNBC dataset, 

and (D) the nonphospho AML dataset. The percentage increase in 

PSMs/peptides/peptides with modifications/proteins is computed by treating as the 

baseline the maximal number of PSMs/peptides/peptides and modifications/proteins by 

an individual database search algorithm in Round 1 of APIR. Phospho AML-C1, 

phospho-proteomics acute myeloid leukemia-patient cohort 1; phospho AML-C2, 

phospho-proteomics acute myeloid leukemia-patient cohort 2; TNBC, triple-negative 

breast cancer; nonphospho AML, nonphospho-proteomics acute myeloid leukemia. 
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Figure 6  Comparison of APIR with MaxQuant and MS-GF+ by DE analysis on 

the phospho AML-C1 dataset 

Venn diagrams of DE proteins based on the identified peptides by APIR aggregating 

MaxQuant and MS-GF+, MaxQuant, and MS-GF+. Six leukemia-related proteins were 

found as DE proteins based on APIR: PLZF, B-raf, STAT5B, PML, CDKN1B, and 

RB1. Notably, this dataset contains six bone marrow samples from two patients: P5337 

and P5340. From P5337, one LSC-enriched sample and one LSC-depleted sample were 

taken. From P5340, two LSC-enriched samples and one LSC-depleted sample were 

taken. In our DE analysis, we compare two LSC-enriched samples (one per patient) 

against two LSC-depleted samples (one per patient). DE, differentially expressed; LSC, 

leukemia stem cells. 
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Table 1: A summary of biologically relevant proteins missed by individual database 
search algorithms but recovered by APIR from the phospho AML--C1 and AML--C2 
and TNBC datasets. 
 
Dataset Protein Biological relevance  Refs. 
Phospho 
AML-C1 
and 
Phospho 
AML-C2 

TIF1α High levels of TIF1α are associated with oncogenesis and disease 
progression in a variety of cancer lineages such as AML 

[41-47] 

PIB5PA PIB5PA has a tumor-suppressive role in human melanoma; its 
high expression has been correlated with limited tumor 
progression and better prognosis in breast cancer patients 

[48, 49] 

HOXB5 HOXB5 is among the most affected transcription factors by the 
genetic mutations that initiate AML 

[50-52] 

SUMO-2 
 

SUMO-2 plays a key role in regulating CBX2, which is 
overexpressed in several human tumors (e.g., leukemia) and 
whose expression is correlated with lower overall survival 

[53] 

JUND JUND plays a central role in the oncogenic process leading to 
adult T-cell leukemia 

[54] 

GPC2 GPC2 has been identified as an oncoprotein and a candidate 
immunotherapeutic target in high-risk neuroblastoma 

[55] 

DNAJC2
1 

DNAJC21 mutations have been linked to cancer-prone bone 
marrow failure syndrome 

[56] 

ZFP36L2 ZFP36L2 induces AML cell apoptosis and inhibit cell 
proliferation; its mutation is associated with the pathogenesis of 
acute leukemia 

[57, 58] 

MPO MPO is expressed in hematopoietic progenitor cells in prenatal 
bone marrow, which are considered initial targets for the 
development of leukemia 

[59-61] 

TNBC BRCA2 BRCA2 is an inherited genetic mutation inactivating the BRCA2 
gene can be found in people with TNBC 

[62-67] 

FANCE Inactivation of the FANC–BRCA pathway has been identified in 
ovarian cancer cell lines and sporadic primary tumor tissues 

[68, 69] 

ROBO4 ROBO4 regulates tumor growth and metastasis in multiple types 
of cancer, including breast cancer 

[70-73] 

 
APIR, Aggregation of Peptide Identification Results; phospho AML--C1, phospho-
proteomics acute myeloid leukemia-patient cohort 1; phospho AML--C2, phospho-proteomics 
acute myeloid leukemia-patient cohort 2; TNBC, triple-negative breast cancer; TIF1$\alpha$, 
transcription intermediary factor 1-alpha; PIB5PA, phosphatidylinositol 4,5-bisphosphate 5-
phosphatase A; HOXB5 homeobox protein Hox-B5; SUMO-2, small ubiquitin-related 
modifier 2; JUND, transcription factor jun-D; GPC2, glypican-2; DNAJC21, dnaJ homolog 
subfamily C member 21; ZFP36L2, mRNA decay activator protein; MPO, myeloperoxidase; 
BRCA2, breast cancer type 2 susceptibility protein; FANCE, Fanconi anemia 
complementation group E; ROBO4, roundabout guidance receptor 4. 
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Table 2: A summary of biologically relevant phosphorylation sites in the DE peptides 
identified by DESeq2 from the aggregated peptides by APIR from the outputs of 
MaxQuant and MS-GF+ on the phospho AML--C1 dataset. 
 
Protein Phosphorylation 

site 
Biological relevance Refs. 

PLZF Thr 282 Phosphorylation at Threonine 282 activates 
cyclin-A2, a core cell cycle regulator of 
which the deregulation seems to be closely 
related to chromosomal instability and tumor 
proliferation 

[77-80] 

CDKN1B Ser 140 Phosphorylation of CDKN1B at Serine 140 
is important for stabilization and 
enforcement of the CDKN1B-mediated G1 
checkpoint in response to DNA damage; 
inability to phosphorylate CDKN1B at 
Serine 140 is associated with enhanced 
cellular proliferation and colony 

[81, 82] 

 
DE, differentially expressed; PLZF, the promyelocytic leukemia zinc finger; CDKN1B, 
cyclin-dependent kinase inhibitor 1B. 

 

 
  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2021.09.08.459494doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.459494
http://creativecommons.org/licenses/by-nc/4.0/


 46 

Supplementary Figures 

 
Figure S1  Overlaps of true PSMs identified by Byonic, Mascot, and SEQUEST  

Venn diagrams of true PSMs identified by the three database search algorithms from 

Proteome Discoverer™ Software—Byonic, Mascot, and SEQUEST—under the FDR 

threshold 𝑞 = 1% (left) or 𝑞 = 5% (right) on the proteomics standard dataset. The 

true PSMs identified by Byonic nearly cover the true PSMs identified by Mascot or 

SEQUEST. 
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Figure S2  The change of − 𝐥𝐨𝐠𝟏𝟎 	-transformed FDR estimate by APIR (y-axis) 

with respect to the matching scores of target PSMs by MaxQuant (x-axis) on the 

proteomics standard dataset 

We used − log!1 	-transformed PEP output by MaxQuant as the matching scores. The 

underlying histogram represents the distribution of matching scores of the decoy PSMs 

by MaxQuant. 
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Figure S3  A counter-example explaining why p-value-free FDR control 

procedure no longer guarantees to control the FDR after a subset of PSMs is 

removed 

Suppose that before removing PSMs, at the FDR threshold 10%, a database search 

algorithm reports 10 PSMs, whose estimated FDRs (q-values or PEPs) are under 

10%, as discoveries. Among these 10 PSMs, 1 is false (in orange), and 9 are true 

(in blue), so the actual FDP is 10%. In contrast, suppose that we first remove the 5 

PSMs with the smallest q-values or PEPs (crossed out) and next threshold the remaining 

PSMs at the q-value or PEP threshold 10%. Then the actual FDP becomes 1/5 = 20%. 
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Figure S4  Comparing APIR-FDR options on incomplete output from database 

search algorithms 

At the FDR threshold 𝑞 ∈ {1%,… , 10%}, FDPs and power of each of the five database 

search algorithms when the 1416 target PSMs (identified by all five database search 

algorithms at the FDR threshold 𝑞 = 5%) are removed from the output of database 

search algorithms. 
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Figure S5 On the proteomics standard dataset, comparison of APIR, Scaffold, and 

ConsensusID at the FDR threshold 𝒒 = 𝟏% in terms of FDR control and power 

We set both the peptide threshold and the protein threshold of Scaffold to be 1% FDR. 

A. FDPs (first column), the percentage increases in true PSMs (second column), the 
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percentage increases in true peptides (third column), and the percentage increases in 

true proteins (fourth column) after aggregating two or three database search algorithms 

out of the five (Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+). The percentage 

increase in true PSMs/peptides/proteins is computed by treating as the baseline the 

maximal number of correctly identified PSMs/peptides/proteins by individual database 

search algorithms in Round 1 of APIR. B. Proportions of combinations that show a non-

negative percentage increase (green bars) in true PSMs (first column), true peptides 

(second column), and true proteins (third column). C. The indices of database search 

algorithms in (A) and the implementation of APIR in Round 1. Based on the 

benchmarking results in Figure 1C, in Round 1 of APIR, we applied p-value-free APIR-

FDR to Byonic, Mascot, SEQUEST, and MS-GF+, and we applied p-value-based 

APIR-FDR to MaxQuant. In later rounds of APIR, we used p-value-based APIR-FDR 

for FDR control. 
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Figure S6 On the proteomics standard dataset, comparison of APIR, Scaffold 

variant, and ConsensusID at the FDR threshold 𝒒 = 𝟓% in terms of FDR control 

and power 
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We set Scaffold’s peptide threshold to be 5% FDR and varied its protein threshold to 

find the maximal number of identified peptides. A. FDPs (first column), the percentage 

increases in true PSMs (second column), the percentage increases in true peptides (third 

column), and the percentage increases in true proteins (fourth column) after aggregating 

two or three database search algorithms out of the five (Byonic, Mascot, SEQUEST, 

MaxQuant, and MS-GF+). The percentage increase in true PSMs/peptides/proteins is 

computed by treating as the baseline the maximal number of correctly identified 

PSMs/peptides/proteins by individual database search algorithms in Round 1 of APIR. 

B. Proportions of combinations that show a non-negative percentage increase (green 

bars) in true PSMs (first column), true peptides (second column), and true proteins 

(third column). C. The indices of database search algorithms in (A) and the 

implementation of APIR in Round 1. Based on the benchmarking results in Figure 1C, 

in Round 1 of APIR, we applied p-value-free APIR-FDR to Byonic, Mascot, 

SEQUEST, and MS-GF+, and we applied p-value-based APIR-FDR to MaxQuant. In 

later rounds of APIR, we used p-value-based APIR-FDR for FDR control. 
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Figure S7 On the proteomics standard dataset, comparison of APIR, Scaffold 

variant, and ConsensusID at the FDR threshold 𝒒 = 𝟏% in terms of FDR control 

and power 
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We set Scaffold’s peptide threshold to be 1% FDR and varied its protein threshold to 

find the maximal number of identified peptides. A. FDPs (first column), the percentage 

increases in true PSMs (second column), the percentage increases in true peptides (third 

column), and the percentage increases in true proteins (fourth column) after aggregating 

two or three database search algorithms out of the five (Byonic, Mascot, SEQUEST, 

MaxQuant, and MS-GF+). The percentage increase in true PSMs/peptides/proteins is 

computed by treating as the baseline the maximal number of correctly identified 

PSMs/peptides/proteins by individual database search algorithms in Round 1 of APIR. 

B. Proportions of combinations that show a non-negative percentage increase (green 

bars) in true PSMs (first column), true peptides (second column), and true proteins 

(third column). C. The indices of database search algorithms in (A) and the 

implementation of APIR in Round 1. Based on the benchmarking results in Figure 1C, 

in Round 1 of APIR, we applied p-value-free APIR-FDR to Byonic, Mascot, 

SEQUEST, and MS-GF+, and we applied p-value-based APIR-FDR to MaxQuant. In 

later rounds of APIR, we used p-value-based APIR-FDR for FDR control. 
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Figure S8  On the proteomics standard dataset, comparison of APIR and 

individual database search algorithms at the FDR threshold 𝒒 = 𝟓% in terms of 

FDR control and power 

FDPs (first column), the percentage increases in true PSMs (second column), the 

percentage increases in true peptides (third column), and the percentage increases in 

true proteins (fourth column) after aggregating four or five database search algorithms 

out of the five (Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+). The percentage 

increase in true PSMs/peptides/proteins is computed by treating as the baseline the 

maximal number of correctly identified PSMs/peptides/proteins by individual database 

search algorithms in Round 1 of APIR. 
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Figure S9  On the proteomics standard dataset, comparison of APIR and 

individual database search algorithms at the FDR threshold 𝒒 = 𝟏% in terms of 

FDR control and power 

FDPs (first column), the percentage increases in true PSMs (second column), the 

percentage increases in true peptides (third column), and the percentage increases in 

true proteins (fourth column) after aggregating four or five database search algorithms 

out of the five (Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+). The percentage 

increase in true PSMs/peptides/proteins is computed by treating as the baseline the 

maximal number of correctly identified PSMs/peptides/proteins by individual database 

search algorithms in Round 1 of APIR. 
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Figure S10  On the Pfu proteomics standard dataset, the FDPs of peptides 

identified by APIR and by individual database search algorithms at the FDR 

thresholds 𝒒 = 𝟏% (left) and 𝒒 = 𝟓% (right)  

Note that APIR only aims to control the FDR at the PSM level, not at the peptide level. 

Since MaxQuant on its own has a high peptide-level FDP, the algorithm combinations 

that involve MaxQuant are highlighted in red. 
  

Target FDR = 1% Target FDR = 5%
1.63

1.83
1.63

1.83

1.63

1.97
1.63

6.53

1.34

1.36
1.34

1.36

1.34

1.53
1.34

1.51

1.60
1.51

1.60

1.51

1.73
1.51

1.19

1.08
1.19
1.19

1.19
1.23
1.08
6.57
1.59

1
2
3
4
5

4,5
3,5
2,5
1,5
3,4
2,4
1,4
2,3
1,3
1,2

3,4,5
2,4,5
1,4,5
2,3,5
1,3,5
1,2,5
2,3,4
1,3,4
1,2,4
1,2,3

2,3,4,5
1,3,4,5
1,2,4,5
1,2,3,5
1,2,3,4

1,2,3,4,5

0 2 4 6 8
FDP of peptides

7.86

8.77
7.86

8.77

7.86

8.85
7.86

10.5

5.68

5.46
5.68

5.46

5.68

5.74
5.68

7.63

8.55
7.63

8.41

7.63

8.51
7.63

5.41

5.10
5.41
5.41

5.41
5.20
4.93
8.37
6.30

1
2
3
4
5

4,5
3,5
2,5
1,5
3,4
2,4
1,4
2,3
1,3
1,2

3,4,5
2,4,5
1,4,5
2,3,5
1,3,5
1,2,5
2,3,4
1,3,4
1,2,4
1,2,3

2,3,4,5
1,3,4,5
1,2,4,5
1,2,3,5
1,2,3,4

1,2,3,4,5

0 5 10 15 20
FDP of peptides

1 Byonic (q−thre) 
2 Mascot (q−thre) 
3 SEQUEST (q−thre) 
4 MaxQuant 
5 MS−GF+ (q−thre)



 59 

 

 

2.64
2.66
3.16
2.44
4.53

2.40

4.19

2.39
2.65

1.11
3.14

0.99

2.78

1.02
1.42

2.34

0.18
2.31
1.87

1.45
1.49
2.01
1.28
3.19

1.27

3.85

1.29
1.51

0.85
2.54

0.76

3.10

0.69
1.19

2.12

0.21
2.10
2.61

15.5
20.5
13.3
7.80
17.7

15.9

14.6

20.8
12.8

7.91
15.8

6.31

12.9

9.79
5.96

8.01

6.41
14.8
10.3

1.57
1.46
2.70
0.70
1.35

1.13

1.37

1.09
1.83

0.78
1.00

0.96

1.05

0.59
1.56

0.35

0
0.39
0.45

4,5
3,5
2,5
1,5
3,4
2,4
1,4
2,3
1,3
1,2

3,4,5
2,4,5
1,4,5
2,3,5
1,3,5
1,2,5
2,3,4
1,3,4
1,2,4
1,2,3

0 2 4 43 0 1 2 3 4 16 0 10 20 33 0 1 2 3 12
43.8 16.9 34.0 12.1

3.04
3.23
3.75
2.72
4.29

2.70

2.46

2.85
3.23

1.21
3.21

1.14

1.49

1.17
1.36

2.25

0.16
2.25
0.46

2.63
2.77
3.26
2.38
3.43

2.35

3.88

2.44
2.85

0.92
2.22

0.89

2.44

0.70
0.97

1.70

0.24
1.70
1.87

17.1
25.8
15.9
8.95
18.9

17.7

17.5

25.0
15.8

7.62
16.2

6.42

14.5

11.2
5.91

6.60

6.02
15.0
11.6

44.0

3.59
3.48
4.55
2.43
2.84

2.90

2.87

2.87
3.92

0.92
1.45

1.27

1.22

1.10
1.33

0.34

0.05
0.58
0.36

4,5
3,5
2,5
1,5
3,4
2,4
1,4
2,3
1,3
1,2

3,4,5
2,4,5
1,4,5
2,3,5
1,3,5
1,2,5
2,3,4
1,3,4
1,2,4
1,2,3

0 2 4 37 0 1 2 3 4 24 0 10 20 30 0 2 4 20
37.3 25.0 44.0

40
20.9

8.10
16.1
4.63

13.9

7.59
4.39

7.40

4.58

15.2
4.35

1.82
0.63

1.51

1.04

1.84
0.41

0.70

0.39
0.26
0.70

5.11
9.95
2.40

11.1

4.53
2.20

4.50

2.24

9.28
2.18

1.74
0.39

1.69

0.45

2.22
0.31

0.19

0.15
0.12
0.19

10.2
13.6
6.13

14.2

6.26
4.73

8.97

4.53

12.6
5.00

3.93
3.47

5.13

3.33

5.36
3.69

−0.1

1.97
2.41
2.27

3.56
5.92
5.01

8.15

2.93
4.86

4.08

4.18

6.59
5.57

−0.1
1.63

0.15

1.73

1.04
1.48

0.75

−1.0
0.47
0.45

4,5
3,5
2,5
1,5
3,4
2,4
1,4
2,3
1,3
1,2

3,4,5
2,4,5
1,4,5
2,3,5
1,3,5
1,2,5
2,3,4
1,3,4
1,2,4
1,2,3

0 4 8 12 16 0 3 6 9 0 5 10 0 2 4 6 8

1.89
4.53
1.14

1.27

1.55
0.97

1.44

1.00

3.96
0.85

1.00
0.57

0.75

0.59

2.74
0.41

0.41

0.45
0.36
0.27

1.06
4.25
0.58

1.00

0.75
0.37

0.71

0.38

3.80
0.34

0.69
0.39

0.61

0.41

3.18
0.33

0.16

0.27
0.15
0.11

1.10
4.22
0.61

1.07

0.79
0.38

0.75

0.42

3.76
0.36

0.77
0.44

0.68

0.46

3.21
0.39

0.18

0.33
0.18
0.16

0.85
0.99
2.24

−0.5

0.85
2.53

1.69

2.28

1.84
2.99

−0.8
1.02

−0.5

0.94

0.62
0.79

0.48

−0.5
0.44
0.36

4,5
3,5
2,5
1,5
3,4
2,4
1,4
2,3
1,3
1,2

3,4,5
2,4,5
1,4,5
2,3,5
1,3,5
1,2,5
2,3,4
1,3,4
1,2,4
1,2,3

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2
% increase in

PSMs
% increase in

peptides
% increase in

peptide w/ mod
% increase in

proteins

A Phospho AML-C1

B Phospho AML-C2

C TNBC

D Nonphospho AML

A
gg

re
ga

tio
n 

of
 tw

o 
or

 th
re

e 
da

ta
ba

se
 s

ea
rc

h 
al

go
rit

hm
s 

A
gg

re
ga

tio
n 

of
 tw

o 
or

 th
re

e 
da

ta
ba

se
 s

ea
rc

h 
al

go
rit

hm
s 

A
gg

re
ga

tio
n 

of
 tw

o 
or

 th
re

e 
da

ta
ba

se
 s

ea
rc

h 
al

go
rit

hm
s 

A
gg

re
ga

tio
n 

of
 tw

o 
or

 th
re

e 
da

ta
ba

se
 s

ea
rc

h 
al

go
rit

hm
s 

1 Byonic 

2 Mascot 
3 SEQUEST 
4 MaxQuant 
5 MS−GF+



 60 

Figure S11 Power improvement of APIR over individual database search 

algorithms at the FDR threshold 𝒒 = 𝟏%  

The percentage increases in PSMs (first column), the percentage increases in peptides  

(second column), the percentage increases in peptides with modifications (third 

column), and the percentage increases in true proteins (fourth column) of APIR after 

aggregating two or three database search algorithms out of the five (Byonic, Mascot, 

SEQUEST, MaxQuant, and MS-GF+) at the FDR threshold 𝑞 = 1%  on (A) the 

phospho AML--C1 dataset, (B) the phospho AML--C2 dataset, (C) the TNBC dataset, 

and (D) the nonphospho AML dataset. The percentage increase in 

PSMs/peptides/peptides with modifications/proteins is computed by treating as the 

baseline the maximal number of PSMs/peptides/peptides and modifications/proteins by 

an individual database search algorithm in Round 1 of APIR. 
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Figure S12  Power improvement of APIR over individual database search 

algorithms at the FDR threshold 𝒒 = 𝟓% 

The percentage increases in PSMs (first column), the percentage increases in peptides 

(second column), the percentage increases in peptides with modifications (third 

column), and the percentage increases in true proteins (fourth column) of APIR after 

aggregating four or five database search algorithms out of the five (Byonic, Mascot, 

SEQUEST, MaxQuant, and MS-GF+) at the FDR threshold 𝑞 = 5%  on (A) the 

phospho AML--C1 dataset, (B) the phospho AML--C2 dataset, (C) the TNBC dataset, 

and (D) the nonphospho AML dataset. The percentage increase in 

PSMs/peptides/peptides with modifications/proteins is computed by treating as the 

baseline the maximal number of PSMs/peptides/peptides and modifications/proteins by 

an individual database search algorithm in Round 1 of APIR. 
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Figure S13  Power improvement of APIR over individual database search 

algorithms at the FDR threshold 𝒒 = 𝟏%  

The percentage increases in PSMs (first column), the percentage increases in peptides 

(second column), the percentage increases in peptides with modifications (third 

column), and the percentage increases in true proteins (fourth column) of APIR after 

aggregating four or five database search algorithms out of the five (Byonic, Mascot, 

SEQUEST, MaxQuant, and MS-GF+) at the FDR threshold 𝑞 = 1%  on (A) the 

phospho AML--C1 dataset, (B) the phospho AML--C2 dataset, (C) the TNBC dataset, 

and (D) the nonphospho AML dataset. The percentage increase in 

PSMs/peptides/peptides with modifications/proteins is computed by treating as the 

baseline the maximal number of PSMs/peptides/peptides and modifications/proteins by 

an individual database search algorithm in Round 1 of APIR. 
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Figure S14  Venn diagrams of identified PSMs by MaxQuant and MS-GF+_on 

the four real datasets at the FDR threshold 𝒒 = 𝟏% (left) and 𝒒 = 𝟓% (right). 
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Table S1  The APIR-FDR option of the five search algorithms applied on the 

proteomics standard dataset and other datasets (Phspho AML-C1, Phspho AML-

C2, TNBC, and Nonphospho) 

  

Category Summary of FDR control procedure Theoretical FDR 

control 

guarantee 

Compatibility with 

concatenated and 

parallel target-

decoy searches 

References 

 

Naive-FDR-

estimation-based 

 

1. Estimate the FDR at a PSM score threshold t as  

(# of decoy PSMs with scores ≥ t)/(# of target PSMs 

with scores ≥ t) × p0 

or  

(# of decoy PSMs with scores ≥ t)/(# of target or decoy 

PSMs with scores ≥ t) × p1,  

where p0 and p1 are pre-specified positive real numbers. 

2. Find the PSM score threshold tq based on the target 

FDR q (e.g., 5%). 

3. Report target PSMs with scores ≥ tq as discoveries. 

No Compatible with both (Käll et al., 2008; 

Kim, Gupta and 

Pevzner, 2008) 

P-value-based  

 

1. Compute a p-value for each target PSM score s as the 

proportion of decoy PSMs with scores ≥ s. 

2. Use the Benjamini-Hochberg procedure to find a p-

value threshold pq based on the target FDR q (e.g., 5%). 

3. Report target PSMs with p-values ≥  pq as 

discoveries. 

Yes Compatible with both (Käll et al., 2008) 

Knockoff-based 

 

1. Find the PSM score threshold tq based on the target 

FDR q using the knockoff filter proposed in (Barber and 

Candès, 2015) by treating the decoy PSM scores as 

“knockoffs.” 

2. Report target PSMs with scores ≥ tq as discoveries. 

Yes Parallel search only (He et al., 2018; 

Emery et al., 2020; 

Ge et al., 2020) 
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Table S2  Evaluation of tandem MS spectra rescued by APIR on phospho AML-

C1 and phospho AML-C2 
 
Dataset Byonic Mascot SEQUEST MaxQuant MS-GF+ 
Standard 0.000 0.848 0.997 0.039 0.134 
Phspho AML-
C1 

0.000 0.000 0.000 0.000 0.000 

Phspho AML-
C1 

0.000 0.000 0.000 0.000 0.000 

TNBC 0.000 0.000 0.000 0.000 0.000 
Nonphospho 0.000 0.000 0.000 0.000 0.000 
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