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Abstract

LD score regression (LDSC) is a method to estimate narrow-sense heritability from genome-wide association
study (GWAS) summary statistics alone, making it a fast and popular approach. The key concept
underlying the LDSC framework is that there is a positive linear relationship between the magnitude
of GWAS allelic effect estimates and linkage disequilibrium (LD) when complex traits are generated
under the infinitesimal model — that is, causal variants are uniformly distributed along the genome
and each have the same expected contribution to phenotypic variation. We present interaction-LD score
(1-LDSC) regression: an extension of the original LDSC framework that accounts for non-additive genetic

effects. By studying a wide range of generative models in simulations, and by re-analyzing 25 well-studied
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;s quantitative phenotypes from 349,468 individuals in the UK Biobank and up to 159,095 individuals
» in BioBank Japan, we show that the inclusion of a cis-interaction score (i.e., interactions between a
s focal variant and nearby variants) significantly recovers substantial non-additive heritability that is not
s captured by LDSC. For each of the 25 traits analyzed in the UK Biobank and 23 of the 25 traits analyzed
» in BioBank Japan, 1-LDSC detects a significant amount of variation contributed by genetic interactions.
1 The i-LDSC software and its application to these biobanks represent a step towards resolving further

u  genetic contributions of sources of non-additive genetic effects to complex trait variation.

» Introduction

3 Heritability is defined as the proportion of phenotypic trait variation that can be explained by genetic
s effects'™3. Until recently, studies of heritability in humans have been reliant on typically small sized family
s studies with known relatedness structures among individuals%°. Due to advances in genomic sequencing
s and the steady development of statistical tools, it is now possible to obtain reliable heritability estimates

13.6,7  Computational and privacy considerations

w0 from biobank-scale data sets of unrelated individuals
s with genome-wide association studies (GWAS) in these larger cohorts have motivated a recent trend
© to estimate heritability using summary statistics (i.e., estimated effect sizes and their corresponding
i standard errors). In the GWAS framework, additive effect sizes and standard errors for individual single
« nucleotide polymorphisms (SNPs) are estimated by regressing phenotype measurements onto the allele
ss counts of each SNP independently. Through the application of this approach over the last two decades,
s it has become clear that many traits have a complex and polygenic basis—that is, hundreds to thousands
« of individual genetic loci across the genome often contribute to the genetic basis of of variation in a single
ws  trait®.

29 Many statistical methods have been developed to improve the estimation of heritability from GWAS

1,3.9.10 " The most widely used of these approaches is linkage disequilibrium (LD)

s0 summary statistics
si score regression and the corresponding LDSC software!, which corrects for inflation in GWAS summary
52 statistics by modeling the relationship between the variance of SNP-level effect sizes and the sum of
3 correlation coefficients between focal SNPs and their genomic neighbors (i.e., the LD score of each variant).

s« The formulation of the LDSC framework relies on the fact that the expected relationship between chi-

55 square test statistics (i.e., the squared magnitude of GWAS allelic effect estimates) and LD scores holds
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ss  when complex traits are generated under the infinitesimal (or polygenic) model which assumes: (7) all
57 causal variants have the same expected contribution to phenotypic variation and (i) causal variants are
ss uniformly distributed along the genome. Importantly, the estimand of the LDSC model is the proportion
s of phenotypic variance attributable to additive effects of genotyped SNPs. The main motivation behind
e the LDSC model is that, for polygenic traits, many marker SNPs tag nonzero effects. This may simply
s arise because some of these SNPS are in LD with causal variants® or because their statistical association
e is the product of a confounding factor such as population stratification.

63 As of late, there have been many efforts to build upon and improve the LDSC framework. For example,
e recent work has shown that it is possible to estimate the proportion of phenotypic variation explained
s by dominance effects!! and local ancestry'? using extensions of the LDSC model. One limitation of
6 LDSC is that, in practice, it only uses the diagonal elements of the squared LD matrix in its formulation
e which, while computationally efficient, does not account for information about trait architecture that is
e captured by the off-diagonal elements. This tradeoff helps LDSC to scale genome-wide, but it has also
o been shown to lead to heritability estimates with large standard error %314, Recently, newer approaches
7o have attempted to reformulate the LDSC model by using the eigenvalues of the LD matrix to leverage
2 more of the information present in the correlation structure between SNPs?19.

7 In this paper, we show that the LDSC framework can be extended to estimate greater proportions
73 of genetic variance in complex traits (i.e., beyond the variance that is attributable to additive effects)
7 when a subset of causal variants are involved in a gene-by-gene (Gx @) interaction. Indeed, recent
75 association mapping studies have shown that GxG interactions can drive heterogeneity of causal variant

7 effect sizes1®.

Importantly, non-additive genetic effects have been proposed as one of the main factors
7 that explains “missing” heritability—the proportion of heritability not explained by the additive effects
s of variants!6.

7 The key insight we highlight in this manuscript is that SNP-level GWAS summary statistics can pro-
s vide evidence of non-additive genetic effects contributing to trait architecture if there is a nonzero correla-
a1 tion between individual-level genotypes and their statistical interactions. We present the “interaction-LD
& score” regression model or i-LDSC: an extension of the LDSC framework which recovers “missing” heri-
s tability by leveraging this “tagged” relationship between linear and nonlinear genetic effects. To validate

s the performance of i-LDSC in simulation studies, we focus on synthetic trait architectures that have

s been generated with contributions stemming from second-order and cis-acting statistical SNP-by-SNP
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s interaction effects; however, note that the general concept underlying i-LDSC can easily be extended to
@ other sources of non-additive genetic effects (e.g., gene-by-environment interactions). The main difference
s between i-LDSC and LDSC is that the i-LDSC model includes an additional set of “cis-interaction” LD
s scores in its regression model. These scores measure the amount of phenoytpic variation contributed by
o genetic interactions that can be explained by additive effects. In practice, these additional scores are
o efficient to compute and require nothing more than access to a representative pairwise LD map, same as
o the input required for LD score regression.

03 Through extensive simulations, we show that i-LDSC recovers substantial non-additive heritability
o that is not captured by LDSC when genetic interactions are indeed present in the generative model for a
os given complex trait. More importantly, i-LDSC has a calibrated type I error rate and does not overes-
o timate non-additive genetic contributions to trait variation in simulated data when only additive effects
o7 are present. While analyzing 25 complex traits in the UK Biobank and BioBank Japan, we illustrate
e that pairwise interactions are a significant source of “missing” heritability captured by additive GWAS
9 summary statistics—suggesting that phenotypic variation due to non-additive genetic effects is more
w0 pervasive in human phenotypes than previously reported. Specifically, we find evidence of significant
1 tagged non-additive genetic effects contributing to heritability estimates in all of the 25 traits in the
102 UK Biobank, and 23 of the 25 traits we analyzed in the BioBank Japan. We believe that i-LDSC, with
03 our development of a new cis-interaction score, represents a significant step towards resolving the true

14 contribution of genetic interactions.

» Results

ws  Overview of the interaction-LD score regression model

w7 Interaction-LD score regression (i-LDSC) is a statistical framework for estimating heritability (i.e., the
s proportion of trait variance attributable to genetic variance). Here, we will give an overview of the
109 1-LDSC method and its corresponding software, as well as detail how its underlying model differs from
no  that of LDSC. We will assume that we are analyzing a GWAS dats set D = {X,y} where X is an N x J
w matrix of genotypes with J denoting the number of SNPs (each of which is encoded as {0, 1,2} copies of
uz  a reference allele at each locus j) and y is an N-dimensional vector of measurements of a quantitative

s trait. The i-LDSC framework only requires summary statistics of individual-level data: namely, marginal
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ue effect size estimates for each SNP B and a sample LD matrix R (which can be provided via reference

us  panel data).

116 We begin by assuming the following generative linear model for complex traits
17 y=p+XB3+W0 +e, e ~N(0,(1 - H?)I), (1)
us  where p is an intercept term; 3 = (81, ..., 87) is a J-dimensional vector containing the true additive effect

1o sizes for an additional copy of the reference allele at each locus on y; W is an N x M matrix of (pairwise)
1w cis-acting SNP-by-SNP statistical interactions between some subset of causal SNPs, where columns of
11 this matrix are assumed to be the Hadamard (element-wise) product between genotypic vectors of the
12 form x; o xy for the j-th and k-th variants; @ = (61,...,0y) is an M-dimensional vector containing
123 the interaction effect sizes; € is a normally distributed error term with mean zero and variance scaled
w2 according to the proportion of phenotypic variation not explained by genetic effects'”, which we will
s refer to as the broad-sense heritability of the trait denoted by H?; and I denotes an N x N identity
s matrix. For convenience, we will assume that the genotype matrix (column-wise) and the trait of interest
17 have been mean-centered and standardized. Lastly, we let each individual effect size follow a Gaussian
s distribution with variances proportional to their individual contributions to the heritability of the trait
2o of interest 72!

130 5jNN(O,H2p/J), emNN(O,H2<17p)/M) (2)

11 where p measures the proportion of total genetic effects that is contributed by additive genetic effects.
1w Effectively, we say V[X8] = H?p is the proportion of phenotypic variation contributed by additive SNP
1 effects under the generative model, while VW8] = H?(1 — p) makes up the remaining proportion of
13a  phenotypic variation contributed by genetic interactions.

135 A central objective in GWAS studies is to infer how much phenotypic variation can be explained
s by genetic effects. To achieve that objective, a key consideration involves incorporating the possibility
1w of non-additive sources of genetic variation to be correlated with and explained by additive effect size
13 estimates obtained from GWAS analyses??. If we assume that the genotype and interaction matrices X
1 and W are not completely orthogonal (i.e., such that XTW =£ 0) then the following relationship between

1o the moment matrix XTy, the observed marginal GWAS summary statistics ,@, and the true coefficient
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11 values B from the generative model in Eq. (1) holds in expectation (see Materials and Methods)
162 X'y = (XTX)8+ (XTW)8 <  B=RB+VH (3)

w3 where R is a sample estimate of the LD matrix, and V represents a sample estimate of the correlation
e between the individual-level genotypes X and the span of genetic interactions between causal SNPs in W.
us Intuitively, the term V@ can be interpreted as the non-additive effects that are tagged by the additive
s effect estimates from the GWAS study. Note that, when (i) non-additive genetic effects play a negligible
w7 role on the overall architecture of a trait (i.e., such that @ = 0) or (i) the genotype and interaction
us  matrices X and W do not share the same column space (i.e., such that XTW = 0), the equation above
u  simplifies to a relationship between LD and summary statistics that is assumed in many GWAS studies
0 and methods?3729.

151 The goal of 1-LDSC is to increase estimates of genetic variance by accounting for sources of non-additive
152 genetic effects that can be explained by additive GWAS summary statistics. To do this, we extend the LD
153 score regression framework and the corresponding LDSC software!”. Here, according to Eq. (3), we note

s that B ~ N(RB+ V6, \R) where A is a scale variance term due to uncontrolled confounding effects 1030,

155 Next, we condition on @ = (3, 0) and take the expectation of chi-square statistics x? = N ,@,@T to yield

EBAT =E[E[357|0]| =E[v[3|6] +E[3|6|E[3|e)]']
=E[AR+ (RB+VO)(RB+VO)T]

155 (4)
=E[MR +RBB™R + 2RBOTV + VOOVT]

=R+ (I{jp> R+ (Hz(]lw_ p)> V2.

57 We define ¢; = >, r?k as the LD score for the additive effect of the j-th variant!?, and f; = > v]zm
158 represents the “cis-interaction” LD score which encodes the interaction between the j-th variant and
1o all other variants within a genomic window that is a pre-specified number of SNPs wide?!, respectively.
1o By considering only the diagonal elements of LD matrix in the first term, similar to the original LDSC

61 approach %17 we get the following simplified regression model

162 E[x?] < 1+ €7 + fo (5)
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7
s where x2 = (x3,...,x%) is a J-dimensional vector of chi-square summary statistics, and £ = (¢1,...,0;)
6w and f = (f1,..., fs) are J-dimensional vectors of additive and cis-interaction LD scores, respectively.

s Furthermore, we define the variance components 7 = NH?p/J and ¢ = NH?(1 — p)/M as the additive
s and interaction regression coefficients of the model, and 1 is the intercept meant to model the bias factor
167 due to uncontrolled confounding effects (e.g., cryptic relatedness structure). In practice, we efficiently
18 compute the cis-interaction LD scores by considering only a subset of interactions between each j-th
1o focal SNP and SNPs within a cis-proximal window around the j-th SNP. In our validation studies and
o applications, we base the width of this window on the observation that LD decays outside of a window
i of 1 centimorgan (cM); therefore, SNPs outside the 1 ¢cM window centered on the j-th SNP will not
2 significantly contribute to its LD scores. Note that the width of this window can be relaxed in the
i3 1-LDSC software when appropriate. We fit the i-LDSC model using weighted least squares to estimate
e regression parameters and derive P-values for identifying traits that have significant statistical evidence
s of tagged cis-interaction effects by testing the null hypothesis Hy : ¢ = NH?(1—p)/M = 0. Importantly,
s under the null model of a trait being generated by only additive effects, the i-LDSC model in Eq. (5)
w7 reduces to the infinitesimal model®!.

178 Lastly, we want to note the empirical observation that the additive (€) and interaction (f) LD scores
o are lowly correlated. This is important because it indicates that the presence of cis-interaction LD scores
o in the model specified in Eq. (5) has little-to-no influence over the estimate for the additive coefficient
11 7. Instead, the inclusion of f creates a multivariate model that can identify the proportion of variance
12 explained by both additive and non-additive effects in summary statistics. In other words, we can
183 interpret o as the phenotypic variation explained by tagged cis-acting interaction effects, and we use the
18« sum of coefficient estimates 7 + 6 to construct i-LDSC heritability estimates. A full derivation of the
185 cis-interaction regression framework and details about its corresponding implementation in our software

16 1-LDSC can be found in Materials and Methods.

ww Detection of tagged non-additive effects using i-LDSC in simulations

s We illustrate the power of i-LDSC across different genetic trait architectures via extensive simulation
1w studies (Materials and Methods). We generate synthetic phenotypes using real genome-wide genotype
1o data from individuals of self-identified European ancestry in the UK Biobank. To do so, we first assume

11 that traits have a polygenic architecture where all SNPs have a nonzero additive effect. Next, we randomly
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102 select a set of causal cis-interaction variants and divide them into two interacting groups (Materials and
13 Methods). One may interpret the SNPs in group #1 as being the “hubs” in an interaction map?2!; while,
1 SNPs in group #2 are selected to be variants within some kilobase (kb) window around each SNP in

s group #1. We assume a wide range of simulation scenarios by varying the following parameters:
106 e heritability: H? = 0.3 and 0.6;

107 e proportion of phenotypic variation that is generated by additive effects: p = 0.5, 0.8, and 1;
108 e percentage of SNPs selected to be in group #1: 1%, 5%, and 10%;

199 e genomic window used to assign SNPs to group #2: +10 and +100 kb.

20  We also varied the correlation between SNP effect size and minor allele frequency (MAF) (as discussed
21 in Schoech et al. 32). All results presented in this section are based on 100 different simulated phenotypes
22 for each parameter combination.

203 Figure 1 demonstrates that 1-LDSC robustly detects significant tagged non-additive genetic variance,
o regardless of the total number of causal interactions genome-wide. Instead, the power of i-LDSC depends
205 on the proportion of phenotypic variation that is generated by additive versus interaction effects (p), and
206 its power tends to scale with the window size used to compute the cis-interaction LD scores (see Materials
207 and Methods). 1-LDSC shows a similar performance for detecting tagged cis-interaction effects when the
w8 effect sizes of causal SNPs depend on their minor allele frequency and when we varied the number of
20 SNPs assigned to be in group #2 within 10 kb and 100kb windows, respectively (Figures S1-S5).

210 Importantly, 1~-LDSC does not falsely identify putative non-additive genetic effects in GWAS summary
a1 statistics when the synthetic phenotype was generated by only additive effects (p = 1). Figure 2 illustrates
2 the performance of i-LDSC under the null hypothesis Hy : 0 = NH?(1— p)/M = 0, with the type I error
a3 rates for different estimation window sizes of the cis-interaction LD scores highlighted in panel A. Here,
au - we also show that, when no genetic interaction effects are present, i-LDSC unbiasedly estimates the
us  cis-interaction coefficient in the regression model o = 0 (Figure 2B), robustly estimates the heritability
2z (Figure 2C), and provides well-calibrated P-values when assessed over many traits (Figure 2D). This
a7 behavior is consistent across different MAF-dependent effect size distributions, and P-value calibration is
218 not sensitive to misspecification of the estimation windows used to generate the cis-interaction LD scores

no  (Figures S6-S7).
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220 One of the innovations that i-LDSC offers over the traditional LDSC framework is increased heritabil-
a1 ity estimates after the identification of non-additive genetic effects that are tagged by GWAS summary
a»  statistics. Here, we applied both methods to the same set of simulations in order to understand how
23 LDSC behaves for traits generated with cis-interaction effects. Figure 3 depicts boxplots of the heri-
24 tability estimates for each approach and shows that, across an array of different synthetic phenotype
»s architectures, LDSC captures less of phenotypic variance explained by all genetic effects. It is important
26 to note that i-LDSC can yield upwardly biased heritability estimates when the cis-interaction scores are
27 computed over genomic window sizes that are too small; however, these estimates become more accurate
»s  for larger window size choices (Figure S8). In contrast to LDSC, which aims to capture phenotypic variance
20 attributable to the additive effects of genotyped SNPs, i-LDSC accurately partitions genetic effects into
20 additive versus cis-interacting components, which in turn generally leads the ability of i-LDSC to capture
2 more genetic variance. The mean absolute error between the true generative heritability and heritability
22 estimates produced by i-LDSC and LDSC are shown in Tables S1 and S2, respectively. Generally, the
213 error in heritability estimates is higher for LDSC than it is for i-LDSC across each of the scenarios that
24 we consider.

235 Lastly, we perform an additional set of simulations where we explore other common generative mod-
26 els for complex trait architecture that involve non-additive genetic effects. Specifically, we compare
2w heritability estimates from LDSC and i-LDSC in the presence of additive effects, cis-acting interactions,
23 and a third source of genetic variance stemming from either gene-by-environment (GxE) or or gene-
20 by-ancestry (GxAncestry) effects. Details on how these components were generated can be found in
20  Materials and Methods. In general, i-LDSC underestimates overall heritability when additive effects and
a1 cis-acting interactions are present alongside GXE (Figure S9) and/or GxAncestry effects when PCs are
2 included as covariates (Figure S10). Notably, when PCs are not included to correct for residual stratifica-
23 tion, both LDSC and i-LDSC can yield unbounded heritability estimates greater than 1 (Figure S11). Also
24 interestingly, when we omit cis-interactions from the generative model (i.e., the genetic architecture of
25 simulated traits is only made up of additive and GXE or GxAncestry effects), i~LDSC will still estimate
26 @ nonzero genetic variance component with the cis-interaction LD scores (Figures S12-S14). Collectively,
a7 these results empirically show the important point that cis-interaction scores are not enough to recover
g issing genetic variation for all types of trait architectures; however, they are helpful in recovering pheno-

20 typic variation explained by statistical cis-interaction effects. Recall that the linear relationship between
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10

x0 (expected) x? test statistics and LD scores proposed by the LDSC framework holds when complex traits
1 are generated under the polygenic model where all causal variants have the same expected contribution
22 t0 phenotypic variation. When cis-interactions affect genetic architecture (e.g., in our earlier simulations
3 in Figure 3), these assumptions are violated in LDSC, but the inclusion of the additional nonlinear scores
25+ in i-LDSC help recover the relationship between the expectation of x? test statistics and LD.

255 As a final demonstration of how i-LDSC performs when assumptions of the original LD score model
6 are violated, we also generated synthetic phenotypes with sparse architectures using the spike-and-slab
7 model?Y. Here, traits were simulated with solely additive effects, but this time only variants with the top
s or bottom {1, 5,10, 25,50, 100} percentile of LD scores were given nonzero effects (see Material and Meth-
250 0ods). Breaking the relationship assumed under the LDSC framework between LD scores and chi-squared
0 statistics (i.e., that they are generally positively correlated) led to unbounded estimates of heritability
2 in all but the (polygenic) scenario when 100% of SNPs contributed to the phenotypic variation (Figure
%2 S15).

xs  Application of i-LDSC to the UK Biobank and BioBank Japan

x4 To assess whether non-additive genetic effects are significantly affecting estimates of heritability in em-
x5 pirical biobank data, we applied i-LDSC to 25 continuous quantitative traits from the UK Biobank and
26 BioBank Japan (Table S3). Protocols for computing GWAS summary statistics for the UK Biobank are
»7  described in the Materials and Methods; while pre-computed summary statistics for BioBank Japan were
s downloaded directly from the consortium website (see URLs). We release the cis-acting SNP-by-SNP
%9 interaction LD scores used in our analyses on the 1-LDSC GitHub repository from two reference groups
2o in the 1000 Genomes: 489 individuals from the European superpopulation (EUR) and 504 individuals
= from the East Asian (EAS) superpopulation (see also Table S4).

2 In each of the 25 traits we analyzed in the UK Biobank, we detected significant proportions of
os estimated genetic variation stemming from tagged pairwise cis-interactions (Table 1). This includes
a7z many canonical traits of interest in heritability analyses: height, cholesterol levels, urate levels, and both
25 systolic and diastolic blood pressure. Our findings in Table 1 are supported by multiple published studies
a6 identifying evidence of non-additive effects playing a role in the architectures of different traits of interest.
on For example, Li et al.3® found evidence for genetic interactions that contributed to the pathogenesis of

s coronary artery disease. It was also recently shown that non-additive genetic effects plays a significant
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2o role in body mass index1!?.

Generally, we find that the traditional LDSC produces lower estimates of
0 trait heritability because it does not consider the additional sources of genetic signal that i-LDSC does
21 (Table 1). In BioBank Japan, 23 of the 25 traits analyzed had a significant nonlinear component detected
22 by i-LDSC — with HDL and triglyceride levels being the only exceptions. We performed an additional
23 analysis where the cis-interaction scores are included as an annotation alongside 97 other functional
2 categories in the stratified-LD score regression framework and its software s-LDSC3* (Materials and
s Methods). Here, s-LDSC heritability estimates still showed an increase with the interaction scores versus
25 when the publicly available functional categories were analyzed alone (Table S6).

287 For each of the 25 traits that we analyzed, we found that the i-LDSC heritability estimates are
xs  significantly correlated with corresponding estimates from LDSC in both the UK Biobank (r? = 0.988,
w P = 5.936 x 1072%) and BioBank Japan (r?> = 0.849, P = 6.061 x 10~!!) as shown in Figure 4A.
20 Additionally, we found that the heritability estimates for the same traits between the two biobanks are
1 highly correlated according to both LDSC (r? = 0.848, P = 7.166 x 10~!!) and i-LDSC (r? = 0.666,
2 P =6.551 x 10~7) analyses as shown in Figure 4B.

203 After comparing the i-LDSC heritability estimates to LDSC, we then assessed whether there was sig-
24 nificant difference in the amount of phenotypic variation explained by the non-additive genetic effect
25 component in the GWAS summary statistics derived from the the UK Biobank and BioBank Japan (i.e.,
s comparing the estimates of o; see Figure 4C). We show that, while heterogeneous between traits, the phe-
27 notypic variation explained by genetic interactions is relatively of the same magnitude for both biobanks
xs (1?2 =0.372, P = 0.0119). Notably, the trait with the most significant evidence of tagged cis-interaction
200 effects in GWAS summary statistics is height which is known to have a highly polygenic architecture.
300 Finally, we show that the intercepts estimated by LDSC and i-LDSC are highly correlated in both the
sn UK Biobank and the BioBank Japan (Figure 4D). Recall that these intercept estimates represent the
w2 confounding factor due to uncontrolled effects. For LDSC, this does include phenotypic variation that is
;3 due to unaccounted for pairwise statistical genetic interactions. The 1i-LDSC intercept estimates tend to
;4 be correlated with, but are generally different than, those computed with LDSC — empirically indicating
ss  that non-additive genetic variation is partitioned away and is missed when using the standard LD score
we alone. This result shows similar patterns in both the UK Biobank (r? = 0.888, P = 1.962 x 107'2) and
w7 BioBank Japan (r? = 0.813, P = 7.814 x 10719), and it confirms that non-additive genetic effects can be

w8 a source of “missing” phenotypic variance explained in heritability estimation.
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w Discussion

s In this paper, we present i-LDSC, an extension of the LD score regression framework which aims to
su  recover missing heritability from GWAS summary statistics by incorporating an additional score that
;12 measures the non-additive genetic variation that is tagged by genotyped SNPs. Here, we demonstrate how
s13 1-LDSC builds upon the original LDSC model through the development of new “cis-interaction” LD scores
ze  which help to investigate signals of cis-acting SNP-by-SNP interactions (Figures 1 and S1-S5). Through
a5 extensive simulations, we show that i-LDSC is well-calibrated under the null model when polygenic traits
a5 are generated only by additive effects (Figures 2 and S6-S7), and it provides greater heritability estimates
a7 over LDSC when traits are indeed generated with cis-acting SNP-by-SNP interaction effects (Figures 3 and
as S8, and Tables S1 and S2). Finally, in real data, we show examples of many traits with estimated GWAS
s0 summary statistics that tag cis-interaction effects in the UK Biobank and BioBank Japan (Figures 4
20 and S16, and Tables 1 and S3-S6). We have made i-LDSC a publicly available command line tool that
;21 requires minimal updates to the computing environment used to run the original implementation of LD
22 score regression (see URLs). In addition, we provide pre-computed cis-interaction LD scores calculated
»s  from the European (EUR) and East Asian (EAS) reference populations in the 1000 Genomes phase 3
2 data (see Data and Software Availability under Materials and Methods).

325 The current implementation of the i-LDSC framework offers many directions for future development
»s and applications. First, as we showed with our simulation studies (Figures S9-S15), the cis-interaction
227 LD scores that we propose are not always enough to recover explainable non-additive genetic effects for all
»s  types of trait architectures. While we focus on pairwise cis-acting SNP-by-SNP statistical interactions in
29 this work, the theoretical concepts underlying i-LDSC can easily be adapted to other types of interactions
a0 as well. Second, in our analysis of the UK Biobank and BioBank Japan, we showed that the inclusion

35 can be used to provide

s of additional categories via frameworks such as stratified LD score regression
sz more refined heritability estimates from GWAS summary statistics while accounting for linkage (see
s results in Table 1 versus Table S6). A key part of our future work is to continue to explore whether
s considering functional annotation groups would also improve our ability to identify tagged non-additive
15 genetic effects. Lastly, we have only focused on analyzing one phenotype at a time in this study. However,
1 many previous studies have extensively shown that modeling multiple phenotypes can often dramatically

36,37

s increase power . Therefore, it would be interesting to extend the i-LDSC framework to multiple traits
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s to study nonlinear genetic correlations in the same way that LDSC was recently extended to uncover

1o additive genetic correlation maps across traits>8.

«w URLS

s 1-LDSC software package for implementing interaction score regression, https://github.com/lcrawlab/
s 1-LDSC; LDSC software package for implementing LD score regression, https://github.com/bulik/
us  ldsc/; UK Biobank, https://www.ukbiobank.ac.uk; BioBank Japan, http://jenger.riken. jp/en/
us  result; 1000 Genomes Project genetic map and haplotypes, http://mathgen.stats.ox.ac.uk/impute/
ss data_download_1000G_phasel_integrated.html; Database of Genotypes and Phenotypes (dbGaP),
16 https://www.ncbi.nlm.nih.gov/gap; NHGRI-EBI GWAS Catalog, https://www.ebi.ac.uk/gwas/;
sww  GRM-MAF-LD package, https://github.com/arminschoech/GRM-MAF-LD; GCTA toolkit, https://

us yanglab.westlake.edu.cn/software/gcta/.
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- Materials and Methods

= (Generative statistical model for complex traits

s Our goal in this study is to re-analyze summary statistics from genome-wide association studies (GWAS)
su and estimate heritability while accounting for both additive genetic associations and tagged interaction

a5 effects. We begin by assuming the following generative linear model for complex traits and phenotypes

w76 y=p+XB8+W0 +e, e~ N(0,(1 - H)I), (6)

s7 - where y denotes an N-dimensional vector of phenotypic states for a quantitative trait of interest measured
ss  in N individuals; p is an intercept term; X is an IV x J matrix of genotypes, with J denoting the number
s of single nucleotide polymorphism (SNPs) encoded as {0,1,2} copies of a reference allele at each locus;
w0 (3= (f1,...,0s)is a J-dimensional vector containing the true additive effect sizes for an additional copy
s of the reference allele at each locus on y; W is an N X M matrix of genetic interactions; 8 = (61, ...,0)
;2 is an M-dimensional vector containing the interaction effect sizes; € is a normally distributed error term
;3 with mean zero and variance scaled according to the proportion of phenotypic variation not explained by
s the broad-sense heritability of the trait, denoted by H?; and I denotes an N x N identity matrix. While in
s theory, the matrix W could encode any source of non-additive genetic effects (e.g., gene-by-environmental
s effects), we limit our focus in this study to trait architectures that have been generated with contributions
s7 - stemming from cis-acting statistical SNP-by-SNP interactions. To that end, we assume that the columns
s of W are the Hadamard (element-wise) product between genotypic vectors of the form x; o x;, for the
0 j-th and k-th variants.

390 For convenience, we further assume that the genotype matrix (column-wise) and trait of interest have
;1 been mean-centered and standardized. Furthermore, we want to point out that the generative formulation
1 of Eq. (6) can also be easily extended to accommodate other fixed effects (e.g., age, sex, or genotype
33 principal components), as well as other random effects terms that can be used to account for sample
s« non-independence due to other environmental factors. In addition, we choose to assume that 3 and @
w5 are fixed effects here, but modeling these coefficients as a random effect is straightforward. Lastly, in this
ws work, we only consider second order (or pairwise) SNP-by-SNP interactions. However, the generalization

s7  of the proposed framework to detect genetic effects from higher-order interactions is also straightforward
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1 and only involves manipulating the interaction matrix W 25139,

» GWA summary statistics and tagged interaction effects

wo  As previously mentioned, the key to this work is that SNP-level GWAS summary statistics can also
w1 tag non-additive genetic effects if there is a nonzero correlation between individual-level genotypes and
w2 their interactions (as defined in Eq. (6)). Throughout this section, we will use XTX/N to denote the
w3 linkage disequilibrium (LD) or pairwise correlation matrix between SNPs. We will then let R represent
w4 an LD matrix empirically estimated from external data (e.g., directly from GWAS study data, or using a
ws pairwise LD map from a population that is representative of the samples analyzed in the GWAS study).

ws The important property here is that

407 E[XTX] ~ NR, Ex!x;] ~ N, E[xTxy] =~ Nrjp (7)

7
ws  where the term r;; is defined as the Pearson correlation coefficient between the j-th and k-th SNPs,
w0 respectively, and x; denotes the j-th column of the individual-level genotype matrix X.

410 A central goal in GWAS studies is to jointly infer how much phenotypic variation can be explained by
a1 genetic effects. This often amounts to estimating the effect sizes 8 = (XTX)~ !XTy for each SNP, given
a2 both genotypic and phenotypic measurements for each assayed individual. However, since the generative
a3 model in Eq. (6) is an underdetermined linear system (i.e., J > N) for many GWAS applications, we
as need to make additional modeling assumptions on the regression coefficients to make the generative model

1721 and assume that each effect

a5 identifiable. To do so, we follow standard linear modeling approaches
a6 size follows a Gaussian distribution with variances proportional to their individual contributions to the

a7 heritability of the trait of interest. Namely, we assume that

a8 Bi ~N(,H?p/T), Oy ~N(O,H*(1—p)/M), j=1,....0 m=1,...,M (8)

a9 where p measures the proportion of total genetic effects that is contributed by the additive effects in the
m  generative model. Alternatively, we say that V[X3] = H?p is the proportion of phenotypic variation
w21 contributed by additive SNP effects under the generative model, which then leaves the set of interactions

2 involving some subset of causal SNPs to contribute the remaining V[W@] = H?(1 — p) proportion to the
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a3 heritability.

2 Traditional estimation of additive GWAS summary statistics

w5 In traditional GWAS studies, summary statistics of the true additive effects 3 in Eq. (6) are typically

w6 derived by computing a marginal least squares estimate with the observed data
a7 Ej = (x}xj)flij-y — 8= diag(XTX) ' XTy. 9)

s There are two key identities that may be taken from Eq. (9). The first uses Eq. (7) and is the approximate

w9 relationship (in expectation) between the moment matrix XTy and the linear effect size estimates a:
- XTy = diag(XTX)8 ~ Nf. (10)

a The second key point combines Eqs. (7) and (10) to describe the asymptotic relationship between the

a2 observed marginal GWAS summary statistics B and the joint coefficient values 3 where
- B=(X"X)"'XTy ~ (NR)"'!NB=R'3. (11)

we  After some algebra, the above mirrors a high-dimensional regression model (in expectation) where ,/@\ =RpA
a5 with the estimated summary statistics as the response variables and the empirically estimated LD matrix

23,26,28,29,40

s acting as the design matrix . Theoretically, the resulting output coefficients from this high-

w7 dimensional model are the desired true effect size estimates used to generate the phenotype of interest.

ms  Additive GWAS summary statistics with tagged interaction effects

s When interactions contribute to the architecture of complex traits (i.e., 8 # 0 and p < 1), the marginal
o GWAS summary statistics derived using least squares in Eq. (9) can also explain non-additive variation
a1 if there is a nonzero correlation between genotypes and their interactions. To see this, we take the joint

w2 solution for the true regression coeflicients 8 and 0 from the generative model in Eq. (6)

—1
Jé] XX XTW XT
(7] WX WTW \VA

5
%
\
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s where the matrix XTW can be interpreted as the sample correlation between individual-level genotypes
ws and the cis-interactions between causal SNPs. By solving for the additive genetic effects (again in
us  expectation using Eqgs. (7) and (10)), we get the following alternative relationship between the moment

w7 matrix XTy, the observed marginal GWAS summary statistics 3, and the true coefficient values 3 where
s Xy =(XTX)8+ (XTW)8 <  B=RB+ V6. (13)

o Here, we define V to represent a sample estimate of the correlation between the individual-level genotypes
ss0 and the non-additive genetic interaction matrix such that E[XTW] ~ NV. Similar to the LD matrix R,
1 the correlation matrix V is also assumed to be computed from reference panel data. Intuitively, when
w2 VO # 0 there is additional phenotypic variation contributed by genetic interactions that can be explained
w3 by GWAS effect size estimates. Moreover, when VO = 0, then the relationship in Eq. (13) converges
¢ onto the conventional asymptotic assumption (in expectation) between GWAS summary statistics and

w5 the true additive coefficients in Eq. (11)%3:26:28,29,40,

« Full derivation of interaction LD score regression

s7  In order to derive the interaction LD score (1i-LDSC) regression framework, recall that our goal is to
s identify evidence of tagged interaction effects within GWAS summary statistics. To do this, we build
so  upon the LD score regression framework and the LDSC software'”. Here, we assume nonzero contributions
wo  from cis-acting SNP-by-SNP interaction effects in the generative model of complex traits as in Eq. (13),
w1 and we use the observed least squares estimates from Eq. (9) to compute chi-square statistics X? =N @2

w2 for every j =1,...,J variant in the data. Taking the expectation of these statistics yields
2 72 ) 21\
E[x2] = NE[B2] = N [V[ﬂj] + (E3)]) } : (14)

ws  We can simplify Eq. (14) in two steps. First, by combining the prior assumption in Eq. (8) and the
ws asymptotic approximation in Eq. (13), we can show that marginal expectation (i.e., when not conditioning

ws on the true coeflicients) E[Bj] = 0 for all variants. Second, by conditioning on the generative model from
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w7 Eq. (6), we can use the law of total variance to simplify V[Bj] where

VIB;] = E[V[B; | X]] + V[E[B; | X]] ~ E[V[x]y/N | X]] + 0

[ 1
~ & [ 3] 1Vl [ X)) x|
(1 (H,  HX(1-p)
1 [H? H?(1 - p)

w0 Using the same logic from the original LDSC regression framework'”, we can use Isserlis’ theorem?! to

a0 write the above in terms of more familiar quantities based on sample correlations

J M
XX =YL I WWT = 33, (15)
k=1 m=1
a2 where 7j, is used to denote the sample correlation between additively-coded genotypes at the j-th and
a3 k-th variants, and vj,, is used to denote the sample correlation between the genotype of the j-th variant
s and the m-th genetic interaction on the phenotype of interest (again see Eq. (13)). Furthermore, we can
a5 use the delta method (only displaying terms up to O(1/N?)) to show that (in expectation)

476 B[] =5+ (1 —rh)/N,  E[0},] =}, + (1—2},) /N. (16)

Jm Jgm

«  Next, we can then approximate the quantities in Eq. (15) via the following

J M
E Zfﬁjk] AL+ (J—4)/N, B> a;m] ~ fj + (M — f;) /N (17)
k=1 m=1

a9 where ¢; is the corresponding LD score for the additive effect of the j-th variant and f; represents

t21

w0 the “interaction” LD score between the j-th SNP and all other variants in the data set<", respectively.

s Altogether, this leads to the specification of the univariate framework with the j-th SNP

2 201
482 E[X?] ~N |:<£[Jp> fj =+ (W) fj + %(1 — H2) = ZjT—i- fj0'+ 1 (18)
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@ where we define 7 = NH?p/.J as estimates of the additive genetic signal, the coefficient o0 = N H?(1—p)/M
s as an estimate of the proportion of phenotypic variation explained by tagged interaction effects, and 1
w5 i the intercept meant to model the misestimation due to uncontrolled confounding effects (e.g., cryptic
w5 relatedness and population stratification). Similar to the original LDSC formulation, an intercept greater
w7 than one means significant bias. Note that the simplification for many of the terms above such as
ws (1—H?)/N =~ 1/N results from our assumption that the number of individuals in our study is large. For
w0 example, the sample sizes for each biobank-scale study considered in the analyses of this manuscript are
w0 at least on the order of N > 10* observations (see Table S5). Altogether, we can jointly express Eq. (18)

w1 in multivariate form as

492 E[XQ] ~Lebr+ fo+1 (19>
w3 where x? = (x%,...,x%) is a J-dimensional vector of chi-square summary statistics, and £ = (¢1,...,£;)
s and f = (f1,...,fs) are J-dimensional vectors of additive and cis-interaction LD scores, respectively. It

w5 is important to note that, while x% must be recomputed for each trait of interest, both vectors £ and f
w5 only need to be constructed once per reference panel or individual-level genotypes (see next section for
s« efficient computational strategies).

208 To identify summary statistics that have significant tagged interaction effects, we test the null hy-
wo  pothesis Hy : 0 = NH?(1 — p)/M = 0. The i-LDSC software package implements the same model fitting

s0  strategy as LDSC. Here, we use weighted least squares to fit the joint regression in Eq. (19) such that
0 G=(fTOF) IO, oy =07+ fi5+ 177 (20)

se  where W is a J x J diagonal weight matrix with nonzero elements set to values inversely proportional to
s3 the conditional variance V[X? |45, fil = z/);jl to adjust for both heteroscedasticity and over-estimation of
so0  the summary statistics for each SNP!7. Standard errors for each coefficient estimate are derived via a
sos delete-one jackknife over blocks of SNPs in the data®?, and we then use those standard errors to derive
s6  P-values with a two-sided test (i.e., testing the alternative hypothesis Ha : 0 = NH%(1 — p)/M # 0).
so7 For all analyses in this paper, we estimate proportion of phenotypic variance explained by genetic effects
ss  using a sum of the coefficients 7 + & (i.e., the estimated additive component plus the additional genetic

s0  variance explained by the tagged pairwise interaction effects).
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s Efficient computation of cis-interaction LD scores

su In practice, cis-interaction LD scores in i-LDSC can be computed efficiently through realizing two key
sz opportunities for optimization. First, given J SNPs, the full matrix of genome-wide interaction effects
s: W contains on the order of J(J — 1)/2 total pairwise interactions. However, the correlation between
s the genotype of the j-th SNP and the interactions where its involved (i.e., XJT.(xj oxy) for I # j) is
si5 bound to be much larger than the correlation between the genotype of the j-th SNP x; and interactions
s5 involving some other SNP (e.g., x] (xx 0 x;) for k& # j and I # j). To that end, we can compute the
sz 1-LDSC score for each SNP by replacing the full W matrix with a subsetted matrix W; which includes

7. we consider only

s only interactions involving the j-th SNP. Analogous to the original LDSC formulation®
siv  interactive SNPs within a cis-window proximal to the focal j-th SNP for which we are computing the
so0  1-LDSC score. In the original LDSC model, this is based on the observation that LD decays outside of a
s window of 1 centimorgan (cM); therefore, SNPs outside the 1 ¢cM window centered on the j-th SNP j
s will not significantly contribute to its LD score.

523 The second opportunity for optimization comes from the fact that the matrix of interaction effects for
s any focal SNP, W, does not need to be explicitly generated. Referencing Eq. (15), the i-LDSC scores are
w5 defined as xIW;WTx; /N2 This can be re-written as x| (D;X))(D;X@))Tx;, where D; = diag(x;) is
26 a diagonal matrix with the j-th genotype as its nonzero elements?! and X () denotes the subset SNPs

sz within a cis-window proximal to the focal j-th SNP. This means that the 1-LDSC score for the j-th SNP

s can be simply computed as the following
1 . .
fi ~ s (KPXDX O ()2 (21)

s0  With these simplifications, the computational complexity of generating i-LDSC scores reduces to that of
s computing LD scores — modulo a vector-by-vector Hadamard product which, for each SNP, is constant

s factor of N (i.e., the number of genotyped individuals).

s Coeflicient estimates as determined by cis-interaction window size

s2 When computing cis-interaction LD scores, the most important decision is choosing the number of
s interacting SNPs to include in X) (or equivalently W, for each j-th focal SNP in the calculation of f;

s in Eq. (21)). The i-LDSC framework considers different estimating windows to account for our lack of a
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s priori knowledge about the “correct” non-additive genetic architecture of traits. Theoretically, one could
s follow previous work 292527293042 by considering an L-valued grid of possible SNP interaction window
s sizes. After fitting a series of i-LDSC regressions with cis-interaction LD scores f() generated under
s0  the L-different window sizes, we could compute normalized importance weights using their maximized
s likelihoods via the following

£(erv:B)

L
" = -, a® =1, (22)
5 £ (6.50:5) 2

s3 As a final step in the model fitting procedure, we could then compute averaged estimates of the coefficients

s« 7 and o by marginalizing (or averaging) over the L-different grid combinations of estimating windows

L L
N = Z”U)?(l)’ 5= Zw(z)g(l). (23)
1=1 I=1

sss This final step can be viewed as an analogy to model averaging where marginal estimates are computed
s7  via a weighted average using the importance weights*3. In the current study, we explore the utility of
sis  cis-interaction LD scores generated with different window sizes +5, +10, +25, and +50 SNPs around
se0 each j-th focal SNP. In practice, we find that cis-interaction LD scores that are calculated using larger
sso windows lead to the most robust estimates of heritability while also not over representing the total
ss1 phenotypic variation explained by tagged non-additive genetic effects (see Figure S8). Therefore, unless
s2  otherwise stated, we use cis-interaction LD scores calculated with a £50 SNP interaction window for all
3 simulations and real data analyses conducted in this work. For a direct comparison between choosing a

s« single window size versus the model averaging strategy described above, see Tables S1 and S2.

s Relationship between minor allele frequency and effect size

sss ' The LDSC software computes LD scores using annotations over equally spaced minor allele frequency
ssv. (MAF) bins. These annotations enable the per trait relationship between the MAF and the effect size
s of each variant in the genome to vary based on the discrete category (or MAF bin) it is placed into.
ss9 This additional flexibility is intended to help LDSC be more robust when estimating heritability. The
soo  relationship between MAF and effect size is already implicitly encoded in the LDSC formulation since we

s1  assume genotypes are normalized. When normalizing by the variance of each SNP (or equivalently its
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s2 MAF), we make the assumption that rare variants inherently have larger effect sizes. There exists a true
ss3  functional relationship between MAF and effect size which is likely to be somewhere between the two
s extremes of (i) normalizing each SNP by its MAF and (4) allowing the variance per SNP to be dictated
ss by its MAF.

566 Recent approaches have proposed using a single parameter a to better represent the nonlinear rela-
ss7  tionship between MAF and variant effect size. The main idea is that this a not only provides the same
s additional flexibility to LDSC as the MAF-based discrete annotations, but it also empirically yields even

o more precise heritability estimates?*. Namely, we use
— _ 2 l—«
() = Lin(@)ac(k),  Ljk(a) =1} Vx| (24)
k

sn where a.(k) is the annotation value for the c-th categorical bin. The « parameter is unknown in practice
s and needs to be estimated for any given trait. While standard ranges for o can be used for heritability es-
s timates, we use a restricted maximum likelihood (REML) based method which was recently developed 32.
574 In the i-LDSC software, we use this a construction to handle the relationship between MAF and variant
sis  effect size for two specific reasons. First, by constructing the LD scores using «, we more accurately
s capture the variation in chi-square test statistics due to additive effects**. Second, we note that there is
s7 - correlation between MAF and (i) LD scores, (i) cis-interaction LD scores, and (4ii) trait architecture.
sts 1o that end, if we do not properly condition on MAF, there becomes additional bias, and we may falsely
st attribute some amount of variation in the chi-square test statistics to LD or the tagged interaction effects.
ss0  Therefore, in our formulation, we include an a term on the LD scores to condition on this effect. We
ss1  demonstrate in simulations that this removes the bias introduced by the relationship between MAF and

se2  trait architecture, and it mitigates potential inflation of type I error rates in the i-LDSC test.

= Istimation of allele frequency parameters

ss«  In the main text, we analyzed 25 complex traits in both the UK Biobank and BioBank Japan data sets.
s In order to account for minor allele frequency (MAF) dependent trait architecture, we calculated « values
ss for each trait that had not been analyzed by previous studies32. The a estimates for each of the 25 traits
sev analyzed in this study are shown in Table S4. Intuitively, a parameterizes the weighting of the effects

sss  of each individual variant given its frequency in the study cohort and can take on values in the range of


https://doi.org/10.1101/2022.07.21.501001
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.21.501001; this version posted June 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

24

0 [-1,0]. More negative values of « indicate that lower frequency variants contribute more to the observed
s0 variation in a trait of interest, whereas values of « closer to zero indicate that common variants contribute
s a greater amount of variation to observed trait values.

592 We took a values for 11 traits (again see Table S4) that had previously been calculated from Schoech
03 et al. 32. For the remaining 14 traits analyzed in this study, we followed the estimation protocol described
s in the same manuscript. Specifically, using the variants passing the quality control step in our pipeline for
sos 25,000 randomly selected individuals in the UK Biobank cohort, we constructed MAF-dependent genetic
s relatedness matrices for values of @« = {—1,-0.95,—-0.9,...,0} using the GRM-MAF-LD software, https:
sv //github.com/arminschoech/GRM-MAF-LD. We then used the GCTA software®® to obtain heritability and
ses  likelihood estimates using REML for each a-trait pairing. We then fit a trait-specific profile likelihood

so9  across the range of o values and estimate the maximum likelihood value of « using a natural cubic spline.

w0 Simulation studies

s We used a simulation scheme to generate synthetic quantitative traits and SNP-level summary statis-
ez tics under multiple genetic architectures using real genome-wide data from individuals of self-identified
63 European ancestry in the UK Biobank. Here, we consider phenotypes that have some combination of
s additive effects, cis-acting interactions, and a third source of genetic variance stemming from either gene-
ws by-environment (GXE) or gene-by-ancestry (Gx Ancestry) effects. For each scenario, we select some set

o6 0f SNPs to be causal and assume that complex traits are generated via the following general linear model

607 y=XB8+WO+1Zj +e, ENN((LKQI)? (25)

es where y is an N-dimensional vector containing all the phenotypes; X is an N x J matrix of genotypes
s0 encoded as 0, 1, or 2 copies of a reference allele; 3 is a J-dimensional vector of additive effect sizes for
e each SNP; W is an IV x M matrix which holds all pairwise interactions between the randomly selected
e subset of the interacting SNPs with corresponding effects €; Z is an NV x K matrix of either GXE or
sz GXAncestry interactions with coefficients §; and € is an N-dimensional vector of environmental noise.
a3 The phenotypic variation is assumed to be V]y] = 1. All additive and interaction effect sizes for SNPs
s are randomly drawn from independent standard Gaussian distributions and then rescaled so that they

e1s  explain a fixed proportion of the phenotypic variance V[X3] + V[W@] + V[Z5] = H2. Note that we do
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616 not assume any specific correlation structure between the effect sizes 3, 6, and 6. We then rescale the
a7 random error term such that V]e] = (1 — H?). In the main text, we compare the traditional LDSC to
ss its direct extension in i-LDSC. For each method, GWAS summary statistics are computed by fitting a
T

s10  single-SNP univariate linear model via least squares where Bj = (x!

ij)*lx]T-y for every j =1,...,J SNP

e0 in the data. These effect size estimates are used to derive the chi-square test statistics X? =N EJQ We
sn implement both LDSC and i-LDSC with the LD matrix R = XTX/N and the cis-interaction correlation
e matrix V. = XTW/N being computed using a reference panel of 489 individuals from the European
e3 superpopulation (EUR) of the 1000 Genomes Project. The resulting matrices R and V are used to

e« compute the additive and cis-interaction LD scores, respectively.

e Polygenic simulations with cis-interactions. In our first set of simulations (Figures 1-3 and S1-S8,
o6 and Tables S1 and S2), we consider phenotypes with polygenic architectures that are made up of only
e7 additive and cis-acting SNP-by-SNP interactions. Here, we begin by assuming that every SNP in the
o8 genome has at least a small additive effect on the traits of interest. Next, when generating synthetic
wo traits, we assume that the additive effects make up p% of the heritability while the pairwise interactions
s make up the remaining (1 — p)%. Alternatively, the proportion of the heritability explained by additivity
e is said to be V[X8] = pH?, while the proportion detailed by interactions is given as VW8] = (1 — p) H2.
622 The setting of p = 1 represents the limiting null case for i-LDSC where the variation of a trait is driven
s by solely additive effects. Here, we use the same simulation strategy used in Crawford et al.?! where we
e divide the causal cis-interaction variants into two groups. One may view the SNPs in group #1 as being
¢35 the “hubs” of an interaction map. SNPs in group #2 are selected to be variants within some kilobase (kb)
s window around each SNP in group #1. Given different parameters for the generative model in Eq. (25),

s we simulate data mirroring a wide range of genetic architectures by toggling the following parameters:
63 e heritability: H? = 0.3 and 0.6;

630 e proportion of phenotypic variation that is generated by additive effects: p = 0.5, 0.8, and 1;

640 e percentage of SNPs selected to be in group #1: 1% (sparse), 5%, and 10% (polygenic);

641 e genomic window used to assign SNPs to group #2: +10 and +100 kilobase (kb);

642 e allele frequency parameter: a = -1, -0.5, and 0.

s3  All figures and tables show the mean performances (and standard errors) across 100 simulated replicates.
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es Polygenic simulations with gene-by-environmental effects. In our second set of simulations
ws  (Figures S9 and S12), we continue to consider phenotypes with polygenic architectures that are made
as up of only additive and cis-acting SNP-by-SNP interactions; however, now we also consider each trait
e7 to have contributions stemming from nonzero GXE effects. Here, both the additive and cis-interaction
as effects are simulated in the same way as previously described where, for the two groups of interacting
e variants, 10% of SNPs were selected to be in group #1 and we chose £10 kb windows to assign SNPs to
o group #2. To create GxE effects, we follow a simulation strategy implemented by Zhu et al. %6 and split
et our sample population in half to emulate two subsets of individuals coming from different environments.
ez We randomly draw the effect sizes for the first environment from a standard Gaussian distribution which
e3  we denote as d;. We then selected an amplification coefficient w and set the effect sizes of the GXE
e+ interactions in the second environment to be a scaled version of the first environment effects where
s 0y = wdy. In this paper, we generate traits with heritability H? = {0.3,0.6} and amplification coefficients
o6 set tow = [1.1,1.2,...,2]. For the first set of simulations, we hold the proportion of phenotypic variation

67 explained by the different genetic components constant by fixing:
658 e H?=0.3: VXf] = 0.15; VW] = 0.075; and V[Z§] = 0.075;
650 e H? =0.6: V(X0] = 0.3; V[W6] = 0.15; and V[ZJ] = 0.15;

oo  where Z = [Xy,Xa] is the set of genotypes split according to environment and § = [d1,d2]. To test
61 the sensitivity of the cis-interaction LD scores to other sources of non-additive variation, we also re-
e2 peated the same simulations where there were only additive and GXE effects contributing equally to

663 trait architecture:
664 e H? =0.3: V[X08] = 0.15; V[W0] = 0; and V[Z6] = 0.15;
665 e H2=0.6: V[X8] = 0.3; V[W0] = 0; and V[Zé] = 0.3.

oo Again all figures show the mean performances (and standard errors) across 100 simulated replicates.

e Polygenic simulations with gene-by-ancestry effects. In our third set of simulations (Figures S10,
ws S11, S13, and S14), we consider phenotypes with polygenic architectures that are made up of additive, cis-
o interactions, and G x Ancestry effects. Here, we follow Sohail et al. *7 and first run a matrix decomposition

oo on the individual-level genotype matrix X = UQT where U is a unitary N x K score matrix, Q is a
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on K x J loadings matrix, and K represents the number of (predetermined) principal components (PCs).
o2 To generate Gx Ancestry interactions, we then create the matrix Z; = Xqj where qy is a J-dimensional
ez vector of SNP loadings for the k-th principal component. In this paper, we generate traits with heritability
e H? ={0.3,0.6} and interaction effects taken over k = 1,...,10 principal components. For the first set of
o5 simulations, we hold the proportion of phenotypic variation explained by the different genetic components

e constant by fixing:
o7 e H? =10.3: VIXB] = 0.15; VW8] = 0.075; and V[ZJ] = 0.075;
o78 e H? =0.6: V(X3] = 0.3; V[W6] = 0.15; and V[ZJ] = 0.15;

oo To test the sensitivity of the cis-interaction LD scores to other sources of non-additive variation, we also
e repeated the same simulations where there were only additive and GxE effects contributing equally to

e trait architecture:
662 e H? =0.3: V[Xf] = 0.15; VW8] = 0; and V[Z4] = 0.15;
683 e H2=0.6: V[X8] = 0.3; V[W0] = 0; and V[Zé] = 0.3.

s¢ Note that, for each case, we generate summary statistics in two ways: (7) including the top 10 PCs as
s covariates in the marginal linear model to correct for population structure and (i) not correcting for any
s population structure. Again all figures show the mean performances (and standard errors) across 100

67 simulated replicates.

es  Sparse simulation study design. In our final set of simulations, we consider phenotypes with sparse
e architectures? (Figure S15). Here, traits were simulated with solely additive effects such that V[X3] =
oo H?, but this time only variants with the top or bottom {1,5,10,25,50,100} percentile of LD scores
o1 were given nonzero coefficients. We once again generate traits with heritability H? = {0.3,0.6}. We
62 also want to note that, in each of these specific analyses, synthetic trait architectures were generated
03 using all UK Biobank genotyped variants that passed initial preprocessing and quality control (see next
04 section). Since not all of these SNPs are HapMap3 SNPs, some variants were omitted from the LDSC and
65 1-LDSC regression. Overall, as shown in the main text with results taken over 100 replicates, breaking the
0 assumed relationship between LD scores and chi-squared statistics (i.e., that they are generally positively
sr correlated) led to unbounded estimates of heritability in all but the (more polygenic) scenario when 100%

ss 0f SNPs contributed to phenotypic variation.
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o Preprocessing for the UK Biobank and BioBank Japan

w0 In order to apply the i-LDSC framework to 25 continuous traits the UK Biobank*®, we first down-
1 loaded genotype data for 488,377 individuals in the UK Biobank using the ukbgene tool (https:
02 //biobank.ctsu.ox.ac.uk/crystal/download.cgi) and converted the genotypes using the provided
703 ukbconv tool (https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=149660). Phenotype data
704 for the 25 continuous traits were also downloaded for those same individuals using the ukbgene tool.
70s  Individuals identified by the UK Biobank as having high heterozygosity, excessive relatedness, or aneu-
w6 ploidy were removed (1,550 individuals). After separating individuals into self-identified ancestral cohorts
o7 using data field 21000 , unrelated individuals were selected by randomly choosing an individual from
s each pair of related individuals. This resulted in N = 349,469 white British individuals to be included
70 in our analysis. We downloaded imputed SNP data from the UK Biobank for all remaining individuals
7o and removed SNPs with an information score below 0.8. Information scores for each SNP are provided
m by the UK Biobank (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1967).

2 Quality control for the remaining genotyped and imputed variants was then performed on each co-
73 hort separately using the following steps. All structural variants were first removed, leaving only single
ne  nucleotide polymorphisms (SNPs) in the genotype data. Next, all AT/CG SNPs were removed to avoid
ns  possible confounding due to sequencing errors. Then, SNPs with minor allele frequency less than 1%
ns  were removed using the PLINK 2.0%° command --maf 0.01 . We then removed all SNPs found to be
77 out of Hardy-Weinberg equilibrium, using the PLINK --hwe 0.000001 flag to remove all SNPs with a
ne  Fisher’s exact test P-value > 1076, Finally, all SNPs with missingness greater than 1% were removed
no using the PLINK --mind 0.01 flag.

720 We then performed a genome-wide association study (GWAS) for each trait in the UK Biobank on
721 the remaining 8,981,412 SNPs. SNP-level GWAS effect sizes were calculated using PLINK and the --glm

722 ﬁag 49 .

Age, sex, and the first twenty principal components were included as covariates for all traits

s analyzed?”. Principal component analysis was performed using FlashPCA 2.0°Y on a set of independent

724 markers derived separately for each ancestry cohort using the PLINK command --indep-pairwise 100 10 0.1 .
s Using the parameters --indep-pairwise removes all SNPs that have a pairwise correlation above 0.1

26 within a 100 SNP window, then slides forward in increments of ten SNPs genome-wide.

721 In order to analyze data from BioBank Japan, we downloaded publicly available GWAS summary

s statistics for the 25 traits listed in Table S5 from http://jenger.riken.jp/en/result. Summary
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79 statistics used age, sex, and the first ten principal components as confounders in the initial GWAS study.
70 We then used individuals from the East Asian (EAS) superpopulation from the 1000 Genomes Project
1 Phase 3 to calculate paired LDSC and i-LDSC scores from a reference panel. We pruned the reference
72 panel using the PLINK command --indep-pairwise 100 10 0.5 to limit the computational time of
= calculating scores??. This resulted in reference scores for 1,164,666 SNPs that are included on the i-LDSC
7 GitHub repository (see URLs). Using summary statistics from BioBank Japan, with scores calculated
725 from the EAS population in the 1000 Genomes, we obtained 1-LDSC heritability estimates for each of the

76 2D traits.

= Data and software availability

s Source code and tutorials for implementing interaction-LD score regression via the i-LDSC package are
70 written in Python and are publicly available online at https://github.com/lcrawlab/i-LDSC. Files
no  of LD scores, cis-interaction LD scores, and GWAS summary statistics used for our analyses of the UK
w1 Biobank and BioBank Japan can be downloaded from the Harvard Dataverse (https://dataverse.
#2 harvard.edu/datsset.xhtml?persistentId=doi:10.7910/DVN/W6MA8J&faces-redirect=true). All
u3  software for the traditional and stratified LD score regression framework with LDSC and s-LDSC were
s fit using the default settings, unless otherwise stated in the main text. Source code for these approaches
ns  was downloaded from https://github.com/bulik/ldsc. When applying s-LDSC, we used 97 func-
us  tional annotations from Gazal et al.?* to estimate heritability. Data from the UK Biobank Resource?®

7w (https://www.ukbiobank.ac.uk) was made available under Application Numbers 14649 and 22419.

ns  Data can be accessed by direct application to the UK Biobank.
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« Figures and Tables
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Figure 1. Power of the i-LDSC framework to detect tagged non-additive genetic effects on
simulated data. Synthetic trait architecture was simulated using real genotype data from individuals
of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least an
additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups of
interacting variants and divide them into two groups. The group #1 SNPs are chosen to be 1%, 5%, and
10% of the total number of SNPs genome-wide (see the x-axis in each panel). These interact with the
group #2 SNPs which are selected to be variants within a +10 kilobase (kb) window around each SNP in
group #1. Coefficients for additive and interaction effects were simulated with no minor allele frequency
dependency o = 0 (see Materials and Methods). Panels (A) and (B) are results with simulations using
a heritability H? = 0.3, while panels (C) and (D) were generated with H? = 0.6. We also varied
the proportion of heritability contributed by additive effects to (A, C) p = 0.5 and (B, D) p = 0.8,
respectively. Here, we are blind to the parameter settings used in generative model and run i-LDSC while
computing the cis-interaction LD scores using different estimating windows of £5 (green), £10 (orange),
+25 (purple), and £50 (pink) SNPs. Results are based on 100 simulations per parameter combination
and the horizontal bars represent standard errors. Generally, the performance of i-LDSC increases with
larger heritability and lower proportions of additive variation. Note that LDSC is not shown here because
it does not search for tagged interaction effects in summary statistics. Similar plots for a range of «
values and generative interacting SNP window sizes are shown in Figures S1-S5.
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Figure 2. The i-LDSC framework is well-calibrated under the null hypothesis and does not
identify evidence of tagged non-additive effects when polygenic traits are generated by only
additive effects. In these simulations, synthetic trait architecture is made up of only additive genetic
variation (i.e., p = 1). Coeflicients for additive and interaction effects were simulated with no minor allele
frequency dependency a = 0 (see Materials and Methods). Here, we are blind to the parameter settings
used in generative model and run i-LDSC while computing the cis-interaction LD scores using different
estimating windows of +5 (green), +10 (orange), +25 (purple), and £50 (pink) SNPs. (A) Mean type I
error rate using the i-LDSC framework across an array of estimation window sizes for the cis-interaction
LD scores. This is determined by assessing the P-value of the cis-interaction coefficient (o) in the 1-LDSC
regression model and checking whether P < 0.05. (B) Estimates of the cis-interaction coefficient (o).
Since traits were simulated with only additive effects, these estimates should be centered around zero. (C)
Estimates of the proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated
heritability) where the true additive variance is set to H2p = 0.6. (D) QQ-plot of the P-values for the
cis-interaction coefficient (o) in 1-LDSC. Results are based on 100 simulations per parameter combination
and the horizontal bars represent standard errors. Similar plots for a range of o values and generative
interacting SNP window sizes are shown in Figures S6-S7.
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Figure 3. i-LDSC robustly and accurately estimates the proportions of phenotypic variance
explained (PVE) by genetic effects (i.e., estimated heritability) in simulations in polygenic
traits, compared to LDSC, due to our accounting for interaction effects tagged in additive
GWAS summary statistics. Synthetic trait architecture was simulated using real genotype data from
individuals of self-identified European ancestry in the UK Biobank (Materials and Methods). All SNPs
were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we
randomly select two groups of interacting variants and divide them into two groups. The group #1 SNPs
are chosen to be 10% of the total number of SNPs genome-wide. These interact with the group #2 SNPs
which are selected to be variants within a £100 kilobase (kb) window around each SNP in group #1.
Coefficients for additive and interaction effects were simulated with no minor allele frequency dependency
a = 0 (see Materials and Methods). Here, we assume a heritability (A) H? = 0.3 or (B) H? = 0.6
(marked by the black dotted lines, respectively), and we vary the proportion contributed by additive
effects with p = {0.2,0.4,0.6,0.8}. The grey dotted lines represent the total contribution of additive
effects in the generative model for the synthetic traits (H2p). i-LDSC outperforms LDSC in recovering
heritability across each scenario. Results are based on 100 simulations per parameter combination.
i-LDSC estimates of heritability partitioned by estimation cis-interaction window are shown in Figure
S8. The mean absolute error between the true H? value and the estimates produced by i-LDSC and LDSC
are shown in Table S1 and S2, respectively.
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Figure 4. The i-LDSC framework recovers heritability and provides estimates of tagged cis-
interactions in GWAS summary statistics (¢) for 25 quantitiative traits in the UK Biobank
and BioBank Japan. (A) In both the UK Biobank (green) and BioBank Japan (purple), estimates of
phenotypic variance explained (PVE) by genetic effects from i-LDSC and LDSC are highly correlated for 25
different complex traits. The Spearman correlation coefficient between heritability estimates from LDSC
and i-LDSC for the UK Biobank and BioBank Japan are 72 = 0.989 and 72 = 0.850, respectively. The
y = x dotted line represents the values at which estimates from both approaches are the same. (B) PVE
estimates from the UK Biobank are better correlated with those from the BioBank Japan across 25 traits
using LDSC (Spearman r? = 0.848) than i-LDSC (Spearman r? = 0.666). (C) i-LDSC estimates of the
phenotypic variation explained by tagged non-additive genetic effects using the cis-interaction LD score
(i.e., estimates of o) between traits in the UK Biobank and BioBank Japan (Spearman r? = 0.372). (D)
Intercept estimates between i-LDSC and LDSC regression models are highly correlated in the UK Biobank
(Spearman 2 = 0.888, slope = 0.919) and BioBank Japan (Spearman r? = 0.813, slope = 1.179). When
height, an outlier in our UK Biobank analysis is omitted, the slope of the UK Biobank intercept line
is closer to that of the Biobank Japan (UKB slope with no outlier = 1.070). Note that the heritability
estimates displayed in panels (A) and (B), and P-values corresponding to panel (C), are given in Table
1.
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