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Abstract1

Background: Advances in sequencing technology has led to the discovery of associations2

between the human microbiota and many diseases, conditions, and traits. With the increasing3

availability of microbiome data, many statistical methods have been developed for studying4

these associations. The growing number of newly developed methods highlights the need for5

simple, rapid, and reliable methods to simulate realistic microbiome data, which is essential6

for validating and evaluating the performance of these methods. However, generating realistic7

microbiome data is challenging due to the complex nature of microbiome data, which feature8

correlation between taxa, sparsity, overdispersion, and compositionality. Current methods for9

simulating microbiome data are deficient in their ability to capture these important features of10

microbiome data, or can require exorbitant computational time.11

Methods: We develop MIDASim (MIcrobiome DAta Simulator), a fast and simple ap-12

proach for simulating realistic microbiome data that reproduces the distributional and corre-13

lation structure of a template microbiome dataset. MIDASim is a two-step approach. The14

first step generates correlated binary indicators that represent the presence-absence status of15

all taxa, and the second step generates relative abundances and counts for the taxa that are16

considered to be present in step 1, utilizing a Gaussian copula to account for the taxon-taxon17

correlations. In the second step, MIDASim can operate in both a nonparametric and parametric18

mode. In the nonparametric mode, the Gaussian copula uses the empirical distribution of rela-19

tive abundances for the marginal distributions. In the parametric mode, an inverse generalized20

gamma distribution is used in place of the empirical distribution.21

Results: We demonstrate improved performance of MIDASim relative to other exist-22

ing methods using gut and vaginal data. MIDASim showed superior performance by PER-23

MANOVA and in terms of alpha diversity and beta dispersion in either parametric or nonpara-24

metric mode. We also show how MIDASim in parametric mode can be used to assess the25

performance of methods for finding differentially abundant taxa in a compositional model.26

Conclusions: MIDASim is easy to implement, flexible and suitable for most microbiome27

data simulation situations. MIDASim has three major advantages. First, MIDASim performs28

better in reproducing the distributional features of real data compared to other methods at29
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both presence-absence level and relative-abundance level. MIDASim-simulated data are more30

similar to the template data than competing methods, as quantified using a variety of measures.31

Second, MIDASim makes few distributional assumptions for the relative abundances, and thus32

can easily accommodate complex distributional features in real data. Third, MIDASim is33

computationally efficient and can be used to simulate large microbiome datasets.34

Keywords: Microbiome data simulation, taxon-taxon correlation, Gaussian copula35

1 Introduction36

The human microbiota and its associated microbiome play a fundamental role in many dis-37

eases and conditions, including obesity [1], inflammatory bowel disease (IBD) [2], preterm birth38

[3], autism [4] and cancers [5, 6]. Advances in sequencing technologies, especially 16S rRNA39

sequencing, now allow rapid and simultaneous measurement of the relative abundance of all taxa40

in a community. This has led to a growing number of epidemiological and clinical studies to mea-41

sure the association between the microbiome and traits of interest, sometimes with complex study42

designs and research questions.43

Although microbiome data is increasingly available, statistical analysis remains challenging.44

Microbiome data have special characteristics that are difficult to model analytically, including45

sparsity (the majority of taxa are not present in a sample), overdispersion (the variance of read46

counts is larger than what is assumed from the usual parametric models), and compositionality47

(the read counts in a sample sum to a constant). There is little consensus among researchers48

on how microbiome data should be analyzed, and new methods are being regularly developed,49

both for identifying individual taxa that associate with diseases [7, 8, 9, 10, 11, 12, 13], and for50

understanding the community-level characteristics that relate to clinical conditions [14, 15, 16].51

Simulating realistic microbiome data is essential for the development of novel methods. To52

establish the validity of a new method and prove it outperforms existing ones, researchers rely on53

simulated data in which the true microbiome/trait associations are known. Ideally, the simulated54

data should be similar to real microbiome data for the simulation studies to be trustworthy. How-55
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ever, simulating realistic microbiome data is made difficult by the same challenges as analyzing56

microbiome data: sparsity, overdispersion and compositionality. Further, the distribution of counts57

for each taxon are highly skewed and correlated in a complex way. For these reasons, most simu-58

lation methods are based on using a template microbiome dataset and generate simulated data that59

is “similar” to the template data in some way.60

Several approaches have been proposed for simulating microbiome data. Among them, some61

methods impose strong parametric assumptions so that the simulated microbiome data share simi-62

lar dispersion of real data. For example, the Dirichlet-Multinomial (D-M) distribution, in which the63

taxa counts are generated from a multinomial distribution with proportion parameters provided by64

a Dirichlet prior [17], is frequently used in simulating microbiome data. The hyper-parameters of65

this D-M model are often estimated from real data so that the simulated data share similar disper-66

sion. Another method, MetaSPARSim [18], uses a gamma-multivariate hypergeometric (gamma-67

MHG) model, in which the gamma distribution models the biological variability of taxa counts,68

accounting for overdispersion, and the MHG distribution models technical variability originating69

from the sequencing process.70

Although the D-M model and the MetaSPARSim model address the compositional feature by71

either the multinomial or the hypergeometric distribution, they do not attempt to match the corre-72

lation structures in the simulated data with those found in the real data. One recently developed73

approach that does attempt to model between-taxa correlations is SparseDOSSA (Sparse Data74

Observations for the Simulation of Synthetic Abundances) [19]. This hierarchical model makes75

assumptions about both the marginal and joint distributions of the relative abundances of a set of76

taxa. For the marginal distribution, SparseDOSSA assumes a zero-inflated log-normal model for77

the relative abundance of each taxon and then imposes the compositional constraint. Parameters in78

the zero-inflated log-normal marginal are estimated through a penalized Expectation-Maximization79

(EM) algorithm from a template dataset. Unfortunately, the penalized EM algorithm for estimat-80

ing hyper-parameters is computationally expensive, especially when a large number of taxa exist81

in the data. For example, fitting SparseDOSSA model to a modest-sized dataset with sample size82
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of 79 and number of taxa = 109 takes more than a day (≈ 27.8 hours) on a single Intel “Cascade83

Lake” core [19]. To partially compensate for this drawback, SparseDOSSA provides fitted models84

that were previously trained by the developers and that users can use directly, which is only useful85

if the developer-provided fits resemble the data users wish to generate. Moreover, SparseDOSSA86

removes rare taxa that appear in fewer than 4 samples by default, thus failing to accommodate the87

possibility that rare taxa are of interest in the simulation studies.88

Recently, deep neural networks have also been used in simulating microbiome data, notable89

examples being MB-GAN [20] and DeepMicroGen [21]. MB-GAN employs a deep generative90

adversarial network (GAN) to autonomously learn from actual microbial abundances, obviating91

the need for explicit statistical modeling assumptions. DeepMicroGen, tailored for longitudinal92

microbiome studies, utilizes a bidirectional recurrent neural network (RNN)-based GAN to impute93

missing data by exploiting temporal relationships between samples. Although these deep neural94

network models show promise over conventional statistical models in capturing microbiome data’s95

complex structure, their practical application is challenging. Issues include the difficulty in tailor-96

ing simulations to specific alterations in data structure (e.g., changes in relative abundances), and97

severe computational issues (see https://github.com/zhanxw/MB-GAN/blob/master/code_98

check_convergence/plot_logs_convergence_check.ipynb). Consequently, these methods99

were not included in our comparative analyses.100

Considering the drawbacks of existing approaches, a method that can flexibly capture the dis-101

tributional and correlation structure of microbiome data would greatly benefit the research commu-102

nity. Here, we develop a fast and simple MIcrobiome DAta Simulator (MIDASim) for generating103

realistic microbiome data that capture the correlation structure of taxa of a template microbiome104

dataset in both the presence-absence structure and the relative abundances. MIDASim can op-105

erate in two modes: parametric and nonparametric. In nonparametric mode, all quantities are106

calculated using their empirical distributions in the original data. In parametric mode, we use an107

inverse generalized gamma distribution to model the relative abundances; this model is fit using108

a novel method-of-moments approach. We show that the resulting distribution gives good agree-109
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ment with the datasets we analyze here, for both low and high prevalence taxa. The parametric110

mode is primarily designed for simulation studies where we want to make changes to the log-mean111

relative abundance so that we can assess the performance of methods that look for differentially112

abundant taxa in log-linear models such as the compositional model. Using simulations, we show113

that MIDASim in either mode generates data that are more similar to the template data, as mea-114

sured by multiple metrics, than competing methods. MIDASim is implemented as an R package115

(https://github.com/mengyu-he/MIDASim).116

2 Results117

2.1 The MIDASim approach118

MIDASim simulates microbiome data using a two-step approach. The first step generates the119

presence-absence status for taxa in each sample by simulating correlated binary data from a probit120

model with a correlation structure chosen to match the empirical correlation in the template data.121

The second step generates relative abundance and count data for non-zero taxa from a Gaussian122

copula model.123

This model allows for separate fitting of each taxon’s relative abundance marginal distribution124

and the inter-taxa correlations. For taxon-taxon correlation, MIDASim employs a rank-based ap-125

proach to accurately mirror the empirical correlations observed in the template data, effectively126

managing zero counts. Regarding the marginal distribution, MIDASim offers two options: using127

the taxon-specific empirical distribution (nonparametric mode) or sampling taxon relative abun-128

dances from an inverse generalized gamma distribution (parametric mode). This flexibility enables129

MIDASim to capture the complex distributional characteristics often present in real data.130

MIDASim also allows the user to change the library sizes, taxon relative abundances or the131

proportion of non-zero cells, and these features may depend on covariates such as case/control sta-132

tus. MIDASim is computationally efficient and can be used to simulate large microbiome datasets133

in a fast and simple fashion.134
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2.2 Simulation setup135

We compared MIDASim in both parametric and nonparametric mode to three competing meth-136

ods (the D-M method, MetaSPARSim and SparseDOSSA) and evaluate how well the simulated137

data reporduce the characteristics of the template data. We use two datasets from the Integra-138

tive Human Microbiome Project (HMP2) [22] as the template data: a vaginal microbiome dataset139

from Multi-Omic Microbiome Study: Pregnancy Initiative (MOMS-PI) project, and a gut micro-140

biome dataset from the Inflammatory Bowel Disease Multi-omics Database (IBDMDB) project141

[23]. These two datasets represent microbiomes from two body sites that are frequently studied142

in the literature. They are also distinct in their characteristics, and thus provide a comprehensive143

assessment of the proposed method. For example, the vaginal data is notably sparse, comprised of144

95.25% zeros. In contrast, the gut data is less sparse, comprised of 85.09% zeros. Both datasets145

feature taxa that are OTUs; the IBD data are classified at the genus level, while the MOMS-PI data146

are classified to the species level using a “best guess” approach. Moreover, the coefficient of vari-147

ation (CV) of vaginal data is 40.77, while that of the gut data is 10.76, indicating that the vaginal148

data is more over-dispersed. We compared the four methods using two aspects of performance:149

how well the simulated data matched the template data, and the computational effort required to fit150

and generate a simulated dataset. Further details on the statistical procedures used can be found in151

Supplemental text (Section: Statistical Analyses).152

Before fitting MIDASim, we lightly filtered the two template datasets. For quality control,153

we removed samples with library size < 3000. To allow comparison with SparseDOSSA, we154

removed taxa that were present in fewer than 4 samples, a requirement of SparseDOSSA. MOMS-155

PI is a longitudinal study with repeated vaginal samples; we kept only first-visit samples to avoid156

repeated measures. The only filtering used for the IBD data was that required by SparseDOSSA.157

After filtering, 517 samples and 1146 taxa were preserved in the vaginal MOMS-PI dataset; the158

gut IBD dataset comprised 146 samples and 614 taxa. This filtering also slightly decreased the159

zero proportions in the template datasets. Specifically, in the IBD dataset, the zero proportion160

was reduced from 89.69% to 85.09% following the filtering. Similarly, for the MOMS-PI dataset,161
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the zero proportion decreased from 96.97% to 95.25%. We ignored covariates such as gender or162

location of biopsy collection to focus only on reproducing the microbiome datasets as closely as163

possible, the goal of all methods considered here. In our simulations, the library sizes for datasets164

generated using the D-M method and MetaSPARSim were the same as those in the original data.165

For SparseDOSSA, the library sizes were generated from a log-normal distribution parameterized166

by mean and standard deviation of log counts in the original data, as recommended in their original167

publication. To facilitate a comparison of the methods, all simulated counts were transformed to168

relative abundances.169

2.3 MIDASim outperforms existing methods in reproducing distributional170

features of microbiome data171

The PCoA plots in Figure 1 provide a simple visualization of the similarities between the orig-172

inal data and the simulated data by MIDASim (in both nonparametric and parametric modes),173

the D-M method, MetaSPARSim, and SparseDOSSA for the IBD data and MOMS-PI data. For174

both datasets, after ordination, the data simulated from MIDASim looked similar to the template175

data, using either the (presence-absence-based) Jaccard distance (Figure 1 A,C) for nonparametric,176

(E,G) for parametric or (relative abundance-based) Bray-Curtis distance (Figure 1 B,D) for non-177

parametric, (F,H) for parametric. Conversely, for both data templates, data simulated by the D-M178

method, MetaSPARSim, SparseDOSSA all appear to be underdispersed in the first two principal179

coordinates (Figure 1 I,K,M,O,Q,S) using the Jaccard distance. For the IBD data, data simulated180

using D-M and MetaSPARSim appeared easily distinguishable from the original data when the181

Bray-Curtis distance was used (Figure 1 J, N). For both the IBD and the MOMS-PI data, we also182

see clear underdispersion in data simulated using D-M (Figure 1 J,L). To allow visual comparison183

between the template data and multiple datasets simulated by MIDASim, in Figure S1 we also184

give a probability density map of data generated using MIDASim, constructed using 20 simulated185

datasets. In general, the agreement between the observed and expected values is good.186

The visual impressions of beta diversity in figures Figure 1 and Figure S1 are confirmed in187
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Figure 1: Principal Coordinates plots (PCoA) of the simulated and original community. Each row
corresponds to one method. The left two columns are the plots for the IBD data, and the right two
columns are the plots for the MOMS-PI data. Black points: samples from original data. Colored
points: samples from the simulated data with red being MIDASim with nonparametric model,
yellow being MIDASim with parametric model, blue being D-M, pink being MetaSPARSim, and
green being SparseDOSSA.
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Table 1, where we test whether the template and simulated data are significantly different in beta188

diversity using PERMANOVA [24]. For tests using the Jaccard distance, the p-values for MI-189

DASim in nonparametric mode were consistently high (indicating no detected difference between190

simulated and template data); in parametric mode, MIDASim had a significant difference for the191

MOMS-PI data but not the IBD data. For all other methods PERMANOVA found highly significant192

differences between the simulated and template data with the single exception of SparseDOSSA193

applied to the IBD data using the Jaccard distance. Note that when using the Bray-Curtis distance,194

only MIDASim in nonparametric mode could produce data that was not easily differentiated from195

the template data by PERMANOVA.196

To compare the performance of all methods in terms of beta dispersion, in Figure 2 we compare197

the empirical cumulative distribution function (CDF) of the distance between each sample and the198

group centroid in the simulated data to this CDF in the template data. These distances were cal-199

culated using the betadisper function in the R package vegan. If the simulated data are similar200

to the template data, the CDF of distances-to-centroids in the simulated data should resemble that201

of the template data. These CDFs are shown in Figure 2 for Jaccard and Bray-Curtis distances, for202

the IBD and MOMS-PI data. The CDFs datasets simulated by the D-M method, MetaSPARSim,203

and SparseDOSSA are noticeably dissimilar to the CDFs of the template data; this dissimilarity204

is confirmed by extremely small Kolmogorov-Smirnov two-sample test p-values reported in the205

figure. The range of distances to centroids in the data simulated by the D-M method and Sparse-206

DOSSA is smaller compared to the real data in every scenario, indicating a smaller dispersion207

overall. For the IBD data, the MIDASim-simulated data (both modes) follow the template data208

closely in dispersion in both Jaccard and Bray-Curtis distances. For the MOMS-PI dataset, the209

non-parametric MiDASim generated data exhibiting a dispersion profile similar to the template210

data when evaluated using the Jaccard distance, but not the Bray-Curtis distance. Conversely, the211

parametric MiDASim yielded data with significant differences in both Jaccard and Bray-Curtis212

distance measures. However, panel C and D of Figure 2 show the MIDASim results (especially in213

nonparametric mode) are clearly closer to those of the template data than the other methods are.214
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Table 1: Average p-value (from 20 replicates) for tests comparing alpha and beta diversities of
simulated data and template data. The significance level is 0.05.

Beta-Diversity∗ Alpha-Diversity∗∗
Data Method Jaccard Bray-Curtis Richness t Richness KS Shannon t Shannon KS

IBD

MIDASim 0.9993 1.0000 0.6644 0.2557 0.6047 0.6627
MIDASim (parametric) 0.5856 0.8118 0.4916 0.1960 0.3306 0.2565
D-M 0.0090 < 0.0001 0.3303 < 0.0001 < 0.0001 < 0.0001
MetaSPARSim 0.0340 < 0.0001 0.3102 < 0.0001 0.0078 < 0.0001
SparseDOSSA 0.7972 < 0.0001 0.0569 < 0.0001 < 0.0001 < 0.0001

MOMS-PI

MIDASim 0.5793 0.8617 0.6252 0.0019 < 0.0001 < 0.0001
MIDASim (parametric) 0.0058 0.0010 0.0495 0.1607 < 0.0001 < 0.0001
D-M < 0.0001 < 0.0001 0.0028 < 0.0001 < 0.0001 < 0.0001
MetaSPARSim < 0.0001 < 0.0001 0.6341 < 0.0001 < 0.0001 < 0.0001
SparseDOSSA < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0002 0.0015

∗ Beta-diversity comparisons were conducted using PERMANOVA.
∗∗ Alpha-diversity comparisons were conducted using both t-test and the Kolmogorov-Smirnov (KS) test.

Figures S2 and S3 display the results of t-distributed Stochastic Neighbor Embedding (t-SNE)215

and Uniform Manifold Approximation and Projection (UMAP) analyses, applied to simulated and216

template data using Jaccard and Bray-Curtis distances using multiple methods. These visualiza-217

tions corroborate the findings from the PCoA plot, demonstrating that data generated by MIDASim218

more closely resemble the template data compared to those from alternative methods.219

Table 1 and Figure 3 present comparisons of two alpha diversity measures: species richness220

and the Shannon index. We employed the Welch t-test to compare the mean alpha diversities and221

the Kolmogorov-Smirnov two-sample test for differences in their distributions. Table 1 reports the222

average p-values obtained from 20 simulated datasets for each method. In the IBD data analysis, all223

methods successfully reproduced mean richness (indicated by Welch t-test p-values > 0.05). For224

the MOMS-PI data, only MIDASim (in nonparametric mode) and MetaSPARSim produced mean225

richness values not significantly different from the template data. A different perspective emerges226

when analyzing the entire distribution of sample richness using the Kolmogorov-Smirnov test.227

Here, only MIDASim (in both modes) generated data with richness distribution indistinguishable228

from the IBD data, and only MIDASim in parametric mode achieved this for the MOMS-PI data.229

Regarding the Shannon index, MIDASim (in both modes) was the only method to successfully230

generate data resembling the template IBD data in both mean and distribution. However, for the231

MOMS-PI data, no method could replicate the Shannon index of the template data. It is noteworthy232
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Figure 2: Empirical cumulative distribution function of distances to centroids

that, even when MIDASim indicated significant differences sometimes, its p-values were often233

larger than those of competing methods. Figure 3 also illustrates the alpha diversities for a single234

dataset from each simulation method, where MIDASim more closely matches the template data’s235

alpha diversity. Additionally, the alpha diversity of MIDASim in parametric mode is typically236

less variable than in nonparametric mode, potentially explaining its relative performance in beta237

diversity.238
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Figure 3: Alpha diversities (Richness and Shannon Index) of original and a single simulated dataset
for each of four simulation methods. Asterisks indicate significance levels of KS-test p-values
comparing the simulated data with that in the template data, as shown in Table 1: ns (p > 0.05), *
(p < 0.05), ** (p < 0.01), *** (p < 0.0001).
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We also applied MIDASim to the un-filtered datasets to assess its performance when very rare239

taxa are present. Including all taxa, the IBD data comprised 908 taxa for 146 subjects, and the240

MOMS-PI data comprised 1839 taxa for 517 subjects. We compared the alpha and beta diversities241

between the template data and the MIDASim simulated data in Table S1. The result remains242

consistent with scenarios where extremely rare taxa are excluded.243

2.4 MIDASim can be used for assessing newly designed statistical tools244

To demonstrate the capability of MIDASim for evaluating newly developed statistical tools, we245

used MIDASim to generate realistic microbiome data that included taxa with relative abundances246

that varied with categorical covariates. We used the IBD data [23] as the template, resulting in the247

simulation of 614 taxa across n independent samples. A more detailed description of the simulation248

can be found in Section 4.5. Briefly, we generated a dichotomized covariate X1 that affected the249

relative abundance of either 10 or 20 “causal” taxa, randomly selected among the 100 taxa having250

the highest relative abundances. We generated a second covariate X2 that affected a second group251

of 10 taxa selected in the same way, such that there were always 5 taxa affected by both covariates.252

We assumed X2 had a fixed effect on relative abundances, but varied the effect of X1 according to253

a parameter that measures the effect size. The precise effect of the covariates is given in Equations254

(9) and (10). X1 and X2 are simulated to be balanced. Note that although only a subset of taxa are255

directly affected by our covariates, the relative abundances of all other taxa are modified due to the256

compositional constraint that relative abundances sum to one.257

We used data simulated with MIDASim to evaluate seven existing methods that can measure258

the association between X1 and each taxon while adjusting for X2. These methods are: (1) Analysis259

of Compositions of Microbiomes with Bias Correction (ANCOM-BC) [25], (2) an updated version260

of ANCOM-BC which additionally accounts for taxon-specific bias (ANCOM-BC2) [26], (3) the261

original Linear Decomposition Model (LDM) as proposed in [11], (4) an updated LDM version262

incorporating the centered log-ratio transformation [27], (5) the Linear models for Differential263

Abundance analysis (LinDA) [28], (6) the Logistic Compositional Model (LOCOM) [13], and264
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(7) the Zero-Inflated Quantile approach (ZINQ) [29]. Notably, ZINQ and the original LDM is265

designed to test differences in relative abundances, while the other methods are tailored for the266

compositional null hypothesis. Our analysis was restricted to taxa present in at least 20% of the267

samples.268

Figure 4 presents the False Discovery Rate (FDR) at a nominal 0.2 rate for all evaluated meth-269

ods when n= 200. Results for n= 100 are analogous and have been omitted for brevity. Unsurpris-270

ingly, ZINQ and the original LDM model exhibit a notably inflated FDR, as they test the hypothesis271

of any difference in relative abundance. In MIDASim-simulated data, changes in the abundance of272

one taxon can influence the relative abundances of others due to compositional constraints, as de-273

scribed in Equations (9) and (10). Among the remaining methods, which were designed to test the274

compositional hypothesis, LOCOM shows the best FDR control, followed by LDM-CLR, LinDA275

and the original ANCOM-BC. To our surprise, the ANCOM-BC2 reports worse FDR control com-276

pared to the original ANCOM-BC, possibly due to the difficulty in addressing the taxon-specific277

bias factor. These findings underscore the efficacy of MIDASim in generating datasets conducive278

to the evaluation of novel statistical models.279

Figure 4: False discovery rate assessment of seven differential abundance analysis methods using
MIDASim simulated datasets. Sample size n = 200. Effect size is the value of β1 in Equation 9
and Equation 10. Grey dashed line: FDR = 0.2 reference line.
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2.5 MIDASim is computationally efficient280

We compared the computational time that each method takes to fit its proposed model to the281

template IBD and MOMS-PI datasets and to simulate one dataset of the same size, which was282

summarized in Table 2. The computational time was evaluated on an Intel Quad core 2.7GHz283

processor, with 8GB memory. Comparing the total time used, MIDASim is one of the fastest,284

especially for the large MOMS-PI dataset. For model fitting, MetaSPARSim is the fastest, but it285

is very slow in generating new data. For simulating new data after fitting, D-M is the fastest. The286

computation time of SparseDOSSA for fitting the model depends on the number of iterations in287

its EM algorithm. We found it took more than 3 hours to fit SparseDOSSA to either the IBD or288

MOMSPI dataset, making it hard to use in practice; the pre-trained models can be used if faster289

results are needed, but then a user-selected template dataset cannot be used. Discounting the time290

required for model fitting, MIDASim, D-M and SparseDOSSA all can generate replicate datasets291

quickly; MetaSPARSim is the only outlier in this regard.292

Table 2: Computation time (seconds) required to fit the template data, and to simulate a new dataset
with the same library size. Simulating time is the average time over 20 replicates of generating
datasets of the same size as the real data. Total time is the sum of fitting and simulating times.

Method
IBD MOMS-PI

Fitting Simulating Total Fitting Simulating Total
MIDASim (non-parametric) 25.5 2.5 28.0 162.0 15.3 177.6
MIDASim (parametric) 19.4 1.8 21.2 306.8 16.9 323.7
D-M 25.0 0.3 25.3 308.4 2.2 310.6
MetaSPARSim 7.4 144.9 152.3 41.3 469.4 510.7
SparseDOSSA 10812.6 0.8 10813.4 11792.5 5.2 11797.7

3 Discussion293

Simulating realistic microbiome datasets is essential for methodology development in micro-294

biome studies. However, this task is surprisingly difficult due to the complexity of microbial rel-295

ative abundance data. Existing parametric microbiome data simulators facilitate easy simulation296

of microbiome data in a controlled manner. However, they often fall short in generating realistic297
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correlation structures and accurately reproducing the marginal distributions. In contrast, deep-298

learning-based methods show promise in effectively modeling complex correlation structures and299

generating appropriate marginal distributions of microbiome data. However, they typically en-300

counter practical application challenges and are often not user-friendly for generating microbiome301

data with controlled variations. Here we adopt an empirical approach, using the presence-absence302

correlation structure of the original data (through a smoothed tetrachoric correlation matrix) and303

the empirical correlation matrix of relative abundances (using a Gaussian copula model). The use304

of a Gaussian copula model allows us to closely match the marginal distribution of taxon-specific305

relative abundances found in the template data, either by using the empirical distribution or by306

fitting an inverse generalized gamma distribution. Although these assumptions are not based on307

any underlying model of what microbiome data ‘should’ look like, this approach is fast, easily308

implemented and appears to reproduce data from a template microbiome dataset better than the309

existing methods we considered here.310

MIDASim can operate in two modes: parametric or nonparametric. Our simulations show that311

data generated using the nonparametric mode is closer to the template data than data generated us-312

ing the parametric mode. Thus, if the only goal is to reproduce template data, nonparametric mode313

should be used. However, data generated in parametric mode may be more useful for simulation314

studies, since the parametric model correctly adjusts other parameters such as the proportion of315

non-zero cells when a user changes the taxon mean relative abundances or library sizes. Since it316

can be difficult to correctly adjust these parameters in nonparametric mode, we strongly suggest317

using parametric mode for simulations of the type we illustrate in section 2.4. Further, our simula-318

tions show that even though data generated in nonparametric mode is more faithful to the template319

data, the data generated in parametric mode is generally more faithful to the original data than the320

other methods we studied here.321

Although MIDASim does not explicitly support modeling covariates that affect mean relative322

abundance, it is fairly easy to handle discrete covariates such as case/control status or multiple323

arms of the same experiment by (1) generating correlations for zero-one and quantitative data324
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from the template data, and then (2) using these correlations to generate data for each covariate325

group using, say, a different vector of mean relative abundances. We showed here that simulation326

studies of existing methods using this approach have appropriate false-discovery rate (FDR) when327

MIDASim-generated data is used.328

Compared to competing methods, MIDASim offers users greater flexibility in changing pa-329

rameters than the Dirichlet-Multinomial model and MetaSPARSim, while providing a better fit330

to data even in its parametric mode. Further, MIDASim runs much faster than computationally331

intensive approaches such as sparseDOSSA and the deep-learning-based approaches. The main332

disadvantages of MIDASim come primarily from its empirical approach; it makes no attempt to333

base simulations on knowledge of microbiology or microbial ecology, but instead attempts to em-334

pirically model observed patterns of correlation. There are several areas where MIDASim could335

be improved. For example, in its current version, it cannot leverage the correlations found in lon-336

gitudinal data as DeepMicroGen can. Second, it assumes that the observed correlations are not337

functions of extra covariates. The use of underlying Gaussian models for generating both pres-338

ence/absence and qualitative data imposes some limitations on the possible correlation structures339

available in MIDASim. This last objection could be partially ameliorated for the presence/absence340

data by providing alternative models to the approach in Equations (1) and (2). The user could341

then choose the model that best agreed with the template data. Similarly, it may be possible to342

find a better model for relative abundance data than the generalized gamma, and future revisions343

could include different choices for this distribution. Additionally, the parametric mode is set up344

to test the compositional null hypothesis; future revisions could include parametric models that345

are appropriate for other hypotheses. Finally, we hope to extend MIDASim to handle continuous346

covariates in a future revision.347
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4 Materials and methods348

We assume a template dataset having n samples and J taxa such that each taxon is present in349

at least one sample. For sample i and taxon j, let Ci j denote the observed count, Ni = ∑
J
j=1Ci j350

denote the observed library size, πi j denote the observed relative abundance (πi j =Ci j/Ni), and let351

presence-absence indicator Zi j = I(Ci j > 0) where I(S) = 1 if S is true and 0 otherwise. We and let352

p and δ be the J-dimensional vectors having elements p j =
1
n ∑

n
i πi j and δ j =

1
n ∑

n
i Zi j respectively.353

We let C, Z and π represent the n × J matrices of the read counts, presence-absence and the354

relative abundances of all taxa in the template data, respectively. Corresponding quantities for the355

simulated data are denoted by a tilde, e.g. Z̃ is the presence-absence indicator in the simulated356

data. We also use a ‘dot’ notation to refer to the ith row or jth column of matrix M as Mi· or M· j,357

respectively.358

MIDASim is a two-step procedure for generating count and relative abundance data. The first359

step generates binary presence-absence indicators having correlation structure similar to the tem-360

plate presence-absence data Z. This step determines which cells have zero counts in the simulated361

data. The second step is to fill the non-zero cells from step 1 using a Gaussian copula model fitted to362

the observed values π. In this step, MIDASim provides two options for modeling the marginal dis-363

tribution of each taxon: a nonparametric mode that uses the empirical distribution, and a parametric364

mode employing a three-parameter generalized gamma distribution. These modes are accordingly365

designated as “non-parametric” and “parametric” approaches, based on the marginal distribution366

choice in this step. We next describe each step in detail for the nonparametric mode; in Section 4.3367

we describe the differences when the parametric mode is used.368

4.1 Step 1: generate presence-absence data369

The goal of step 1 is to generate presence-absence data Z̃i j having correlation and marginal370

means that match the presence-absence structure in the target data. MIDASim uses a threshold371

model with underlying multivariate normal data Di j having mean θ j +ηi and variance-covariance372
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matrix ρ in such a way that Zi j = 1 corresponds to Di j ≥ 0. To accomplish this, we choose θ j and373

ηi to jointly solve374

N

∑
i=1

Φ(θ j +ηi) = m j , (1)375

and376

J

∑
j=1

Φ(θ j +ηi) = ni (2)377

where m j = ∑
n
i Zi j is the number of non-zero cells in the data from the jth taxon, ni = ∑

J
j Zi j is the378

number of non-zero cells for the ith observation, and Φ(·) and Φ−1(·) are the CDF and quantile379

function of the standard normal distribution respectively. These equations are iterated alternately,380

starting from the initial values ηi = 0 and θ j = Φ−1(Z· j).381

To estimate ρ , we first calculate the tetrachoric correlation matrix, denoted by ζ, using the382

approach of [30]. We smooth ζ to be positive definite using the function cor.smooth() in R383

package psych [31], and denote the resulting correlation matrix ρ̃. We then sample values D̃i· ∼384

MVN(θ+ηi, ρ̃) and take Z̃i j = I(D̃i j > 0).385

4.2 Step 2: generate relative abundance and count data386

We generate relative abundance data using a Gaussian copula model, which allows us to in-387

corporate dependence between taxa while specifing a marginal distribution for each taxon that388

matches the observed distribution of non-zero relative abundances for that taxon.389

In order to allow for the possible generation of non-zero relative abundances for taxa that are390

observed to have zero counts, we must include the zero cells when we specify the correlation391

structure of the Gaussian copula. To accomplish this, we use a rank-based approach based on the392

relationship between the Pearson and Spearman correlations for normally distributed data [32].393

This approach does not require us to know the values we would have obtained for an empty cell,394

had that cell not been empty; our only assumption is that the relative abundances of the zero cells395

are smaller than those of the cells having non-zero counts. In particular, to specify the correlation396

of the underlying Gaussian model, we calculate Spearman’s rank correlation φ for the observed397
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relative abundance values. When calculating the rank correlation, we consider the zero cells to398

be tied, and then break these (and any other) ties by a random ordering. For the kth of K such399

random orderings, after computing Spearman’s rank correlation φ (k), we obtain the corresponding400

Pearson correlation r(k) using r(k)i j = 2sin(πφ
(k)
j j′ /6). The correlation matrix r∗ = ∑

K
k=1 r(k)/K is401

corrected to be positive definite by setting negative eigenvalues to a small positive value and then402

renormalizing to preserve the trace of the smoothed correlation matrix. The default choice for403

MIDASim is K = 100. We then take the corrected correlation matrix as the final correlation matrix404

for the underlying Gaussian model.405

To simulate a new dataset with n observations, we first generate n independent multivariate406

normal variables Ŵi· ∼ MVN(0,r∗). If Z̃i j = 0 we always choose π̃i j = 0. Otherwise, we then407

choose simulated relative abundances for the j-th taxon sampling from the empirical distribution408

of the non-zero values of π· j. To mimic permutation, if the number of values m̃ j = ∑
n
i=1 Z̃i j of π̃· j is409

less than or equal to m j =∑
n
i=1 Zi j, the observed number of zeroes, we sample without replacement;410

if m̃ j > m j we sample the additional values with replacement, then assign the sampled values so411

that they agree with the ranking of those w· j values corresponding to Z̃i j = 1.412

A count table C̃ is then calculated by multiplying the sampled relative abundances π̃i j by library413

size Ni for each observation. Any values so obtained that are between 0 and 1 are rounded up to 1414

to keep the presence-absence structure; other values are rounded to the nearest integer. The library415

sizes for the simulated data are then calculated as Ñi = ∑
J
j=1 C̃i j and the final relative abundance is416

updated through π̃i j = C̃i j/Ñi .417

4.3 Parametric Mode using a three-parameter location-scale model for rel-418

ative abundances419

In parametric mode, MIDASim fits the generalized gamma model, a three-parameter distri-

bution in the location-scale family that was proposed for analyzing right-censored survival data

[33, 34] to the relative abundance data of each taxon separately. To accomplish this, we define
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“survival time”

t̃i j =


1
π̃i j

, π̃i j > 0

Ni, π̃i j = 0

(3a)

(3b)

which corresponds to treating t̃i j as right-censored when πi j <
1
Ni

. The generalized gamma model420

then assumes t̃i j has the distribution specified by421

ln(t̃i j) =−µ j + s jσ j ·ωi j , (4)422

where eωi j follows a gamma distribution with shape parameter k j = 1/|Q j| and scale parameter 1423

and where and s j = sign(Q j). The negative sign on µ j in (4) is chosen to ensure that the sign of µ j424

is positive in a log-linear model for π̃i j. This log-linear model is derived by using Equation (3) in425

Equation (4).426

The resulting cumulative distribution function of t̃1 j, · · · , t̃n j is

Fj(t; µ j,σ j,Q j) =



I
(

k j,eω j(t)
)

Γ(k j)
, Q j > 0

Φ
(
ω j(t)

)
, Q j = 0

1−
I
(

k j,eω j(t)
)

Γ(k j)
, Q j < 0

(5a)

(5b)

(5c)

where ω j(t) =
ln(t)+µ j

σ j
, I(s,x) is the lower incomplete gamma function, I(s,x) =

∫ x
0 us−1e−udu, and427

Γ(·) is the gamma function. Note that log-normal distribution is a special case of the generalized428

gamma distribution with the scale parameter Q = 0.429

Although the likelihood for data t̃i j easily accounts for censoring, we found that the maximum

likelihood estimators [35] of parameters (µ j,σ j,Q j) gave a poor fit to microbiome data, presum-

ably because for many taxa there are very few non-zero relative abundances. Instead, we developed

a novel variant on the method-of-moments approach to estimating these parameters. The rth non-

central moment of the generalized gamma (for both positive and negative values of r) are given
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[36] by

M(r)
j =


e−rµ j

Γ(k j + rs jσ j)

Γ(k j)
,Q j ̸= 0

e−rµ j+
r2
2 σ2

j ,Q j = 0

(6a)

(6b)

The (empirical) moments of t̃ are difficult to estimate because of censoring (i.e., cells having zero430

counts). However, the empirical moments of t̃−1 (i.e., the empirical moments of π̃· j) are easily431

calculated from the template data. For fixed Q j, we can easily find values of µ̂ j(Q j) and σ̂ j(Q j)432

so that the empirical moments of t̃−r match the theoretical values in (6) for r =−1,−2. This task433

is simplified by the observation that the coefficient of variation (variance/mean2) is independent434

of µ j which allows determination of σ̂ j without knowledge of µ̂ j (when Q j > 0 we impose the435

condition that σ j < k j/2 to ensure the needed moments exist, but can show such a solution always436

exists). Note these empirical moments are calculated using all observations, not just those having437

non-zero relative abundance, which stabilizes our approach. To find Q j, we match the observed438

and expected proportion of zero taxa by maximizing the (profile) likelihood that a zero cell is439

observed, i.e. we maximize440

∑
i

I[πi j = 0] lnS j
(
Ni· ; µ̂ j(Q j), σ̂ j(Q j),Q j

)
+ I[πi j > 1] lnFj

(
Ni· ; µ̂ j(Q j), σ̂ j(Q j),Q j

)
(7)441

with respect to Q j, where S j(t; µ,σ ,Q) = 1−Fj(t; µ,σ ,Q) is the survival function for the gener-442

alized gamma distribution given in (5). Comparison of the predicted and empirical estimates of443

the CDF of relative abundance for taxa having a wide range of relative abundances are given in444

Figure S4 and Figure S5).445

Given the parameter estimates (µ̂ j, σ̂ j, Q̂ j), we then generate π̃i j for observations having Z̃i j =446

1 by sampling t̃i j from the generalized gamma distribution upper-truncated at library size Ni, then447

invert t̃i j and normalize to obtain π̃i j as specified in (3).448

The (marginal) predicted probability of being non-zero of i-th subject and j-th taxon is449

P(Z̃i j = 1) = Fj(Ni ; µ̂ j, σ̂ , j Q̂ j). (8)450
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Thus, the predicted number of non-zero cells from j-th taxon is Z̃· j = ∑i Fj(Ni ; µ̂ j, σ̂ , j Q̂ j)). In451

Figure S6, we show that the empirical (Z· j) and predicted (Z̃· j) number of non-zero cells are in452

close agreement. Since the (marginal) probability of being non-zero is specified by (8), we can453

sample values D̃i· ∼ MVN(0, ρ̃) and take Z̃i j = I(D̃i j > Φ−1(1−Fj(Ni ; µ̂ j, σ̂ , j Q̂ j))), so that (8)454

is satisfied. Note that estimating θ j and ηi, described in Section 4.1 and used in nonparametric455

mode, is unnecessary.456

4.4 Changing the parameters of the simulation457

Simulated microbiome data are typically required for rigorous evaluation of methods for ana-458

lyzing microbiome data. To this end, it is necessary to be able to generate microbiome data sets459

that are systematically different from the template dataset in a controlled way. In nonparametric460

mode, users are able to generate data having a different number of samples, different library sizes,461

different taxon mean relative abundances p and/or different proportions of zero cells δ for each462

taxon. When these changes are made, MIDASim will adjust its marginal distribution quantities463

and then generate new data having the same presence-absence correlation ρ and relative abun-464

dance correlation r∗ as the original data. Note that changes in the mean relative abundance p j465

without precisely balanced changes in the taxon proportion of non-zeros δ j implies changes in the466

distribution of relative abundances in non-zero taxa, which is used to sample relative abundances467

for non-zero taxa. In nonparametric mode, MIDASim calculates the mean relative abundance of468

non-zero cells as p(1)j = p j/δ j, then finds the value α j for each taxon such that {πα
i, j|πi j > 0} has469

mean p(1)j for each taxon. Further, because the number of zero cells in a sample is related to its470

library size, in nonparametric mode, if users wish to change library sizes, they must also specify471

the values of m j and ni for use in (1) and (2).472

Unfortunately, the freedom given in the nonparametric mode may be difficult to use in a con-473

trolled simulation study. For example, if we wish to change the library sizes of certain obser-474

vations or the relative abundances of various taxa, it is not clear how the proportion of non-zero475

taxa should change. This is where the parametric mode of MIDASim is most useful, as changes476
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in the parameters of the parametric model (including library sizes) imply coordinated changes in477

all other quantities. For example, the proportion of non-zero cells for each taxon is given by (8),478

which facilitates changing library sizes if desired. Because the model used for relative abundance479

in parametric mode is a log-linear model in the location-scale family, changes in taxon relative480

abundance can achieved directly by changing the parameters µ j while holding other parameters481

fixed. Note that µ j is the mean on the log scale; the mean on the relative abundance scale is given482

by (6). For convenience, MIDASim in parametric mode allows the user to specify a new value of483

the taxon mean relative abundances p j and will convert these values to the corresponding values484

of µ j assuming σ̂ j and Q̂ j are unchanged.485

After either modification of the parameters, we predict the number of non-zero cells in each486

subject Ẑi· and that in each taxon Ẑ· j using (8), and then use the marginal totals Ẑi· and Ẑ· j in (2)487

and (1) for use in generating the presence-absence data Z̃. In either mode, once Z̃i j is obtained,488

changing the number of samples is easily accomplished by simply generating extra observations489

using the copula model.490

In summary, MIDASim takes an OTU count table as input, and output simulated tables of491

counts, relative abundances and presence-absence data. Its nonparametric mode permits adjust-492

ments in sample size, library sizes, mean relative abundances, and the proportion of non-zero cells.493

These alterations in the nonparametric mode affect simulations in two ways: firstly, changes to494

sample size, library sizes, and the proportion of non-zero cells directly influence the values of m j495

and ni in Equations (1) and (2), thereby altering the construction of the presence-absence matrix;496

secondly, variations in mean relative abundances lead to recalibrations in the values of non-zero rel-497

ative abundances, impacting the empirical marginal distribution of these abundances. In contrast,498

the parametric mode offers coordinated changes, allowing for adjustments in library sizes, mean499

relative abundances, and the location parameters µ in the generalized gamma model. Alterations500

in mean relative abundances are reflected in the estimation of µ to align with the first moment,501

leading to distinct generalized gamma models. Similarly, adjustments in library sizes affect the502

predicted probability of a non-zero presence, as determined by Equation 8, which influences both503
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m j and ni values and consequently the structure of the presence-absence matrix.504

4.5 Assessment of Differential Abundance Analysis Methods using MIDASim-505

Simulated Data506

We used MIDASim in parametric mode to simulate n = 100 and n = 200 independent micro-507

biome samples using the IBD data as the template. For each observation we simulated two binary508

covariates X1 and X2 in such a way that the covariates divide the sample into four equal-sized509

groups. The group having X1 = X2 = 0 was the “null” or control group. To model the effect of510

covariates in the other groups, we randomly selected either M1 = 10 or M1 = 20 “causal” taxa from511

the top 100 most abundant taxa to exhibit differential abundance based on X1. Additionally, we se-512

lected a set of M2 = 10 “causal” taxa showing differential abundance based on X2, with an overlap513

of 5 taxa between the two sets of causal taxa. Fitting MIDASim to the template data provided µ̂ j,514

σ̂ j and Q̂ j for each taxon. For the non-null groups, we modified the values of µ j according to the515

model516

µ j → µ̂ j +X1β1I( j ∈ M1)+X2β2I( j ∈ M2)−κ(X1,X2) (9)517

where κ(X1,X2) is chosen so that the resulting mean relative abundances are normalized for each518

choice of covariates. This corresponds to choosing mean relative abundances in the non-null519

groups to be520

p j =
exp{X1β1 ∗ I( j ∈ M1)+X2β2 ∗ I( j ∈ M2)}p0

j

∑
J
j′=1 exp{X1β1 ∗ I( j′ ∈ M1)+X2β2 ∗ I( j′ ∈ M2)}p0

j′
(10)521

where p0
j is the mean relative abundance for taxon j in the null (template) data.522

We varied β1 from 0.5,1,1.5,2, and β2 was fixed at 1 (corresponding to treating X2 as a con-523

founder whose effect size is not of interest). We used MIDASim to generate data from each covari-524

ate group, using the same values of ρ (tetrachoric correlation matrix) and r∗ (copula correlation525

matrix) as in the null (template) data. Library sizes for each covariate group were sampled with526

replacement from the set of library sizes in the template data. Relative abundances were calcu-527

lated using the modified values of µ j given in (9). False discovery rates (FDR) are based on 500528
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simulated datasets, based on a nominal value of FDR=0.2.529
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Supplementary File: Statistical Analyses640

We compared the simulated data from each method to the template data using several mea-641

sures. First, we concatenated the template data with a simulated dataset from each method, and642

defined a binary variable to differentiate the template and simulated data. We tested the signifi-643

cance of this variable using PERMANOVA [24], which tests for shifts in the between-observation644

distances. Our PERMANOVA tests used the Jaccard distance as well as the Bray-Curtis distance,645

which are both commonly used in microbiome data analyses. The Jaccard distance uses only646

presence-absence information in the data, and thus can assess how similar Z̃ and Z are, while647

the Bray-Curtis distance accounts for both the presence-absence and relative abundance informa-648

tion and can be used to assess the simulation of π̃. We also compared the alpha diversity of the649

simulated data and template data. The simulated communities were compared to the template650

in terms of observed richness and Shannon Index, and the differences in diversity were tested by651

Kruskal-Wallis tests. The observed richness is simply the number of observed taxa, while Shannon652

Index additionally considers evenness-the relative abundances of taxa-when quantifying diversity.653

To suppress random variability, we repeated the comparison of alpha-diversity and beta-diversity654

using 20 simulated datasets from each of the four methods. Finally, we compared the methods655

visually, using ordination and PCoA, as well as boxplots of alpha diversity values, using a single656

simulated data set for each method.657

We next compared the simulation approaches in terms of their β -dispersion, by comparing658

whether the distribution of distances from each observation to the sample centroid was the same659

in the simulated and template data. We calculated distances to the centroids using the betadisper660
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function in R package vegan [37]. We used the Kolmogorov-Smirnov (K-S) test to compare these661

empirical distributions. We again averaged results over 20 simulation replicates to suppress random662

variability. We also compared the alpha diversity of the template and simulated data, as measured663

by the species richness (number of observed taxa) and the Shannon entropy.664

Finally, we evaluated the performance of our approach to generating data with different library665

sizes by rarefying our template datasets, then using the approach described in section 2.3 to in-666

crease the library size to that of the original template data. Thus, we can compare the resulting667

simulated data to the original template data. Specifically, for each template, the observed counts668

for each subject were rarefied (subsampled without replacement) to remove 10% of the observed669

counts. The rarefied data are then treated as the template data in MIDASim, and the target library670

size is the original library size.671

Supplementary File: Tables and Figures672
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Table S1: Average p-values for comparing alpha and beta diversities in MIDASim simulated data
(20 replicates) versus template data, without removal of rare taxa.

Beta-Diversity∗ Alpha-Diversity∗∗
Data Method Jaccard Bray-Curtis Richness t Richness KS Shannon t Shannon KS

IBD
MIDASim (nonparametric) 0.9938 1.0000 0.6536 0.2756 0.5472 0.6339
MIDASim (parametric) 0.5511 0.9813 0.6388 0.2460 0.0946 0.0459

MOMS-PI
MIDASim (nonparametric) 0.1367 0.9099 0.6152 0.0012 < 0.0001 < 0.0001
MIDASim (parametric) 0.0017 0.0010 0.2830 0.1799 < 0.0001 < 0.0001

∗ Beta-diversity comparisons were conducted using PERMANOVA.
∗∗ Alpha-diversity comparisons were conducted using both t-test and the Kolmogorov-Smirnov (KS) test.

Table S2: Summary statistics of the IBD and MOMS-PI datasets used in comparison after filtering.

Dataset Sample size # of taxa Log10 Library size
mean (min, max) % of zeros CV*

mean (min, max)
IBD 146 614 4.22 (3.51, 4.50) 85.09 6.24 (0.90, 11.98)
MOMS-PI 517 1146 4.61 (3.50, 5.78) 95.25 13.58 (1.65, 22.72)

∗ CV is the coefficient of variation of observed OTU counts for each taxon.

Table S3: Summary of CPU time and memory usage for fitting templates and simulating one
dataset with varying taxa (J) and sample size (n). Template sizes range from 100 to 1000 taxa, and
sample sizes vary between 100 and 5000. Simulated datasets match the size of the corresponding
templates in each J and n combination.

Mode Sample size
Time s Memory allocation (MB)

J = 100 J = 500 J = 1000 J = 100 J = 500 J = 1000

nonparametric
n = 100 3.3 18.8 57.8 182.4 1261.2 3212.0
n = 1000 16.4 105.7 337.5 1529.2 6781.2 16574.8
n = 5000 73.3 517.6 1606.0 8138.9 40427.4 82572.2

parametric
n = 100 4.3 25.2 70.1 190.1 1298.4 3262.3
n = 1000 15.4 111.4 338.8 1509.7 8220.8 17454.1
n = 5000 71.4 526.0 1569.5 7768.5 39969.2 81411.3
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Figure S1: Principal Coordinates plots (PCoA) of the simulated and original microbiome com-
munity. The colored density map is plotted based on 20 replicates of simulated communities by
MIDASim, with darker coloring associated with higher density of simulated values. Black points
represent the original community.
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Figure S2: Plots of t-distributed stochastic neighbor embedding (t-SNE) of the simulated and
original community. Each row corresponds to one method. The left two columns are the plots for
the IBD data, and the right two columns are the plots for the MOMS-PI data. Black points: samples
from original data. Colored points: samples from the simulated data with red being MIDASim with
nonparametric model, pink being MIDASim with parametric model, blue being D-M, yellow being
MetaSPARSim, and green being SparseDOSSA.
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Figure S3: Plots of Uniform Manifold Approximation and Projection (UMAP) of the simulated
and original community. Each row corresponds to one method. The left two columns are the
plots for the IBD data, and the right two columns are the plots for the MOMS-PI data. Black
points: samples from original data. Colored points: samples from the simulated data with red
being MIDASim with nonparametric model, pink being MIDASim with parametric model, blue
being D-M, yellow being MetaSPARSim, and green being SparseDOSSA.
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Figure S4: Comparison of the predicted (red) and empirical (black) estimates of the CDF of relative
abundance for the top 8 and moderately abundant 8 taxa in IBD dataset.
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Figure S5: Comparison of the predicted (red) and empirical (black) estimates of the CDF of relative
abundance for the top 8 and moderately abundant 8 taxa in MOMS-PI dataset.
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Figure S6: Comparison of the empirical Z j̇ and predicted Z̃ j̇ number of non-zero cells in IBD and
MOMS-PI datasets. The red lines represent the diagonal reference lines.
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