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Abstract1

Despite the tremendous diversity and complexity of life forms, there are certain forms of life2

that are never observed. Organisms like angels might not emerge because of developmental3

biases that restrict how organisms can evolve, or because they have low fitness in any envi-4

ronment yet available on Earth. Given that both developmental bias and selection may create5

similar phenotypes, it is difficult to distinguish between the two causes of evolutionary stasis6

among related taxa. For example, remarkably invariant traits are observed spanning million7

years, such as wing shape in Drosophila wherein qualitative differences are rare within genera.8

We thus ask whether the absence of combinations of traits, indicated by genetic correlation,9

reflects developmental bias limiting the possibility of change. However, much confusion and10

controversy remain over definitions of developmental bias and quantifying it is challenging.11

We present a novel approach aiming to estimate developmental bias by leveraging a common12

but under-utilized type of data: recombinant genetic mapping populations. We reason that13

information rendered by such mild perturbations captures inherent interdependencies between14

traits – developmental bias. Through empirical analyses, we find that our developmental bias15

metric is a strong indicator of genetic correlation stability across conditions. Our framework16

presents a feasible way to quantify developmental bias between traits and opens up the pos-17

sibility to dissect patterns of genetic correlation.18

Keywords: Pleiotropy; Genetic correlation; Developmental bias; Evolvability19
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Significance Statement20

Genetic correlation represents an important class of evolutionary constraint, which are them-21

selves evolvable. Empirical studies have found mixed results on whether such evolutionary22

constraint changes rapidly or slowly. This uncertainty challenges our ability to predict the23

outcome of selection. Here, we propose a framework to dissect genetic correlation in a genetic24

mapping population and show that consistency of pleiotropic effects of loci across the genome,25

which we termed as developmental bias, is an indicator of genetic correlation stability. Our26

novel method empowers readily accessible QTL mapping data to understand complex genetic27

architecture underlying pleiotropy, mechanisms causing genetic correlation and, ultimately,28

long-term evolutionary divergence.29
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Introduction30

When the morphology of a species remains virtually unchanged for millions of31

years, we would like to know whether this reflects developmental constraints limiting32

the possibility of change or, conversely, the maintenance of uniformity by stabilizing33

selection. — Maynard Smith et al. 198534

Genetic correlation represents an important class of evolutionary constraints (Maynard Smith35

et al., 1985; Clark, 1987), affecting future evolutionary trajectories. Yet, genetic correlations36

are themselves evolvable (Doroszuk et al., 2008; Dugand et al., 2021; Delph et al., 2011; Con-37

ner, 2002; Uller et al., 2018; Wagner & Altenberg, 1996; Rohner & Berger, 2023; Wagner et al.,38

2007) and reflect both the past selection of trait combinations and, in some cases, developmen-39

tal bias (Dugand et al., 2021; Arnold, 1992). Natural selection may favor certain combinations40

of traits and thereby actively maintaining genetic correlation via pleiotropy or linkage dise-41

quilibruim. Pleiotropy and linkage disequilbruim (LD) may then further inhibit traits from42

evolving independently towards a theoretical phenotypic optimum (Schluter, 1996). On the43

other hand, genetic correlation can be shaped by bias due to intrinsic attributes of the or-44

ganism, energy, or the laws of physics, relative to the assumption of isotropic variation. This45

latter concept has been decribed as developmental constraint or developmental bias (May-46

nard Smith et al., 1985; Arnold, 1992; Cheverud, 1984; Rohner & Berger, 2023), which may47

account for the observation that perturbations, such as mutation or environmental variation,48

to biological systems will tend to produce some phenotypic variants more readily (Uller et al.,49

2018; Waddington, 1957). In spite of the numerous studies that address genetic correlation50

as an evolutionary constraint, much confusion and controversy remains over definitions of dif-51
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ferent types of constraint, the mechanism(s) causing constraint, and the relative importance52

of different mechanisms in shaping evolutionary trajectories (Muir et al., 2022; Conner et al.,53

2011).54

The theoretical underpinnings for genetic covariance as an evolutionary constraint are well-55

developed (Lande, 1979; Lande & Arnold, 1983). Genetic covariance specifically describes trait56

covariance due to pleiotropic alleles, where a single locus has effects on two traits, or due to57

linkage disequilibrium of two loci, each of which affects a single trait but are physically so close58

that these two traits are strongly associated in populations (Lande, 1980; Lynch et al., 1998;59

Falconer et al., 1996; Conner et al., 2004). The genetic information summarized by genetic60

covariance is connected to evolutionary processes in complex ways. For example, evolution61

toward a phenotypic optimum for two traits may be restricted if selection favors two traits62

antagonistically but the traits are positively correlated. That is, adaptive evolution can be63

limited if the joint vector of selection is antagonistic to the trait correlations. In some cases,64

such evolutionary constraint may persist over long time scales (McGlothlin et al., 2018; Opedal65

et al., 2023).66

Straightforward applications of evolutionary quantitative genetic theory regarding the joint67

evolution of a pair of traits generally assume an invariant genetic covariance structure (G68

matrix) over the time frame of interest. However, the stability of genetic covariances and69

how they evolve remain unclear and contentious (Turelli, 1988; Bürger & Lande, 1994; Arnold70

et al., 2008; Steppan et al., 2002; Milocco & Salazar-Ciudad, 2022; Loeschcke, 1987; Barton &71

Turelli, 1989). Empirical studies of the evolution of genetic covariance structure have found72

mixed results on whether genetic covariance changes rapidly or slowly. Some comparisons of73
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G matrices between natural populations found no evidence of change in G (Delahaie et al.,74

2017; Arnold et al., 2008; Hangartner et al., 2020; Henry & Stinchcombe, 2023), while others75

have found changes in genetic covariance in only a few generations, across populations, in76

response to selection, or across environmental conditions (Chakrabarty & Schielzeth, 2020;77

Milocco & Salazar-Ciudad, 2022; Eroukhmanoff & Svensson, 2011; Walter et al., 2018; Wood78

& Brodie III, 2015; Henry & Stinchcombe, 2023; Hudson et al., 2022; Scoville et al., 2009;79

Monroe et al., 2021). We might also predict that the genetic covariance among some suites80

of traits is stable, while it is unstable for others (Jones et al., 2003). Generally, it is largely81

unknown what determines the stability of genetic covariance (Wood & Brodie III, 2015) and82

this uncertainty challenges our ability to predict the outcome of selection.83

The persistence of correlational constraint and whether genetic correlation is a good predictor84

of long-term evolutionary divergence ultimately hinge on our understandings of the underlying85

mechanism(s) causing genetic correlation (Loeschcke, 1987; Conner et al., 2011, 2004). For86

example, genetic correlation due to pleiotropy or tight linkage are much more likely to cause87

evolutionary constraint than those caused by linkage disequilibrium between loosely linked88

loci (Conner et al., 2011, 2004; Conner, 2002). Correlations due to pleiotropy or tight linkage89

may persist in the absence of selection, while correlations caused by linkage disequilibrium90

can be changed quickly by recombination and selection (Conner, 2002; Conner et al., 2004,91

2011). We here reason that genetic correlation due to developmental bias is more likely to92

impose constraint on evolutionary change and may be more persistent than other factors, as93

developmental bias may arise due to simple principles of physics or chemistry. Insight into94

the role of developmental bias may reveal why genetic correlations between some traits are95
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more constant over a long period as compared to other pairs of traits and why, in some cases,96

genetic constraints can be readily degraded by natural or artificial selection. However, formally97

discriminating between developmental bias and other mechanisms of genetic correlation is98

notoriously difficult (Maynard Smith et al., 1985).99

Here, we provide an approximate measure of developmental bias by exploiting recombinant100

genetic perturbations. We define horizontal pleiotropy to describe a locus that has an effect101

on two traits, where such pleiotropic effect deviates from the effects of the other loci across a102

genome (Fig. 1 b,d). Conversely, developmental bias between traits describes the observation103

of consistent pleiotropic effect of loci throughout the genome on a given trait pair (Fig. 1 a,c).104

We use this consistency of pleiotropic effect throughout the genome to indicate developmental105

bias, rD. We reason that if two traits are correlated because of developmental bias, these two106

traits should be correlated regardless of which specific variant causes the effect.107

Our primary goal in the present work is to dissect genetic correlations to understand to what108

degree they are driven by developmental bias vs. horizontal pleiotropy. We do so by using109

both numerical simulations and data from a recombinant genetic mapping population. One110

key outcome is that we identify loci that demonstrate horizontal pleiotropy. While another111

recent method exists for doing so (Geiler-Samerotte et al., 2020), our method is unique in that112

it does not require one to study clonal cells and can therefore be applied to a broader range of113

organisms. An additional goal of our study is to test our proposition that a genetic constraint114

that arises principally from developmental bias is more persistent than one arising from hor-115

izontal pleiotropy. When rG are driven by numerious small effect size loci, we expect them116

to be more representative of inherent relationships, as opposed to when they are driven by117
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individual horizontal pleiotropic loci. In the latter case, any changes or perturbations affecting118

that specific loci (e.g., various types of environmental perturbations with QTL-by-environment119

effect, allele frequency changes etc.) may easily disrupt the genetic constraint. We find ev-120

idence that, indeed, our estimated developmental bias is an indicator of genetic correlation121

stability, suggesting that this may allow us to predict change in a genetic correlation over a122

long-term period. We also show that genetic correlations are likely driven by developmental123

bias with a highly polygenic architecture. Hence, a genetic correlation with a highly poly-124

genic architecture may be more stable. In sum, we use readily accessible QTL mapping data125

to understand how genetic architecture influences the portion of a given genetic correlation126

attributable to developmental bias, to identify loci that act via horizontal pleiotropy, and to127

make predictions about how genetic correlations will change. These results suggest that this128

type of common data is under-utilized, and that analyzing recombinant populations with our129

approach can help to deepen our understandings of genetic correlation.130

Results131

During a genetic association study, each genetic marker is assigned an odds likelihood ratio132

along with a effect size for the trait of interest. Instead of identifying statistically significant133

loci in such conventional genetic association studies, the essential idea, here, is to examine the134

consistency of pleiotropic effects across genetic backgrounds. We here quantify the develop-135

mental bias, rD, by examining the additive effect of loci for trait pairs throughout the genome.136

We define a locus with effects that deviate from the overall bivariate trend throughout the137

genome as a horizontal pleiotropic (HP) locus (Fig. 1b). We diagnose rD as the consistency138
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of pleiotropy across genetic backgrounds excluding HP loci. In a mapping population, al-139

lele substitutions at each locus represent non-directed (i.e., random) perturbations of varying140

directions and magnitudes. The additive effect of many loci thus are considered as random141

perturbations to an organism. We reason that if the effect size of these perturbations on two142

traits are highly correlated (excluding HP loci), the developmental bias between the two traits143

is likely to be strong. To better illustrate the framework we propose, the bivariate effect size144

distributions under two scenarios are shown (Fig. 1a, b). The locus with a major phenotypic145

effect that deviates from the overall trend of other loci throughout the genome is a horizontal146

pleiotropic locus. Conversely, the consistency of pleiotropy (i.e., the overall trend of bivariate147

effect size distribution) is quantified as developmental bias.148

Simulation demonstrating relationships between rD and rG149

To examine how the estimated developmental bias – characterized by the effect size correlation150

among loci – relates to genetic correlation (rG), we first simulated two thousand trait pairs151

for a given simulated population with 500 individual genotypes. For each trait pair, genetic152

architecture with 226 loci was generated, with additive effect sizes sampled from a multivariate153

Laplace distribution. The genetic values are obtained by multiplying the genotypes with allelic154

effect sizes, assuming no epistasis and no linkage disequilibruim. rG is calculated by correlating155

the genetic values between two traits following standard protocols (Falconer et al., 1996). We156

calculated rD and corresponding rG for each pair of traits. Notably, rG is a correlation across157

a population of individuals while rD is a correlation across a population of loci in a genome.158

Therefore, in princple, under a given rD, the genetic correlation can vary greatly because of159

the changing allele frequency (Fig. S1).160
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There exists considerable debate about regimes of allelic effect sizes and their effects on phe-161

notypic evolution: in small steps, via changes of infinitesimally small effect, or in leaps via rare162

large effect loci (Orr, 2005). Additionally, classic work suggests that different genetic regimes163

may affect the rate of changes of genetic (co)variance (Barton & Turelli, 1987, 1989; Lande,164

1979). Therefore, in addition to examining the effects of HP and LD on the relationship be-165

tween developmental bias and genetic correlation, we performed these simulations under two166

genetic regimes, one with high polygenicity which causes low kurtosis in the distribution of167

effect sizes, and one with low polygenicity which causes high kurtosis in the distribution of168

effect sizes (Fig. 2).169

Assuming no horizontal pleiotropy (HP) and linkage disequilibrium (LD), we expect rD and170

rG to be equal. As expected, without accounting for HP and LD, rD strongly correlates with171

rG regardless of the genetic regimes (Fig. 2b,c). Next, we repeated our simulations under172

conditions with HP or LD to understand how these forces would affect the correlations (Fig.173

2d,e). Under the HP scenario, n randomly selected SNPs (0 < n < 10) are forced to have an174

HP effect, either concordant to or antagonistic with the rest of loci. The genetic correlation175

rG is not perfectly correlated with rD under scenarios with HP, especially when the kurtosis of176

the effect size distribution is high. In an extreme case, a single large-effect locus can drive the177

trait correlation despite the low rD (Fig. S2). Collectively, these observations suggest that rD178

and HP loci are two components of rG, and that even a single large-effect HP locus can drive179

rG without overall consistency of pleiotropy throughout the genome.180

To understand how LD affects the relationship between rG and rD, we also performed simula-181

tions using actual recombinant genotypes from a yeast mapping population (Geiler-Samerotte182
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et al., 2020) (Fig. 2f,g). Similarly to our simulations above, we sampled the effect size for each183

SNP on each trait from bivariate Laplace distribution with the same γ and then propagated184

the effect size for a given SNP by “contaminating” its effect size according to the effect sizes of185

the SNPs in LD with it. (This procedure only accounts for weak linkage, See Supplementary186

Note 1.) In these simulations, LD appears to affect rG with a given effect size correlation even187

for cases in which the genetic architecture is highly polygenic (Fig. 2f). These results imply188

that LD does not always strengthen rG; LD could also weaken rG when, for example the effect189

of two loci in LD are antagonistic with the overall trend of pleiotropy across the genome. To190

summarize the numerical simulations, LD, HP, and rD together shape rG. In the absence of191

HP and LD, rD, we should not expect rD to be different from rG. Furthermore, the effects of192

LD and HP on genetic correlation can become relatively stronger under a more ‘Mendelian’193

genetic architecture with lower polygenicity.194

Identifying horizontal pleiotropic loci and delineating developmental195

bias for yeast morphological traits196

We next applied our approach in a yeast morphology dataset, where 374 recombinant strains of197

yeast cells were imaged for, on average, 800 fixed, stained cells per strain using high-throughput198

microscopy (Geiler-Samerotte et al., 2020). In total, measurements of 167 morpholgical traits199

were acquired. The patterns in this large dataset could offer a empirical picture of how HP200

and LD affect effect size correlations and how our approach can distinguish two mechanisms201

causing genetic correlation.202

As described above, we define developmental bias rD as the effect size correlation for a subset of203
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variants where outliers (HP loci) are removed. For example, the effect size distribution (exclude204

HP loci) for two pair of traits are shown in Fig. 3. The red lines indicate the magnitude of205

developmental bias (rD) and the plot on the right is inferred to have a higher developmental206

bias. To identify outliers (HP loci), we first calculate the correlation by individual-level product207

(Lea et al., 2019) for each trait pair across each locus. Outliers are then identified as the208

product falling outside 1.5 times the interquartile range above the upper quartile and below209

the lower quartile of the distribution. Since LD can also potentially affect the correlation of210

effect size, we conducted LD pruning to subset the variants to remove loci highly correlated211

within the population (See Materials and Methods). Therefore, in total, we present the212

effect size correlation against rG in three settings: Default (using all genotyped variants), LD213

corrected, and outlier corrected (i.e., rD).214

Fig. 4a presents the distribution of effect size correlations using all genotyped variants, only LD215

pruned variants, or outlier-corrected variants (rD). LD does not exert effect on the patterns of216

effect size correlation in this dataset (4a, two-sample Kolmogorov-Smirnov test, D = 0.017006,217

p-value = 0.3879), but horizontal pleiotropic loci, which we identified as outliers, appear to218

strengthen the effect size correlation (Fig. 4a,b). In principle, an outlier can either weaken or219

strengthen the effect size correlation. However, our results suggest a bias towards concordant220

effects between outliers and other loci, given that the distribution under the outlier-corrected221

setting (rD) has smaller variance (Fig. 4a) and effect size correlation is generally weaker under222

the outlier corrected setting (Fig. 4b). Notably, points that deviate more from the unity line223

(y = x) may represent trait pairs which are more strongly affected by horizontal pleiotropy224

(Fig. 4c).225
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To further investigate horizontal pleiotropy (HP), we identified those trait pairs significantly226

affected by the outliers (i.e., yellow dots in Fig. 4b). Outlier loci for these trait pairs are likely227

indicative of horizontal pleiotropy. Indeed, we confirmed that our method identifies two loci228

(L15.9 and L13.7, See Table 1) that presented the strongest evidence of horizontal pleiotropy229

in an earlier study which used stronger genetic correlation than within-line environmental230

correlation as an indicator (Geiler-Samerotte et al., 2020). Additionally, we found trait pairs231

with extremely high effect size correlations lacking evidence of horizontal pleiotropy (Fig. 4a,232

b); an example effect size distribution of a trait pair with exceptionally high effect correlation233

– possibly reflecting a strong developmental bias between two traits – is shown in Fig. S4.234

In summary, we show that horizontally pleiotropic loci may indeed affect rG in the absence235

of an exceptionally strong developmental bias and that our method can be used to identify236

horizontal pleiotropic loci and further delineate rG.237

To assess how effect size correlations under three settings relates to genetic correlations rG, we238

calculated the effect size correlations between pairwise traits and plotted them against rG for239

each trait pair (Fig. S3). Under all settings, we find no cases where trait pairs with no rG ex-240

hibit a strong effect size correlation, as expected. Qualitatively similar results are observed for241

an additional Brassica dataset with 11 floral, vegetative, and phenology traits (Supplementary242

Note 2, Fig. S7). Notably, without LD correction and without removing horizontal pleiotropic243

loci as outliers (Fig. S3a), the results here from recombinant perturbations are algined with a244

study using mutational accumulation lines to examine the contribution of mutation to genetic245

correlation, in which mutational correlations between traits were found to be overall stronger246

than genetic correlations between traits (Dugand et al., 2021). Similarly, in our results, effect247
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size correlations using all variants overall are stronger than genetic correlations (Wilcoxon248

signed-rank test, p-value < 2.2e-16), with a median absolute value of 0.280 and 0.206, respec-249

tively. After removing horizontal pleiotropic loci as outliers, the dots in scatter plot (Fig. S3c)250

appears to be more evenly distributed around the unity line. Indeed, after removing HP loci,251

there is no significant difference between the distribution of effect size correlations (rD) and252

the genetic correlation across trait pairs (Wilcoxon signed-rank test, p-value = 0.8875).253

Despite that there is no overall difference between the distribution of rD and rG, our approach254

can delineate trait-trait specific mechanims causing their genetic correlations in empirical255

datasets. As shown in Fig. 3, two pairs of traits exhibit a similar and moderately high256

rG but contrasting levels of rD, demonstrating how consistency of pleiotropy and estimated257

developmental bias rD could help us learn the underlying trait-trait specific mechanisms.258

rD predicts the stability of rG following environmental perturbations259

Genetic correlations between traits may alter the evolutionary trajectory of either trait (Schluter,260

1996). Predicting the trajectory of trait evolution therefore can depend upon the stability of261

genetic correlations (Jones et al., 2003). We reasoned that trait-trait correlations may be262

more stable if they are caused by inherent relationships between the traits, rD, rather than263

horizontal pleiotropy. Thus we expected rD to predict the stability of rG (Fig. 5a). To test264

whether our intuition is correct, we estimated rG from a related yeast dataset, which describes265

correlations across yeast single-cell morphological features measured in three environments.266

Here, the environmental conditions are three concentrations of geldanamycin (GdA), a small-267

molecule inhibitor that binds the ATP-binding site of the chaperone Hsp90, thus rendering268
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it unable to perform its cellular function. We plotted absolute rD with changes of genetic269

correlation (rG) for each pair of traits at the three drug concentrations (Fig. 5). The results270

show that, as rD becomes greater, the changes of rG become smaller.271

Since rG is highly correlated with rD, to formally test whether under a given rG, rD is infor-272

mative in determining changes of rG upon environmental perturbations, we conducted multi-273

variable linear regression (∆rG ∼ rG + rD, all variables are transformed to absolute value).274

The regression results (Fig. S5a) demonstrate that conditioning on rG of a trait pair, rD275

significantly negatively correlates with the changes of rG across three drug concentrations. In276

other words, given a set of yeast morphology trait pairs with the same levels of rG, the changes277

of magnitude of rG would be smaller for trait pairs with larger rD, on average. Furthermore,278

we found that this effect of rD is strongest under mild treatment perturbation (here, low con-279

centration of geldanamycin) but becomes weaker as the drug concentration becomes higher280

and, presumably, more stressful for the cells (Geiler-Samerotte et al., 2016). To account for281

the effect of collinearity between rD and rG (PCC = 0.939) on regression outcomes, we also re-282

port, here, null model simulated results (Fig. S5b and Fig. S6). Taken together, these results283

indicate that the estimated rD may indeed predict the stability of rG following environmental284

perturbtions.285

Discussions286

It has long been recognized that developmental integration is one cause of multivariate ge-287

netic constraint (Klingenberg, 2005; Pigliucci & Preston, 2004). On the other hand, genetic288

constraint can also reflect correlational selection. However, dissecting the underlying mecha-289
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nism(s) causing genetic correlation is challenging. Here, we exploited a hidden source of data290

that has been overlooked to quantify the contribution of developmental bias in creating ge-291

netic correlation. Assessing consistency of pleiotropy by measuring the effect size correlation292

across many genomic loci provides a possible framework to explore the mechanisms of genetic293

correlation. The central messages from our analyses are three-fold.294

First, developmental bias estimated from recombinant genetic perturbations provides an in-295

dicator of genetic correlation stability following environmental perturbations. Our stability296

analyses in empirical datasets (Fig. 5, Fig. S5, Fig. S6, Fig. S8, and Fig. S9) suggest that the297

higher a developmental bias, the more likely a genetic correlation between two traits remains298

stable across environmental conditions. In other words, higher developmental bias leads to299

smaller response of genetic correlation to environmental changes. This may provide further300

insight into the observations of context-dependencies of environmental effect on G-matrices301

(Wood & Brodie III, 2015), with certain trait pairs exhibiting more stability while others302

showing greater plasticity across conditions.303

Second, Mendelian genetic architecture for a given trait pair can increase the contribution of304

horizontal pleiotropy to genetic correlation (Fig. 2). Under such a scenario, genetic correlation305

as a summary statistic can not fully reflect the complex genetic architecture underlying a306

genetic correlation. In fact, evidence of discrepancies of effect between genetic background307

and major loci abound (Albert et al., 2008; Hall et al., 2006; Scoville et al., 2009; Stinchcombe308

et al., 2009). For example, in Mimulus, a major QTL contributes a negative covariance between309

stigma–anther separation and pollen viability, which is antagonistic to the overall positive310

genetic covariance between these two traits (Scoville et al., 2009). Furthermore, previous work311
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suggests that we might expect to see more changes of G-matrix during evolution if traits have312

an oligogenic genetic basis rather than aligning with the infinitesimal model (Barton & Turelli,313

1987, 1989; Lande, 1979). For example, Lande (Lande, 1979) emphasized that trait means314

typically change much more rapidly than trait (co)variances. Yet, changes of (co)variances can315

be quite rapid if there are underlying loci with large contributions to (co)variation. Similarly,316

in our present work, we show that under a infinitesimal model, genetic correlation mainly317

arises from developmental bias (Fig. 2) which, as our stability tests suggest, might also be318

more stable across conditions (Fig. 5).319

Third, our method allows us to identify horizontal pleiotropic loci without measuring phe-320

notypes across clonal individuals or cells. There is a long-standing interest in identifying321

horizontal pleiotropy in nature (Verbanck et al., 2018; Jordan et al., 2019; Bowden et al.,322

2018). One motivation for doing so is that evolutionary theory predicts that natural selection323

should limit horizontal pleiotropy because, as the number of traits that a mutation influences324

increases, the probability of the mutation having a positive fitness effect decreases (Zhang &325

Wagner, 2013; Orr, 2000; Pavlicev & Wagner, 2012; McGuigan et al., 2014). However, identify-326

ing cases of horizontal pleiotropy is difficult because genetic correlations do not always indicate327

horizontal pleiotropy. By discovering a way to disentangle the portion of genetic correlation328

caused by developmental bias, we have also discovered a novel way to identify candidate loci329

that act via horizontal pleiotropy. Our method of identifying horizontal pleiotropy can be330

broadly useful because it does not require measuring the trait correlations that are present331

across clonal cells. Thus, while previous methods (Geiler-Samerotte et al., 2020) are mainly332

useful for organisms that propagated clonally, e.g., microbes, our method can be applied more333
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broadly.334

Can recombinant mapping population characterize M matrix?335

Numerous past studies used mutation accumulation lines to estimate mutational matrices (M336

matrices) as a means to understand the influence of mutations on shaping genetic correlation337

(Dugand et al., 2021; Houle et al., 2017). Dugand et al. (2021) discovered a significant similar-338

ity between G and M matrix, suggesting that mutations directly shape G. On the other hand,339

mutational correlations using mutation accumulation lines consistently exceed genetic corre-340

lations in magnitude (Dugand et al., 2021), which is aligned with our findings (Fig. 3c) where341

the effect size correlations under default setting are stronger than the genetic correlation rG.342

This naturally raises several questions related to mutation accumulation lines, recombinant343

mutation, and developmental bias: Firstly, to what extent does recombinant reflect the effect344

of mutation in a mutational accumulation experiment? There are now increasingly accessible345

resources available for recombinant mapping populations, such as the recently developed mul-346

tiparent panels and advanced intercross lines (Kover et al., 2009; Gage et al., 2020), offering347

a promising avenue to investigate the respective roles of mutation and selection. Secondly,348

to what extent do trait covariance patterns due to mutations or environmental perturbations349

reflect the developmental bias? A recent study used fluctuating asymmetry of the left and350

right sides of the same organism as a measure of developmental bias (Rohner & Berger, 2023).351

The left and right sides of the same organism share the same genome and macro-environment352

but only differ in their microenvironmental inputs. Therefore, the development may generate353

asymmetry (i.e., noise) in morphological traits. The authors showed that developmental bias354

quantified using such noise in the dipteran wing predicts its evolution on both short and long355
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evolutionary timescales(Rohner & Berger, 2023), which suggests that those mild perturbations356

may generate phenotypic outcomes more representative of developmental bias.357

The extent of pleiotropy358

Pleiotropy describes the phenomenon in which a gene or a mutation affects more than one359

phenotypic trait. The concept and nuance of pleiotropy has had a prominent role and broad360

implications on genetics, evolution, and medicine (Klingenberg, 2008; Stearns, 2010; Promis-361

low, 2004; Williams, 2001; Barton, 1990; He & Zhang, 2006; Otto, 2004; Wagner & Zhang,362

2011; Des Marais & Juenger, 2010; Geiler-Samerotte et al., 2020). Conceptually, many pos-363

sible scenarios can result in a pleiotropic effect, including mediated pleiotropy (i.e., vertical364

pleiotropy), horizontal pleiotropy, and other spurious pleiotropy such as linkage (Wagner &365

Zhang, 2011; Solovieff et al., 2013). One major debate on pleiotropy is what is the extent of366

pleiotropy: we lack consensus about how pleiotropic natural systems are (Paaby & Rockman,367

2013; Zhang & Wagner, 2013). A key challenge is whether the effect of a single locus on cor-368

related traits can be counted as pleiotropic effect, for instance, as pointed out by Wagner &369

Zhang 2011; e.g., are the depth and the width of a bird beak two characters? Thus, ignoring370

trait correlations may bias the estimation of pleiotropy. One possible solution is to consider the371

effective number of traits by looking at the eigenvalue variance of the phenotypic correlation372

matrix (Wagner & Zhang, 2011; Pavlicev et al., 2009; Wagner et al., 2008): The more dispersed373

the eigenvalues, the more interdependency of the traits. However, this approach likely biases374

the interdependency estimations of the traits, especially in the presence of major pleiotropic375

effect loci. For example, as an extreme case, even a single pleiotropic locus alone can drive376

trait correlations in spite of the low consistency of pleiotropy (Fig. S2 and also see (Agrawal377
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et al., 2001)). Hence, in this case, the effective number of traits calculated via the phenotypic378

correlation matrix will be overestimated simply because there is a major effective pleiotropic379

locus – this does not necessarily mean two traits are inherently interrelated. Similarly, the380

bias is present if there is a major antagonistic loci against overall correlation of effect size.381

Instead, our analyses demonstrated that the consistency of effect sizes may provide a more382

appropriate way to measure inherent trait correlation and hence effective trait dimensions.383

Materials and Methods384

Sophisticated tools in the field of quantitative genetics have been developed to identify genetic385

loci which statistically explain phenotypic variance in quantitative traits to regions of chromo-386

somes, so-called quantitative trait loci (QTLs). One of the fundamental metrics of quantitative387

genetics is the additive effect of a QTL, which represents the change in the average phenotype388

produced by substituting one allele for another (Lynch et al., 1998; Falconer et al., 1996). To389

better illustrate what we could exploit through the additive effect distribution, bivariate effect390

size distribution under two scenarios are shown (Fig. 1a,b), where both of two pairs of traits391

are affected by a major pleiotropic locus. In contrast, the consistency of pleiotropic effect392

throughout genome is different. This illustrative example may be extreme, but it implies that393

only analyzing the summary statistics such as genetic correlation or statistically significant394

loci in a genetic association study may lose information behind the genetic architecture. Such395

hidden information could be valuable when assessing the strength of developmental bias rD:396

If two traits are correlated because of developmental or physiological constraint, these two397

traits should be correlated regardless of which specific variant is causing the effect. i.e., there398
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is consistency of the pleiotropic effect across genetic background (Fig. 1a). On the other399

hand, if two traits are genetically correlated simply because of several major pleiotropic loci400

for a given population, those small loci can have inconsistent effect between traits (Fig. 1b).401

We term such consistency of pleiotropy as developmental bias rD and those loci with effect402

deviated from overall trend throughout the genome as horizontal pleiotropic (HP) loci.403

Our conceptualization of developmental bias is similar to the definition of vertical pleiotropy or404

mediated pleiotropy Geiler-Samerotte et al. (2020). Indeed, the high consistency of pleiotropic405

effect implies vertical or mediated pleiotropic nature of loci. Yet, we here define the devel-406

opmental bias as a trait-level metric, whereas the vertical or mediated pleiotropy most often407

refers to the effects of variants on traits. In vertical pleiotropy, the traits themselves are bi-408

ologically related, such that a variant’s effect on trait A inevitably causes the effect on trait409

B. Likewise, horizontal pleiotropy is defined as a variant or mutation causing an effect on two410

traits that are otherwise independent. Another distinction between developmental bias and411

vertical pleiotropy is that vertical pleiotropy frequently refers to a part of causal cascade, as412

exemplified by low-density lipoprotein (LDL) cholesterol levels causing the risk of heart disease413

(Geiler-Samerotte et al., 2020). Developmental bias, on the other hand, depicts the correla-414

tional structure among traits since many traits (e.g., morphological traits) do not necessarily415

exhibit direct causal relationships. We thus apply the term vertical pleiotropy to variants that416

share the effect for inherently related traits without considering the causal direction.417
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Numerical simulations418

To simulate multiple pairs of traits within a population, first genotypes were simulated through419

the function simulateGenotypes in PhenotypeSimulator (Meyer & Birney, 2018) with 226 SNPs420

(mimicking the actual number of loci in an empirical dataset; Geiler-Samerotte et al. (2020))421

and 500 individuals, where the allele frequencies are either sampled from 0.05, 0.1, 0.2, and 0.5422

or constant value 0.3 for a mapping population. For each pair of traits, the additive effect for423

each SNP is sampled from a bivariate exponential distribution (bivariate Laplace distribution)424

with µ = (0, 0) and Σ =


1 ρ

ρ 1

. ρ is drawn from the uniform distribution (−1, 1). A shape425

parameter γ determines the distribution, where a smaller γ represents genetic architecture426

approximating one or a small number of large-effect loci (Mendelian genetic architecture, high427

kurtosis for effect size distributions) while a larger γ trends towards a polygenic infinitesimal428

model (low kurtosis for effect size distributions). We used γ of 1.0 and 0.5 in Fig. 2 left and429

right, respectively. Under horizontal pleiotropy scenario, n randomly selected SNPs (0 < n <430

10) are forced to have horizontal pleiotropic effect (either concordant to or antagonistic with431

the rest of loci). The genetic correlation, rG, between traits M and N was calculated as the432

Pearson correlation ρ(Xβ⊺
[M ],Xβ⊺

[N ])
, where β[M ] and β[N ] represents the effect size for trait M433

and trait N across genome, and Xβ⊺
[M ] and Xβ⊺

[N ] represent the genotypic values of trait M434

and trait N , respectively. The developmental bias, rD, is calculated as the Pearson correlation435

coeffecient of effect size for traits M and N , where summations are taken over all loci except436

those assigned as horizontal pleiotropic SNPs (n loci):437
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Dβ[M,N ] = cov(β[M ], β[N ])
σβ[M ]σβ[N ]

= n
∑

βi[M ]βi[N ] − ∑
βi[M ]

∑
βi[N ]√

n
∑

β2
i[M ] − (∑

βi[M ])2
√

n
∑

β2
i[N ] − (∑

βi[N ])2
(1)

To account for linkage disequilibrium (LD), simulating trait pairs with actual genotype infor-438

mation, the additive effect size of 226 SNPs are simulate similarly as above except that there439

are no horizontal pleiotropic loci. The effect size is then propagated through the LD block440

defined by r > 0.5.441

Dataset retrieval and genetic correlations rG442

Two empirical datasets were used. The first dataset comprises single cell morphology data for443

budding yeast Saccharomyces cerevisiae where, for each of 374 recombinant strains of yeast444

cells, approximately 800 fixed, stained cells were imaged using high-throughput microscopy445

(Geiler-Samerotte et al., 2020). 167 morphological features were estimated, including these446

representative examples: cell size, bud size, bud angle. Analysis of the original dataset assessed447

both genetic (between-strain) and environment (within-strain) correlation using a multilevel448

correlation partitioning method (Bliese, 2013). The authors found that using this approach449

to estimate correlations has similar results as compared to a linear mixed model and variance450

component analysis. The second dataset contains phenological, floral, and vegetative traits451

for a recombinant inbred population of B. rapa L. created from a cross between yellow sarson,452

R500, and the rapid cycling IMB211 inbred lines (Brock et al., 2010). The QTL mapping was453

conducted with 223 markers in 131 individuals (field condition) and 132 individuals (green-454

house condition). Eleven phenotypes were included, here, as we excluded branch length in the455

field and leaf width in the greenhouse, which were not measured in both conditions. When456
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calculating rD, we use either all genome-wide variants or an LD-pruned subset of variants.457

During LD pruning, we removed within-choromosome QTLs to r < 0.5 for both datasets.458

Horizontal pleiotropic loci identification and empirical calculation of459

rD460

If we ignore dominance, epistasis, and linkage disequilibrium, and assume two alleles per locus,461

the covariance components of a G matrix can be written as (Kelly, 2009):462

Cα[M,N ] =
∑

i

2qi(1 − qi)αi[M ]αi[N ] (2)

where Cα[M,N ] is the additive genetic covariance between trait M and trait N . qi is the463

frequency of first allele at loci i within a given population; αi[M ] and αi[N ] are the additive464

effects of that allele on trait M and N , respectively; summations are taken over all loci.465

Accordingly, a large effect QTL for trait M (high αi[M ]) can make a minor contribution to the466

genetic covariance structure if allele frequency qi is small.467

We developed an approach to evaluate the horizontal pleiotropy and calculate rD empirically.468

In brief, our method has three components: (a) detection of horizontal pleiotropic loci; (b)469

calculating rD through effect size correlation excluding horitonal pleiotropy; (c) testing pairs470

with significant difference after outlier removal, identified as horizontal trait pairs.471

We use the following procedures to identify horizontal pleiotropic loci: first calculate the472

normalized, demeaned, and element-wise product of outcome for each locus (Steiger, 1980):473
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(αi[M ] − α[M ])(αi[N ] − α[N ])
σαi[M ]σαi[N ]

(3)

where α[M ] and α[N ] are the mean genome-wide additive effect size for trait M and N , re-474

spectively, and σαi[M ] and σαi[N ] are standard deviations of additive effect size for trait M and475

N , respectively. The horizontal pleiotropic loci are defined as loci with the product falling476

outside 1.5 times the interquartile range above the upper quartile and below the lower quar-477

tile. The Pearson correlation coefficient is equal to the above average element-wise product478

of two measured traits. In other words, the outliers of these element-wise products represent479

the outliers when calculating the correlation, substantially deviating from the overall trend of480

bivariate effect size distribution.481

Second, developmental bias (rD) is calculated as the Pearson correlation coefficient among the482

rest of loci written by:483

rDα[M,N ] = cov(α[M ], α[N ])
σα[M ]σα[N ]

= n
∑

i αi[M ]αi[N ] − ∑
αi[M ]

∑
αi[N ]√

n
∑

α2
i[M ] − (∑

αi[M ])2
√

n
∑

α2
i[N ] − (∑

αi[N ])2
(4)

The additive effect size α estimated empirically from inbred line crosses and experimental484

mapping populations is calculated as: for the trait M , α = MAA−MBB

2 (Falconer et al., 1996),485

where A and B are two alleles of a locus. The summations of equation (4) are taken across486

all loci (with equal probabilities) excluding major horizontal pleiotropic loci.487

Finally, to test the significant difference of effect size correlation before and after outlier488

removal, we use a cutoff of 1% FDR for all pairs of traits included in the yeast dataset. Those489
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trait pairs significantly deviating from the mean are identified as the horizontal trait pair,490

indicating that horizontal pleiotropic loci may contribute to the genetic correlation rG.491

Data Availability492

Data and code have been deposited in Github (https://github.com/haorancai/developmentalbias)493
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Figure 1: Conceptual framework for distinguishing between developmental bias and horizontal
pleiotropy as drivers of genetic correlation (rG) between two traits. a. and b. Bi-plots showing
the correlation of effect sizes of ten genetic loci on hypothetical traits 1 and 2. a. Strong de-
velopmental bias and low horizontal pleiotropy, as seen by coherent and consistent pleiotropic
effect on the two traits across the sampled loci. b. One large-effect pleiotropic locus appears
to drive the genetic correlation between traits 1 and 2, showing a strong horizontal pleiotropic
(HP) effect. c. and d. Suggest genetic mechanisms for the observed effect correlations in a
and b. c. A developmental bias rD, where each locus that affects one trait will inevitably
affect the other trait, suggesting that the traits are inherently correlated regardless of the type
and directions of genetic perturbation. d. Horizontal pleiotropy (HP), where a locus can have
a direct effect on the two traits. A third cause of genetic correlation is linkage disequilibrium
(LD; not shown), where two loci, each determining a trait, are physically so closed that they
are associated within a population more often.
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Figure 2: Simulations showing the relationship between developmental bias, rD, and genetic
correlation, rG. We simulated 2,000 pairs of traits using an exponential model, with varying
σ among the plots shown. σ describes the correlation of effect size when generating effect
sizes for each trait pair. A second parameter of the exponential model, γ, indicates regimes of
varying kurtosis of the effect size distribution: large γ represents low kurtosis while smaller γ
represents a regime with high kurtosis, as shown in a.. Two regimes of genetic architecture are
considered, with γ equals 1.0 (plots b., d., and f.) and 0.5 (plots c., e., and g.) Three scenarios
are simulated. b. and c. Under the first scenario, no horizontal pleiotropy (HP) and linkage
disequilibrium (LD), the pattern does not change with the kurtosis and rG nearly perfectly
represents rD. d. and e. Under the second scenario, to introduce HP, 0 to 10 randomly
chosen SNP are introduced for each trait pair, with a shared pleiotropic effect for two traits,
regardless of the pleiotropic effect of remaining loci. f. and g. For the third scenario, we used
actual genotypes from a yeast mapping population to account for LD, without introducing any
horizontal pleiotropic loci. To simulate trait pairs with actual genotype information, effect
sizes are first generated, as above, but are propagated through the LD block defined by r > 0.5.
Note that the correlation of effect size is then calculated by excluding those ‘repeated’ loci
within LD blocks.
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Figure 3: Empirical examples under two scenarios in Fig. 1 demonstrating how estimated
rD can differentiate two trait pairs with similar rG in yeast. These two trait pairs with
similar strength of rG (0.766 and 0.745) exhibit difference in rD (0.435 and 0.827). a. The
rG between nuclear stain brightness and bud nucleus brightness is marginally higher than
the b. rG between nucleus foci-to-cell center and nucleus center-to-cell center. However, rD

between nuclear stain brightness and bud nucleus brightness is lower than rD between nucleus
foci to cell center and nucleus center to cell center (0.435 vs 0.827), suggesting a higher
developmental bias and inherent correlation between nucleus center-to-cell center and nucleus
foci-to-cell center. Each point represents the additive effects for a single locus on each of two
traits shown. Data are from (Geiler-Samerotte et al., 2020)
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Figure 4: Re-analysis of 374 recombinant strains of yeast cells (Geiler-Samerotte et al., 2020)
identifies horizontal pleiotropic trait pair. Each point in b. represents a trait pair from this
empirical dataset. We consider three settings, summarized in a. and b.. a. Distribution of
effect size correlations under three settings. Under the default setting, we included genome-
wide markers to calculate correlations of effect sizes. LD pruned results include only the loci
to the r < 0.5 within a chromosome. For outlier corrected effect size correlation, we excluded
those outlier horizontal loci when calculating the correlation coefficient. b. The effect size
correlation under default versus outlier corrected settings. Yellow dots denote trait pairs
that are significantly affected by outliers correction (p-value <0.025). c. Conceptual figure
showing where in the scatterplot b trait-trait effect size correlations have more contribution
from horizontal pleiotropy.
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Figure 5: a Conceptual representation showing how high rD could lead to stability of rG. Many
morphological traits are measured in a yeast biparental population using single cell phenotyp-
ing (Geiler-Samerotte et al., 2020). These data are used to estimate rG and rD between traits.
A subset of the yeast population is subjected to three levels of drug concentrations, represent-
ing three environmental conditions, and rG is calculated for traits expressed in each of these
treatments. We ask whether rD is an indicator of ∆rG by using a multivariable linear model:
∆rG ∼ rD + rG. We include rG as a predictor because rG itself can reflect its own plasticity.
b. Scatter plots showing how rG plasiticity in response to different drug concentration relates
to rD. The color bar indicates rG in control condition.
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Table 1: Details of horizontal trait pairs and nearest markers of driver loci

Phenotype1 Phenotype2 rG rD outlier corrected rD default Nearest marker
for the biggest outlier

D14.3 A1B D15.3 A1B 0.458 0.127 0.663 L15.9
D15.3 A1B D175 A1B 0.447 0.193 0.701 L15.9
D15.3 A1B D178 A1B 0.448 0.166 0.702 L15.9
D15.3 A1B D181 A1B 0.372 0.087 0.607 L15.9
C13 C C103 C -0.332 0.017 -0.388 L13.7
C13 C C118 C -0.087 0.092 -0.29 L13.7
C13 C D109 C -0.215 0.017 -0.44 L13.7
C13 C D131 C -0.23 -0.055 -0.442 L13.7
D15.1 C D17.1 C 0.188 -0.052 0.431 L15.9
D15.1 C D17.2 C -0.038 -0.023 0.407 L15.9
D15.1 C D182 C 0.218 0.097 0.529 L15.9
D15.3 C D17.1 C 0.106 -0.15 0.352 L15.9
D15.3 C D188 C 0.111 0.096 0.542 L15.9
D17.1 C D117 C -0.379 -0.049 -0.523 L15.9
D17.1 C D169 C -0.307 0.035 -0.408 L15.9
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Lea, A., Subramaniam, M., Ko, A., Lehtimäki, T., Raitoharju, E., Kähönen, M., Seppälä, I.,
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T. & Xiong, D. (2022). How important are functional and developmental constraints on
phenotypic evolution? an empirical test with the stomatal anatomy of flowering plants.

Opedal, Ø. H., Armbruster, W. S., Hansen, T. F., Holstad, A., Pélabon, C., Andersson, S.,
Campbell, D. R., Caruso, C. M., Delph, L. F., Eckert, C. G. et al. (2023). Evolvability
and trait function predict phenotypic divergence of plant populations. Proceedings of the
National Academy of Sciences, 120, e2203228120.

Orr, H. A. (2000). Adaptation and the cost of complexity. Evolution, 54, 13–20.

Orr, H. A. (2005). The genetic theory of adaptation: a brief history. Nature Reviews Genetics,
6, 119–127.

Otto, S. P. (2004). Two steps forward, one step back: the pleiotropic effects of favoured alleles.
Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, 705–714.

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2023.05.12.540583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.12.540583
http://creativecommons.org/licenses/by-nc-nd/4.0/


Paaby, A. B. & Rockman, M. V. (2013). Pleiotropy: what do you mean? reply to zhang and
wagner. Trends in Genetics, 29, 384.

Pavlicev, M., Cheverud, J. M. & Wagner, G. P. (2009). Measuring morphological integration
using eigenvalue variance. Evolutionary Biology, 36, 157–170.

Pavlicev, M. & Wagner, G. P. (2012). Coming to grips with evolvability. Evolution: Education
and Outreach, 5, 231–244.

Pigliucci, M. & Preston, K. (2004). Phenotypic integration: studying the ecology and evolution
of complex phenotypes. Oxford University Press.

Promislow, D. E. (2004). Protein networks, pleiotropy and the evolution of senescence. Pro-
ceedings of the Royal Society of London. Series B: Biological Sciences, 271, 1225–1234.

Rohner, P. T. & Berger, D. (2023). Developmental bias predicts 60 million years of wing shape
evolution. Proceedings of the National Academy of Sciences, 120, e2211210120.

Saltz, J. B., Hessel, F. C. & Kelly, M. W. (2017). Trait correlations in the genomics era.
Trends in ecology & evolution, 32, 279–290.

Schluter, D. (1996). Adaptive radiation along genetic lines of least resistance. Evolution, 50,
1766–1774.

Scoville, A., Lee, Y. W., Willis, J. H. & Kelly, J. K. (2009). Contribution of chromosomal
polymorphisms to the g-matrix of mimulus guttatus. New Phytologist, 183, 803–815.

Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M. & Smoller, J. W. (2013). Pleiotropy in
complex traits: challenges and strategies. Nature Reviews Genetics, 14, 483–495.

Stearns, F. W. (2010). One hundred years of pleiotropy: a retrospective. Genetics, 186,
767–773.

Steiger, J. H. (1980). Testing pattern hypotheses on correlation matrices: Alternative statistics
and some empirical results. Multivariate Behavioral Research, 15, 335–352.

Steppan, S. J., Phillips, P. C. & Houle, D. (2002). Comparative quantitative genetics: evolu-
tion of the g matrix. Trends in Ecology & Evolution, 17, 320–327.

Stinchcombe, J. R., Weinig, C., Heath, K. D., Brock, M. T. & Schmitt, J. (2009). Polymorphic
genes of major effect: consequences for variation, selection and evolution in arabidopsis
thaliana. Genetics, 182, 911–922.

Turelli, M. (1988). Phenotypic evolution, constant covariances, and the maintenance of addi-
tive variance. Evolution, 42, 1342–1347.

Uller, T., Moczek, A. P., Watson, R. A., Brakefield, P. M. & Laland, K. N. (2018). Develop-
mental bias and evolution: A regulatory network perspective. Genetics, 209, 949–966.

Verbanck, M., Chen, C.-Y., Neale, B. & Do, R. (2018). Detection of widespread horizontal
pleiotropy in causal relationships inferred from mendelian randomization between complex
traits and diseases. Nature genetics, 50, 693–698.

Waddington, C. H. (1957). The strategy of the genes. Routledge.

38

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2023.05.12.540583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.12.540583
http://creativecommons.org/licenses/by-nc-nd/4.0/


Wagner, G. P. & Altenberg, L. (1996). Perspective: complex adaptations and the evolution
of evolvability. Evolution, 50, 967–976.

Wagner, G. P., Kenney-Hunt, J. P., Pavlicev, M., Peck, J. R., Waxman, D. & Cheverud, J. M.
(2008). Pleiotropic scaling of gene effects and the ‘cost of complexity’. Nature, 452, 470–472.

Wagner, G. P., Pavlicev, M. & Cheverud, J. M. (2007). The road to modularity. Nature
Reviews Genetics, 8, 921–931.

Wagner, G. P. & Zhang, J. (2011). The pleiotropic structure of the genotype–phenotype map:
the evolvability of complex organisms. Nature Reviews Genetics, 12, 204–213.

Walter, G. M., Aguirre, J. D., Blows, M. W. & Ortiz-Barrientos, D. (2018). Evolution of
genetic variance during adaptive radiation. The American Naturalist, 191, E108–E128.

Williams, G. C. (2001). Pleiotropy, natural selection, and the evolution of senescence: Evolu-
tion 11, 398-411 (1957). Science of Aging Knowledge Environment, 2001, cp13–cp13.

Wood, C. W. & Brodie III, E. D. (2015). Environmental effects on the structure of the
g-matrix. Evolution, 69, 2927–2940.

Zhang, J. & Wagner, G. P. (2013). On the definition and measurement of pleiotropy. Trends
in Genetics, 29, 383–384.

39

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2023.05.12.540583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.12.540583
http://creativecommons.org/licenses/by-nc-nd/4.0/


Appendices

Supplementary Note 1: Distinctions between linkage dis-
equilibrium and tight linkage
Our simulation and analyses account for LD, defined as linkage disequilibrium between mark-
ers in a genetic mapping study. Another form of linkage, which is the tight linkage in a
genomic context (i.e., perfect linkage, no recombination within pairs of linked loci), is implic-
itly accounted for when removing major horizontal pleiotropic loci as outliers. We are not able
to distinguish between tight linkage and pleiotropy (though these two architectures may differ
in maintaining genetic correlation, see Chebib & Guillaume (2021)). These major horizontal
pleiotropic loci are either caused by LD within the marker, or by pleiotropy. With respect
to distinguishing between LD and horizontal pleiotropy with small effect size loci, polygenic
trait correlations have been suggested to be unlikely to arise from chance LD events, as well
as several individual horizontal pleiotropic loci (Saltz et al., 2017). Therefore, in essence, our
metric dissects the genetic correlation by accouting for allele frequency, linkage equilibrium,
as well as horizontal pleiotropy, providing an approach to explore the role of developmental
constraint (trait-trait relationship) and vertical pleiotropy (developmental bias in a variant
level).

Supplementary Note 2: Additional dataset exhibit qual-
itatively similar results with yeast morphology dataset
We analyzed an additional data set consisting of vegetative and floral traits measured in a
population of B. rapa L. in the field and in a greenhouse (Brock et al., 2010). We present
results of this analysis based on outlier corrected subset of variants (LD pruned). Fig. S7
shows rD against rG. We find that most trait pairs with high rG also exhibit high rD, as
expected since those trait pairs with high rG are mostly floral morphological traits, which
have long been assumed under developmental integration (Ashman, 1999; Ashman & Majetic,
2006). However, we still found a few exceptions: trait pairs that exhibit low rD but high
rG. Specifically, for instance, petal length and petal width have a rG comparable to midpoint
length and filament length, petal length and ovary length. However, petal length and petal
width have relatively low rD. This is in contrast to two other pairs of traits, who exhibit
higher rD. Notably, very few length traits appear to have significant rG with petal width
in this dataset (Brock et al., 2010). Juenger et al. (2005) also found that, in Arabidopsis,
sets of floral organ lengths (petal length, sepal length, long stamen length, pistil length) or
organ widths (petal width, sepal width) were highly correlated, while rG between length and
width measures were generally not significant except petal length - petal width. Therefore, we
speculate that, instead of rD as a general cause of rG, LD or horizontal pleiotropic loci play a
critical role in shaping rG between floral organ lengths and widths. Furthermore, in line with
the analyses of yeast morphological data, traits with higher rD tend to be more conserved in
their rG between conditions: large changes in rG are more likely to occur for those pairs with
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lower rD(Fig. S8 and Fig. S9).
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Figure S1: To simulate a pair of traits across populations with different allele frequencies, the
additive effects of 1,000 SNPs are simulated using a bivariate normal distribution to generate
effect sizes for each locus, with one randomly chosen SNP as a ‘major’ pleiotropic (additive)
locus, and 999 SNPs as ‘small’ (additive) effects loci which are sampled from a bivariate normal

distribution with µ = (0, 0) and Σ =
[
1 ρ
ρ 1

]
. Here, we use a major concordant model, where

the effect of major pleiotropic locus in genetic correlation is concordant with the rest of the
loci. Next, genotypes of a 100-individual population are generated 100 times with changing
allele frequency. Each time, we calculate the genetic and effect size correlation (note that the
effect size correlation remains the same). Then, we vary the covariance of bivariate normal
distribution and repeat the above step to exhaustively sample different levels of developmental
bias.
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Figure S2: Reproduces the scatter plot between developmental bias (rD) and genetic corre-
lation (rG) in Fig. 2, but here using a bivariate normal distribution to generate effect sizes
for each loci. Each point represents a pair of traits. Given a population, we simulated 3,000
pairs of traits using a model under which each trait pair consists of one randomly chosen
SNP with a ‘large’ pleiotropic (additive) effect, and 999 SNPs with ‘small’ (additive) effects

which are sampled from a bivariate normal distribution with µ = (0, 0) and Σ =
[
1 ρ
ρ 1

]
. ρ is

sampled from a uniform distribution (−1, 1). a. simulations under a concordant model, where
effect of the large pleiotropic loci on genetic correlation is concordant with the rest of genetic
background. b. simulations without concordant assumption, where large pleiotropic loci has
either concordant or antagonistic effect with the genetic background. From left to right, effect
size of the large pleiotropic loci increases.
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Figure S3: The relationship between rD and rG from our re-analysis of phenotypes measured
in 374 recombinant strains of yeast cells (Geiler-Samerotte et al., 2020). Each dot in the
scatter plot represents, for a given pair of traits in the yeast dataset which consists of 167
traits, the correlation of additive effect (on the x axis) and the genetic correlation (rG, on the
y axis). We consider three settings, summarized in Fig. 4. a. All loci across the genome. b.
LD pruned variants. c. Outlier corrected variants. In a. and b., effect size correlations are
stronger than genetic correlations (Wilcoxon signed-rank test, p-value < 2.2e-16). Conversely,
in c., effect size correlations are not stronger than genetic correlations (Wilcoxon signed-rank
test, p-value = 0.8875) and the bulk of data are more evenly distributed around the unity
line)
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Figure S4: Two example trait pairs in the yeast morphology dataset (Geiler-Samerotte et al.,
2020) showing exceptionally strong rD between traits. Each point represents additive effect
for a single locus. These trait pairs demonstrate strong inherent redundancy.

S6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2023.05.12.540583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.12.540583
http://creativecommons.org/licenses/by-nc-nd/4.0/


ba ΔrG ∼ rG + rD

rG

rD

−0.20 −0.15 −0.10 −0.05 0.00

Estimate

Aggregated

8.5µM GdA

25µM GdA

100µM GdA

−0.2

−0.1

0.0

−0.2 −0.1 0.0
Slope Estimate (rD)

Sl
op

e 
Es

tim
at

e 
(r

G
)

8.5µM GdA

−0.3

−0.2

−0.1

0.0

−0.1 0.0 0.1
Slope Estimate (rD)

Sl
op

e 
Es

tim
at

e 
(r

G
)

25µM GdA

−0.3

−0.2

−0.1

0.0

−0.1 0.0 0.1
Slope Estimate (rD)

Sl
op

e 
Es

tim
at

e 
(r

G
)

100µM GdA

Figure S5: Statistical test showing developmental bias (rD) can predict the changes of genetic
correlation (rG). a Linear regression results for ∆rG ∼ rD + rG. Estimates of coefficient
and their 95% confidence intervals under four conditions for rD and rG are shown. The en-
vironmental conditions are three concentrations of geldanamycin (GdA) plus an aggregated
condition with all three concentration data. GdA is a small-molecule inhibitor that binds the
ATP-binding site of the chaperone Hsp90, thus rendering it unable to perform its cellular func-
tion. b Since rG and rD are highly correlated, which might cause multi-colinearity problems
during regressions, we perform additional analyses by simulating a null model (black dots):
∆rG ∼ rn + rG, where rn is sampled from the bivariate normal distribution with covariance
0.939, conditioning on rG. The coefficient estimates of rD (red dots) in b under all conditions
are at the tail of distribution in null expectation towards stronger slope estimates, suggesting
rD provides additional information in predicting ∆rG.
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Figure S6: Statistical test showing developmental bias (rD) can predict the changes of genetic
correlation (rG), similarly with Fig. S5b. Estimates of coefficient and their 95% confidence
intervals under four conditions for rD and rG in a linear regression ∆rG ∼ rD + rG are shown in
red dots. Since rG and rD are highly correlated, which might cause multi-colinearity problems
during regressions, we perform additional analyses by simulating a null model (black dots):
∆rG ∼ rn + rG, where rn is generated by rG with Gaussian noise. Qualitatively similar results
with (Fig. S5b) are observed
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Figure S7: A Brassica dataset with 11 floral, vegetative, and phenology traits (Brock et al.,
2010) was analysed similarly to Fig. 3, under two environmental conditions (field and green-
house). The loci used to calculate the effect size correlation are LD pruned and outlier cor-
rected. Green dots denote pairs of traits that are both floral.
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Figure S8: A Brassica dataset with 11 floral, vegetative, and phenology traits (Brock et al.,
2010) under two environments (field and greenhouse) was analysed. Trait pairs with stronger
rD exhibit more stable genetic correlations across two environmental conditions. The x axis is
the averaged developmental bias across two environments. y axis shows the absolute difference
of genetic correlation for a given pair.
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Figure S9: A Brassica dataset with 11 floral, vegetative, and phenology traits (Brock et al.,
2010) under two environments (field and greenhouse) was analysed. Trait pairs with stronger
rD exhibit more stable genetic correlations across two environmental conditions.The x axis is
the developmental bias in two environments, respectively. y axis shows the absolute difference
of genetic correlation for a given pair.
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\section*{Abstract} 


Despite the tremendous diversity and complexity of life forms, there are certain forms of life that are never observed. Organisms like angels might not emerge because of developmental biases that restrict how organisms can evolve, or because they have low fitness in any environment yet available on Earth. Given that both developmental bias and selection may create similar phenotypes, it is difficult to distinguish between the two causes of evolutionary stasis among related taxa. For example, remarkably invariant traits are observed spanning million years, such as wing shape in \textit{Drosophila} wherein qualitative differences are rare within genera. We thus ask whether the absence of combinations of traits, indicated by genetic correlation, reflects developmental bias limiting the possibility of change. However, much confusion and controversy remain over definitions of developmental bias and quantifying it is challenging. We present a novel approach aiming to estimate developmental bias by leveraging a common but under-utilized type of data: recombinant genetic mapping populations. We reason that information rendered by such mild perturbations captures inherent interdependencies between traits -- developmental bias. Through empirical analyses, we find that our developmental bias metric is a strong indicator of genetic correlation stability across conditions. Our framework presents a feasible way to quantify developmental bias between traits and opens up the possibility to dissect patterns of genetic correlation. 




{\sc Keywords}: Pleiotropy; Genetic correlation; Developmental bias; Evolvability


\subsection*{Significance Statement} 

Genetic correlation represents an important class of evolutionary constraint, which are themselves evolvable. Empirical studies have found mixed results on whether such evolutionary constraint changes rapidly or slowly. This uncertainty challenges our ability to predict the outcome of selection. Here, we propose a framework to dissect genetic correlation in a genetic mapping population and show that consistency of pleiotropic effects of loci across the genome, which we termed as developmental bias, is an indicator of genetic correlation stability. Our novel method empowers readily accessible QTL mapping data to understand complex genetic architecture underlying pleiotropy, mechanisms causing genetic correlation and, ultimately, long-term evolutionary divergence.
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\section*{Introduction} 
\begin{displayquote}
When the morphology of a species remains virtually unchanged for millions of years, we would like to know whether this reflects developmental constraints limiting the possibility of change or, conversely, the maintenance of uniformity by stabilizing selection. \hfill --- \citealt{smith1985developmental}
\end{displayquote} 



% The additive genetic variance is the variance due to the average additive effects of all contributing alleles at all contributing loci. Traits often share some of their genetic basis. Additive genetic covariance of traits in the population describes the variance due to pleiotropic alleles (which contribute to multiple traits), and due to linkage disequilibrium among alleles within a gamete or among gametes (Lande 1980). The additive genetic covariation among traits hinder them from evolving independently. Integral to multitrait quantitative genetics is G: An (additive) genetic variance and covariance matrix (G) comprises the additive genetic variance in the diagonals and additive genetic covariance in the off-diagonals. G is a symmetrical, square matrix with one row and one column per trait. 

 Genetic correlation represents an important class of evolutionary constraints \citep{smith1985developmental,clark1987genetic}, affecting future evolutionary trajectories. Yet, genetic correlations are themselves evolvable \citep{doroszuk2008rapid,dugand2021contribution,delph2011elimination, conner2002genetic,uller2018developmental,wagner1996perspective, rohner2023developmental,wagner2007road} and reflect both the past selection of trait combinations and, in some cases, developmental bias \citep{dugand2021contribution, arnold1992constraints}.
 Natural selection may favor certain combinations of traits and thereby actively maintaining genetic correlation via pleiotropy or linkage disequilibruim. Pleiotropy and linkage disequilbruim (LD) may then further inhibit traits from evolving independently towards a theoretical phenotypic optimum \citep{schluter1996adaptive}. On the other hand, genetic correlation can be shaped by bias due to intrinsic attributes of the organism, energy, or the laws of physics, relative to the assumption of isotropic variation. This latter concept has been decribed as developmental constraint or developmental bias \citep{smith1985developmental, arnold1992constraints, cheverud1984quantitative, rohner2023developmental}, which may account for the observation that perturbations, such as mutation or environmental variation, to biological systems will tend to produce some phenotypic variants more readily \citep{uller2018developmental,waddington1957strategy}. In spite of the numerous studies that address genetic correlation as an evolutionary constraint, much confusion and controversy remains over definitions of different types of constraint, the mechanism(s) causing constraint, and the relative importance of different mechanisms in shaping evolutionary trajectories \citep{muir2022important, conner2011rapid}.



The theoretical underpinnings for genetic covariance as an evolutionary constraint are well-developed \citep{lande1979quantitative,lande1983measurement}. Genetic covariance specifically describes trait covariance due to pleiotropic alleles, where a single locus has effects on two traits, or due to linkage disequilibrium of two loci, each of which affects a single trait but are physically so close that these two traits are strongly associated in populations \citep{lande1980genetic,lynch1998genetics,falconer1996introduction, conner2004primer}. The genetic information summarized by genetic covariance is connected to evolutionary processes in complex ways. For example, evolution toward a phenotypic optimum for two traits may be restricted if selection favors two traits antagonistically but the traits are positively correlated. That is, adaptive evolution can be limited if the joint vector of selection is antagonistic to the trait correlations. In some cases, such evolutionary constraint may persist over long time scales \citep{mcglothlin2018adaptive,opedal2023evolvability}.


 Straightforward applications of evolutionary quantitative genetic theory regarding the joint evolution of a pair of traits generally assume an invariant genetic covariance structure (\textbf{G} matrix) over the time frame of interest. However, the stability of genetic covariances and how they evolve remain unclear and contentious \citep{turelli1988phenotypic,burger1994distribution,arnold2008understanding,steppan2002comparative,milocco2022evolution,loeschcke1987genetic,barton1989evolutionary}. Empirical studies of the evolution of genetic covariance structure have found mixed results on whether genetic covariance changes rapidly or slowly. Some comparisons of \textbf{G} matrices between natural populations found no evidence of change in \textbf{G} \citep{delahaie2017conserved, arnold2008understanding,hangartner2020genetic,henry2023g}, while others have found changes in genetic covariance in only a few generations, across populations, in response to selection, or across environmental conditions \citep{chakrabarty2020comparative,milocco2022evolution,eroukhmanoff2011evolution,walter2018evolution,wood2015environmental,henry2023g,hudson2022analysis,scoville2009contribution, monroe2021diversity}. We might also predict that the genetic covariance among some suites of traits is stable, while it is unstable for others \citep{jones2003stability}. Generally, it is largely unknown what determines the stability of genetic covariance \citep{wood2015environmental} and this uncertainty challenges our ability to predict the outcome of selection.

 % Many other aspects of genetic correlation remain unknown as well: First, it still remains unclear whether and to what extent a high genetic correlation implies an evolutionary constraint during evolution \citep{gomulkiewicz2009demographic, hine2014evolutionary, conner2011rapid,agrawal2009much,haines2023dimensionality}. Second, empirically inferring genetic correlation often involves the creation of an artificial set of offspring derived from genetic crosses among individuals sampled from a natural population. It is unlikely that the recombinants in these experiments are representative of the genetic co-variances, and genetic correlations more generally, in a natural population \citep{pigliucci2006genetic}. 
 
 The persistence of correlational constraint and whether genetic correlation is a good predictor of long-term evolutionary divergence ultimately hinge on our understandings of the underlying mechanism(s) causing genetic correlation \citep{loeschcke1987genetic,conner2011rapid,conner2004primer}. For example, genetic correlation due to pleiotropy or tight linkage are much more likely to cause evolutionary constraint than those caused by linkage disequilibrium between loosely linked loci \citep{conner2011rapid,conner2004primer, conner2002genetic}. Correlations due to pleiotropy or tight linkage may persist in the absence of selection, while correlations caused by linkage disequilibrium can be changed quickly by recombination and selection \citep{conner2002genetic, conner2004primer, conner2011rapid}. We here reason that genetic correlation due to developmental bias is more likely to impose constraint on evolutionary change and may be more persistent than other factors, as developmental bias may arise due to simple principles of physics or chemistry. Insight into the role of developmental bias may reveal why genetic correlations between some traits are more constant over a long period as compared to other pairs of traits and why, in some cases, genetic constraints can be readily degraded by natural or artificial selection. However, formally discriminating between developmental bias and other mechanisms of genetic correlation is notoriously difficult \citep{smith1985developmental}.

Here, we provide an approximate measure of developmental bias by exploiting recombinant genetic perturbations. We define horizontal pleiotropy to describe a locus that has an effect on two traits, where such pleiotropic effect deviates from the effects of the other loci across a genome (Fig. \ref{fig:1} b,d). Conversely, developmental bias between traits describes the observation of consistent pleiotropic effect of loci throughout the genome on a given trait pair (Fig. \ref{fig:1} a,c). We use this consistency of pleiotropic effect throughout the genome to indicate developmental bias, $r_D$. We reason that if two traits are correlated because of developmental bias, these two traits should be correlated regardless of which specific variant causes the effect. 



Our primary goal in the present work is to dissect genetic correlations to understand to what degree they are driven by developmental bias vs. horizontal pleiotropy. We do so by using both numerical simulations and data from a recombinant genetic mapping population. One key outcome is that we identify loci that demonstrate horizontal pleiotropy. While another recent method exists for doing so \citep{geiler2020extent}, our method is unique in that it does not require one to study clonal cells and can therefore be applied to a broader range of organisms. An additional goal of our study is to test our proposition that a genetic constraint that arises principally from developmental bias is more persistent than one arising from horizontal pleiotropy. When $r_G$ are driven by numerious small effect size loci, we expect them to be more representative of inherent relationships, as opposed to when they are driven by individual horizontal pleiotropic loci. In the latter case, any changes or perturbations affecting that specific loci (e.g., various types of environmental perturbations with QTL-by-environment effect, allele frequency changes etc.) may easily disrupt the genetic constraint. We find evidence that, indeed, our estimated developmental bias is an indicator of genetic correlation stability, suggesting that this may allow us to predict change in a genetic correlation over a long-term period. We also show that genetic correlations are likely driven by developmental bias with a highly polygenic architecture. Hence, a genetic correlation with a highly polygenic architecture may be more stable. In sum, we use readily accessible QTL mapping data to understand how genetic architecture influences the portion of a given genetic correlation attributable to developmental bias, to identify loci that act via horizontal pleiotropy, and to make predictions about how genetic correlations will change. These results suggest that this type of common data is under-utilized, and that analyzing recombinant populations with our approach can help to deepen our understandings of genetic correlation.

% Both numerical simulations and empirical datasets were analyzed to demonstrate how identifying the role of developmental bias in trait correlation could distinguish among trait pairs, despite their similar genetic correlation. We thus argue that readily accessible QTL mapping data using recombinant population are under-utilized and can help to deepen our understandings of mechanisms causing genetic correlation.


% However, many aspects of genetic correlation remain unknown: First, it still remains unclear whether to what extent a high genetic correlation implies an evolutionary constraint during evolution \citep{gomulkiewicz2009demographic, hine2014evolutionary, conner2011rapid,agrawal2009much}. Second, empirical inferring genetic correlation often involves the creation of an artificial set of offspring derived from (carefully designed) crosses among individuals sampled randomly from a natural population. It is unclear to what extent carrying out such experiment reflects the genetic constraint in a natural population \citep{pigliucci2006genetic}. Third, instability and locality of genetic correlation. Straightforward applications of evolutionary quantitative genetic theory dealing with the joint evolution of a pair of traits generally assumes an invariant \textbf{G} over the time frame of interest. However, the stability of \textbf{G} and how it evolves remains unclear and contentious \citep{turelli1988phenotypic,burger1994distribution,arnold2008understanding,steppan2002comparative,arnold2008understanding,milocco2022evolution,loeschcke1987genetic}. Empirical studies of the evolution of \textbf{G} have found mixed results on whether \textbf{G} changes rapidly or slowly. Some comparisons of \textbf{G} matrices between natural populations found no evidence of change in \textbf{G} even for hundreds of generations \citep{delahaie2017conserved, arnold2008understanding,hangartner2020genetic}, while others have found changes (local or global) in \textbf{G} in only a few generations, across populations, or across environmental conditions \citep{chakrabarty2020comparative,milocco2022evolution,eroukhmanoff2011evolution,walter2018evolution,wood2015environmental,henry2022g,hudson2022analysis,scoville2009contribution}. Alternatively, we should expect \textbf{G} to be stable for some suites of traits and unstable for others \citep{jones2003stability}. However, it is yet unknown what determines the stability of \textbf{G} matrix: neither measures of environmental novelty nor differences in phenotypic means can predict changes in the \textbf{G} matrix \citep{wood2015environmental}. 


 


\section*{Results}

During a genetic association study, each genetic marker is assigned an odds likelihood ratio along with a effect size for the trait of interest. Instead of identifying statistically significant loci in such conventional genetic association studies, the essential idea, here, is to examine the consistency of pleiotropic effects across genetic backgrounds. We here quantify the developmental bias, $r_D$, by examining the additive effect of loci for trait pairs throughout the genome.  We define a locus with effects that deviate from the overall bivariate trend throughout the genome as a horizontal pleiotropic (HP) locus (Fig. \ref{fig:1}b). We diagnose $r_D$ as the consistency of pleiotropy across genetic backgrounds excluding HP loci. In a mapping population, allele substitutions at each locus represent non-directed (i.e., random) perturbations of varying directions and magnitudes. The additive effect of many loci thus are considered as random perturbations to an organism. We reason that if the effect size of these perturbations on two traits are highly correlated (excluding HP loci), the developmental bias between the two traits is likely to be strong. To better illustrate the framework we propose, the bivariate effect size distributions under two scenarios are shown (Fig. \ref{fig:1}a, b). The locus with a major phenotypic effect that deviates from the overall trend of other loci throughout the genome is a horizontal pleiotropic locus. Conversely, the consistency of pleiotropy (i.e., the overall trend of bivariate effect size distribution) is quantified as developmental bias. 

\subsection*{Simulation demonstrating relationships between $r_D$ and $r_G$}


To examine how the estimated developmental bias -- characterized by the effect size correlation among loci -- relates to genetic correlation ($r_G$), we first simulated two thousand trait pairs for a given simulated population with 500 individual genotypes. For each trait pair, genetic architecture with 226 loci was generated, with additive effect sizes sampled from a multivariate Laplace distribution. The genetic values are obtained by multiplying the genotypes with allelic effect sizes, assuming no epistasis and no linkage disequilibruim. $r_G$ is calculated by correlating the genetic values between two traits following standard protocols \citep{falconer1996introduction}.  We calculated $r_D$ and corresponding $r_G$ for each pair of traits. Notably, $r_G$ is a correlation across a population of individuals while $r_D$ is a correlation across a population of loci in a genome. Therefore, in princple, under a given $r_D$, the genetic correlation can vary greatly because of the changing allele frequency (Fig. \ref{fig:S2}). 



There exists considerable debate about regimes of allelic effect sizes and their effects on phenotypic evolution: in small steps, via changes of infinitesimally small effect, or in leaps via rare large effect loci \citep{orr2005genetic}. Additionally, classic work suggests that different genetic regimes may affect the rate of changes of genetic (co)variance \citep{barton1987adaptive,barton1989evolutionary,lande1979quantitative}. Therefore, in addition to examining the effects of HP and LD on the relationship between developmental bias and genetic correlation, we performed these simulations under two genetic regimes, one with high polygenicity which causes low kurtosis in the distribution of effect sizes, and one with low polygenicity which causes high kurtosis in the distribution of effect sizes (Fig. \ref{fig:2}). 


Assuming no horizontal pleiotropy (HP) and linkage disequilibrium (LD), we expect $r_D$ and $r_G$ to be equal. As expected, without accounting for HP and LD, $r_D$ strongly correlates with $r_G$ regardless of the genetic regimes (Fig. \ref{fig:2}b,c). Next, we repeated our simulations under conditions with HP or LD to understand how these forces would affect the correlations (Fig. \ref{fig:2}d,e). Under the HP scenario, $n$ randomly selected SNPs ($0 < n < 10$) are forced to have an HP effect, either concordant to or antagonistic with the rest of loci. The genetic correlation $r_G$ is not perfectly correlated with $r_D$ under scenarios with HP, especially when the kurtosis of the effect size distribution is high. In an extreme case, a single large-effect locus can drive the trait correlation despite the low $r_D$ (Fig. \ref{fig:S1}). Collectively, these observations suggest that $r_D$ and HP loci are two components of $r_G$, and that even a single large-effect HP locus can drive $r_G$ without overall consistency of pleiotropy throughout the genome. 


To understand how LD affects the relationship between $r_G$ and $r_D$, we also performed simulations using actual recombinant genotypes from a yeast mapping population \citep{geiler2020extent} (Fig. \ref{fig:2}f,g). Similarly to our simulations above, we sampled the effect size for each SNP on each trait from bivariate Laplace distribution with the same $\gamma$ and then propagated the effect size for a given SNP by ``contaminating'' its effect size according to the effect sizes of the SNPs in LD with it. (This procedure only accounts for weak linkage, See Supplementary Note 1.) In these simulations, LD appears to affect $r_G$ with a given effect size correlation even for cases in which the genetic architecture is highly polygenic (Fig. \ref{fig:2}f). These results imply that LD does not always strengthen $r_G$; LD could also weaken $r_G$ when, for example the effect of two loci in LD are antagonistic with the overall trend of pleiotropy across the genome. To summarize the numerical simulations, LD, HP, and $r_D$ together shape $r_G$. In the absence of HP and LD, $r_D$, we should not expect $r_D$ to be different from $r_G$. Furthermore, the effects of LD and HP on genetic correlation can become relatively stronger under a more `Mendelian' genetic architecture with lower polygenicity. 


\subsection*{Identifying horizontal pleiotropic loci and delineating developmental bias for yeast morphological traits}


We next applied our approach in a yeast morphology dataset, where 374 recombinant strains of yeast cells were imaged for, on average, 800 fixed, stained cells per strain using high-throughput microscopy \citep{geiler2020extent}. In total, measurements of 167 morpholgical traits were acquired. The patterns in this large dataset could offer a empirical picture of how HP and LD affect effect size correlations and how our approach can distinguish two mechanisms causing genetic correlation.


As described above, we define developmental bias $r_D$ as the effect size correlation for a subset of variants where outliers (HP loci) are removed. For example, the  effect size distribution (exclude HP loci) for two pair of traits are shown in Fig. \ref{fig:3}. The red lines indicate the magnitude of developmental bias ($r_D$) and the plot on the right is inferred to have a higher developmental bias. To identify outliers (HP loci), we first calculate the correlation by individual-level product \citep{lea2019genetic} for each trait pair across each locus. Outliers are then identified as the product falling outside 1.5 times the interquartile range above the upper quartile and below the lower quartile of the distribution. Since LD can also potentially affect the correlation of effect size, we conducted LD pruning to subset the variants to remove loci highly correlated within the population (See Materials and Methods). Therefore, in total, we present the effect size correlation against $r_G$ in three settings: Default (using all genotyped variants), LD corrected, and outlier corrected (i.e., $r_D$). 
 
 Fig. \ref{fig:4}a presents the distribution of effect size correlations using all genotyped variants, only LD pruned variants, or outlier-corrected variants ($r_D$). LD does not exert effect on the patterns of effect size correlation in this dataset (\ref{fig:4}a, two-sample Kolmogorov-Smirnov test, D = 0.017006, p-value = 0.3879), but horizontal pleiotropic loci, which we identified as outliers, appear to strengthen the effect size correlation (Fig. \ref{fig:4}a,b). In principle, an outlier can either weaken or strengthen the effect size correlation. However, our results suggest a bias towards concordant effects between outliers and other loci, given that the distribution under the outlier-corrected setting ($r_D$) has smaller variance (Fig. \ref{fig:4}a) and effect size correlation is generally weaker under the outlier corrected setting (Fig. \ref{fig:4}b). Notably, points that deviate more from the unity line ($y = x$) may represent trait pairs which are more strongly affected by horizontal pleiotropy (Fig. \ref{fig:4}c). 

To further investigate horizontal pleiotropy (HP), we identified those trait pairs significantly affected by the outliers (i.e., yellow dots in Fig. \ref{fig:4}b). Outlier loci for these trait pairs are likely indicative of horizontal pleiotropy. Indeed, we confirmed that our method identifies two loci (L15.9 and L13.7, See Table 1) that presented the strongest evidence of horizontal pleiotropy in an earlier study which used stronger genetic correlation than within-line environmental correlation as an indicator \citep{geiler2020extent}. Additionally, we found trait pairs with extremely high effect size correlations lacking evidence of horizontal pleiotropy (Fig. \ref{fig:4}a, b); an example effect size distribution of a trait pair with exceptionally high effect correlation -- possibly reflecting a strong developmental bias between two traits -- is shown in Fig. \ref{fig:S3}. In summary, we show that horizontally pleiotropic loci may indeed affect $r_G$ in the absence of an exceptionally strong developmental bias and that our method can be used to identify horizontal pleiotropic loci and further delineate $r_G$. 


 
To assess how effect size correlations under three settings relates to genetic correlations $r_G$, we calculated the effect size correlations between pairwise traits and plotted them against $r_G$ for each trait pair (Fig. \ref{fig:4S1}). Under all settings, we find no cases where trait pairs with no $r_G$ exhibit a strong effect size correlation, as expected. Qualitatively similar results are observed for an additional \textit{Brassica} dataset with 11 floral, vegetative, and phenology traits (Supplementary Note 2, Fig. \ref{fig:S6}). Notably, without LD correction and without removing horizontal pleiotropic loci as outliers (Fig. \ref{fig:4S1}a), the results here from recombinant perturbations are algined with a study using mutational accumulation lines to examine the contribution of mutation to genetic correlation, in which mutational correlations between traits were found to be overall stronger than genetic correlations between traits \citep{dugand2021contribution}. Similarly, in our results, effect size correlations using all variants overall are stronger than genetic correlations (Wilcoxon signed-rank test, p-value $<$ 2.2e-16), with a median absolute value of 0.280 and 0.206, respectively. After removing horizontal pleiotropic loci as outliers, the dots in scatter plot (Fig. \ref{fig:4S1}c) appears to be more evenly distributed around the unity line. Indeed, after removing HP loci, there is no significant difference between the distribution of effect size correlations ($r_D$) and the genetic correlation across trait pairs (Wilcoxon signed-rank test, p-value = 0.8875). 

Despite that there is no overall difference between the distribution of $r_D$ and $r_G$, our approach can delineate trait-trait specific mechanims causing their genetic correlations in empirical datasets.  As shown in Fig. \ref{fig:3}, two pairs of traits exhibit a similar and moderately high $r_G$ but contrasting levels of $r_D$, demonstrating how consistency of pleiotropy and estimated developmental bias $r_D$ could help us learn the underlying trait-trait specific mechanisms.  




\subsection*{$r_D$ predicts the stability of $r_G$ following environmental perturbations}
 

 Genetic correlations between traits may alter the evolutionary trajectory of either trait \citep{schluter1996adaptive}. Predicting the trajectory of trait evolution therefore can depend upon the stability of genetic correlations \citep{jones2003stability}. We reasoned that trait-trait correlations may be more stable if they are caused by inherent relationships between the traits, $r_D$, rather than horizontal pleiotropy. Thus we expected $r_D$ to predict the stability of $r_G$ (Fig. \ref{fig:5}a). To test whether our intuition is correct, we estimated $r_G$ from a related yeast dataset, which describes correlations across yeast single-cell morphological features measured in three environments. Here, the environmental conditions are three concentrations of geldanamycin (GdA), a small-molecule inhibitor that binds the ATP-binding site of the chaperone Hsp90, thus rendering it unable to perform its cellular function. We plotted absolute $r_D$ with changes of genetic correlation ($r_G$) for each pair of traits at the three drug concentrations (Fig. \ref{fig:5}). The results show that, as $r_D$ becomes greater, the changes of $r_G$ become smaller. 
 
 Since $r_G$ is highly correlated with $r_D$, to formally test whether under a given $r_G$, $r_D$ is informative in determining changes of $r_G$ upon environmental perturbations, we conducted multivariable linear regression ($\Delta r_G$ $\sim$ $r_G$ + $r_D$, all variables are transformed to absolute value). The regression results (Fig. \ref{fig:S4}a) demonstrate that conditioning on $r_G$ of a trait pair, $r_D$ significantly negatively correlates with the changes of $r_G$ across three drug concentrations. In other words, given a set of yeast morphology trait pairs with the same levels of $r_G$, the changes of magnitude of $r_G$ would be smaller for trait pairs with larger $r_D$, on average. Furthermore, we found that this effect of $r_D$ is strongest under mild treatment perturbation (here, low concentration of geldanamycin) but becomes weaker as the drug concentration becomes higher and, presumably, more stressful for the cells \citep{geiler2016selection}. To account for the effect of collinearity between $r_D$ and $r_G$ (PCC = 0.939) on regression outcomes, we also report, here, null model simulated results (Fig. \ref{fig:S4}b and Fig. \ref{fig:S5}). Taken together, these results indicate that the estimated $r_D$ may indeed predict the stability of $r_G$ following environmental perturbtions.  






% Plan 1: 

% Reanalyzing a GWAS study: Smith et al \citep{smith2022integrative} did an analyse on metabolite GWAS and found the effect directions of variants acting on biology between metabolite pairs that have known relationship in the metabolic network often contrast with those of upstream or downstream variants as well as the polygenic background. Their analyses support substantial genetic overlap between the traits, particularly in the polygenic components. 
% Importantly, they found that causal variants that directly act on the interaction of metabolic pairs are more likely to have antagonistic effect towards the genetic background. This seems counterintuitive, but aligns with our current results. Through reanalysis, we would like to know whether small effect size loci and those non-causal variants are indeed useful to reveal  inherent interdependencies between traits as indicated by interactions in the metabolic network.



% Plan 2: 

% Mutational perturbations. Using MA or experimental evolution lines e.g., \citep{farkas2022gene}  or large mutation panel \citep{ohnuki2018high}(SCMD: http://www.yeast.ib.k.u-tokyo.ac.jp/SCMD/datasheet.php) to ask whether correlation of pairs with higher estimated developmental constraint are more conserved upon mutational perturbation when controlling the strength of genetic correlation. 



% Plan 3: 

% If you look at the Fig. \ref{fig:5}C, a higher developmental constraint will limit the divergence of genetic correlation across two environment. We speculate that a higher developmental constraint of trait pair would also result in lower divergence in phenotypic and genetic correlation across population and phylogeny. 

% By excluding top 20 QTLs and calculate the lower bound of confidence intervals, we acquire the developmental constraint and genetic correlation of 55 trait pairs (See Table 1). For example, Days to Flower and Primary inflorescence height have moderate genetic correlation at both conditions (-0.38 at Environment 1 and 0.55 at Environment 2), but there is almost no developmental constraint, suggesting that some trait correlation is not caused by the developmental constraint and instead roles of large effect pleiotropic loci in reshaping the genetic correlation. We hence hypothesis that the divergence of correlation in this trait pair across the phylogeny would be high. Similarly for leaf length/days to flower, Primary inflorescence height/Filament Length, Leaf length/Ovary Length, Midpoint length/Anther Length, etc. 

% One plasusible idea could be to collect trait values across species. We can then compare, for example, the variation and divergence of correlation between Midpoint Length and Anther Length to other trait pairs with similar genetic correlation (e.g., Midpoint Length and Ovary Length). We also found that Petal length/petal width has weak level of developmental constraint 
% comparing to midpoint length/filament length, which has similar level of genetic correlation with Petal length/Petal width pair, generating the hypothesis that the Petal length/Petal width may have more divergence in genetic correlation across speices. This results will potentially exhibit the ability of developmental constraint to predict the long-term G matrix stability.








\section*{Discussions}

%take away1
%LD does not affect developmental constraint but may affect genetic correlation? It raises the question about whether LD will create spurious genetic correlation, which is widely-believed [][][]

%take away2
%Most high genetic correlations are caused by developmental constraint or vertical pleiotropy

% take away 3
%teasing apart the genetic correlation, distorted genetic correlation in mapping population; the variance explained by each polymorphic locus is affected by how frequently the allele appears and what the strength of the allele in an individual \citep{benfey2008genotype}. 

%take away 4
%suitable measure of developmental constraint. intuitive. elucidate the relationship between the developmental constraint and genetic correlation quantitatively. 

%Brief summary


It has long been recognized that developmental integration is one cause of multivariate genetic constraint \citep{klingenberg2005developmental,pigliucci2004phenotypic}. On the other hand, genetic constraint can also reflect correlational selection. However, dissecting the underlying mechanism(s) causing genetic correlation is challenging. Here, we exploited a hidden source of data that has been overlooked to quantify the contribution of developmental bias in creating genetic correlation. Assessing consistency of pleiotropy by measuring the effect size correlation across many genomic loci provides a possible framework to explore the mechanisms of genetic correlation. The central messages from our analyses are three-fold. 


First, developmental bias estimated from recombinant genetic perturbations provides an indicator of genetic correlation stability following environmental perturbations. Our stability analyses in empirical datasets (Fig. \ref{fig:5}, Fig. \ref{fig:S4}, Fig. \ref{fig:S5}, Fig. \ref{fig:S7}, and Fig. \ref{fig:S8}) suggest that the higher a developmental bias, the more likely a genetic correlation between two traits remains stable across environmental conditions. In other words, higher developmental bias leads to smaller response of genetic correlation to environmental changes. This may provide further insight into the observations of context-dependencies of environmental effect on \textbf{G}-matrices \citep{wood2015environmental}, with certain trait pairs exhibiting more stability while others showing greater plasticity across conditions. 


Second, Mendelian genetic architecture for a given trait pair can increase the contribution of horizontal pleiotropy to genetic correlation (Fig. \ref{fig:2}). Under such a scenario, genetic correlation as a summary statistic can not fully reflect the complex genetic architecture underlying a genetic correlation. In fact, evidence of discrepancies of effect between genetic background and major loci abound \citep{albert2008genetics,hall2006pleiotropic,scoville2009contribution,stinchcombe2009polymorphic}. For example, in \textit{Mimulus}, a major QTL contributes a negative covariance between stigmaâ��anther separation and pollen viability, which is antagonistic to the overall positive genetic covariance between these two traits \citep{scoville2009contribution}. Furthermore, previous work suggests that we might expect to see more changes of \textbf{G}-matrix during evolution if traits have an oligogenic genetic basis rather than aligning with the infinitesimal model \citep{barton1987adaptive,barton1989evolutionary,lande1979quantitative}. For example, Lande \citep{lande1979quantitative} emphasized that trait means typically change much more rapidly than trait (co)variances. Yet, changes of (co)variances can be quite rapid if there are underlying loci with large contributions to (co)variation. Similarly, in our present work, we show that under a infinitesimal model, genetic correlation mainly arises from developmental bias (Fig. \ref{fig:2}) which, as our stability tests suggest, might also be more stable across conditions (Fig. \ref{fig:5}). 




Third, our method allows us to identify horizontal pleiotropic loci without measuring phenotypes across clonal individuals or cells. There is a long-standing interest in identifying horizontal pleiotropy in nature \citep{verbanck2018detection, jordan2019hops,bowden2018invited}. One motivation for doing so is that evolutionary theory predicts that natural selection should limit horizontal pleiotropy because, as the number of traits that a mutation influences increases, the probability of the mutation having a positive fitness effect decreases \citep{zhang2013definition,orr2000adaptation,pavlicev2012coming,mcguigan2014pleiotropic}. However, identifying cases of horizontal pleiotropy is difficult because genetic correlations do not always indicate horizontal pleiotropy. By discovering a way to disentangle the portion of genetic correlation caused by developmental bias, we have also discovered a novel way to identify candidate loci that act via horizontal pleiotropy. Our method of identifying horizontal pleiotropy can be broadly useful because it does not require measuring the trait correlations that are present across clonal cells. Thus, while previous methods \citep{geiler2020extent} are mainly useful for organisms that propagated clonally, e.g., microbes, our method can be applied more broadly.



\subsection*{Can recombinant mapping population characterize \textbf{M} matrix?}

Numerous past studies used mutation accumulation lines to estimate mutational matrices (\textbf{M} matrices) as a means to understand the influence of mutations on shaping genetic correlation \citep{dugand2021contribution,houle2017mutation}. \citet{dugand2021contribution} discovered a significant similarity between \textbf{G} and \textbf{M} matrix, suggesting that mutations directly shape \textbf{G}. On the other hand, mutational correlations using mutation accumulation lines consistently exceed genetic correlations in magnitude \citep{dugand2021contribution}, which is aligned with our findings (Fig. \ref{fig:3}c) where the effect size correlations under default setting are stronger than the genetic correlation $r_G$. This naturally raises several questions related to mutation accumulation lines, recombinant mutation, and developmental bias: Firstly, to what extent does recombinant reflect the effect of mutation in a mutational accumulation experiment? There are now increasingly accessible resources available for recombinant mapping populations, such as the recently developed multiparent panels and advanced intercross lines \citep{kover2009multiparent,gage2020ten}, offering a promising avenue to investigate the respective roles of mutation and selection. Secondly, to what extent do trait covariance patterns due to mutations or environmental perturbations reflect the developmental bias? A recent study used fluctuating asymmetry of the left and right sides of the same organism as a measure of developmental bias \citep{rohner2023developmental}. The left and right sides of the same organism share the same genome and macro-environment but only differ in their microenvironmental inputs. Therefore, the development may generate asymmetry (i.e., noise) in morphological traits. The authors showed that developmental bias quantified using such noise in the dipteran wing predicts its evolution on both short and long evolutionary timescales\citep{rohner2023developmental}, which suggests that those mild perturbations may generate phenotypic outcomes more representative of developmental bias. 






% The reason we exclude large horizontal pleiotropic effect loci has third folds: First, Pearson correlation coefficient is sensitive to outliers. Excluding those large-effect variants helps to unveil the real patterns of effect size correlation. Second, a pair of traits with extremely strong developmental constraint will not be influenced by excluding several large effect loci. Third, those large effect major loci are likely causal variants that may often exhibit effect distinct from those of the polygenic background. We believe that mild perturbations (e.g., genetic background) are more capable than causal variants in terms of revealing the inherent interdependencies between traits. 



\subsection*{The extent of pleiotropy}
 
 Pleiotropy describes the phenomenon in which a gene or a mutation affects more than one phenotypic trait. The concept and nuance of pleiotropy has had a prominent role and broad implications on genetics, evolution, and medicine \citep{klingenberg2008morphological,stearns2010one,promislow2004protein,williams2001pleiotropy,barton1990pleiotropic,he2006toward,otto2004two,wagner2011pleiotropic,des2010pleiotropy, geiler2020extent}. Conceptually, many possible scenarios can result in a pleiotropic effect, including mediated pleiotropy (i.e., vertical pleiotropy), horizontal pleiotropy, and other spurious pleiotropy such as linkage \citep{wagner2011pleiotropic,solovieff2013pleiotropy}. One major debate on pleiotropy is what is the extent of pleiotropy: we lack consensus about how pleiotropic natural systems are \citep{paaby2013pleiotropy,zhang2013definition}. A key challenge is whether the effect of a single locus on correlated traits can be counted as pleiotropic effect, for instance, as pointed out by \citealt{wagner2011pleiotropic}; e.g., are the depth and the width of a bird beak two characters? Thus, ignoring trait correlations may bias the estimation of pleiotropy. One possible solution is to consider the effective number of traits by looking at the eigenvalue variance of the phenotypic correlation matrix \citep{wagner2011pleiotropic,pavlicev2009measuring,wagner2008pleiotropic}: The more dispersed the eigenvalues, the more interdependency of the traits. However, this approach likely biases the interdependency estimations of the traits, especially in the presence of major pleiotropic effect loci. For example, as an extreme case, even a single pleiotropic locus alone can drive trait correlations in spite of the low consistency of pleiotropy (Fig. \ref{fig:S1} and also see \citep{agrawal2001possible}). Hence, in this case, the effective number of traits calculated via the phenotypic correlation matrix will be overestimated simply because there is a major effective pleiotropic locus -- this does not necessarily mean two traits are inherently interrelated. Similarly, the bias is present if there is a major antagonistic loci against overall correlation of effect size. Instead, our analyses demonstrated that the consistency of effect sizes may provide a more appropriate way to measure inherent trait correlation and hence effective trait dimensions.  


% The (co)-variance explained by each polymorphic locus is affected by how frequently the allele appears and what the strength of the allele in an individual \citep{benfey2008genotype, kelly2009connecting}. For a mapping population, the allele frequency is constant throughout the genome. Therefore, the genetic correlation calculated for a mapping population may be distorted compared to a natural population because of ``manipulated'' allele frequency \citep{pigliucci2006genetic}. In extreme cases, where a locus has strong horizontal pleiotropic effect, the genetic correlation of the mapping population is likely inflated as compared to natural populations, where the allele frequency of a major effect locus may be smaller and its frequency more directly determined by natural selection. In summary, genetic correlation is a measure for a given population, which affected by allele frequency (due to e.g., selection, migration \citep{guillaume2007effects}), linkage disequilibruim (contrasting between mapping population versus natural population), and horizontal pleiotropic loci. But the developmental bias estimated via the consistency of pleiotropy throughout the genome offers a potential standardized way to quantify trait relationships. 
 
 
% Notice that the simulation results are under the assumption that the allele frequency is independent of the effect size, which could be rare for natural populations. Therefore, these results are presumably only applicable to mapping population. In other words, LD or HP may not affect $r_G$ for natural populations because those loci with large effect sizes can have a small allele frequency, resulting in negligible contribution to genetic correlation (see Materials and Methods). Therefore, importantly, $r_G$ calculated from the artificially crossed mapping population can be ``distorted'' compared to the natural population. This suggests that $r_G$ calculated from inbred mapping populations should be treated cautiously, and we need a standardized way to examine trait relationship. One another caveat is whether the developmental bias we estimate are local constraints confined to particular taxa or universal constraints \citep{smith1985developmental}. Since the developmental bias can be non-linear (as an output of e.g., developmental gene regulatory system) or highly environment-dependent, we reason that a high consistency of pleiotropy throughout the genome only means that two traits are locally constrained by developmental programs. 




 
%  In fact, interestingly, studies of beak length and depth reported inconsistent results of genetic correlation \citep{wagner2007road,grant1994phenotypic,grant1983inheritance}. It might be worth looking at the developmental constraint between these two traits. We speculated that their developmental constraint should be weak across conditions. On the contrary, floral traits, which have long been considered a group of traits with strong developmental integration, maintain relatively stable genetic correlation in a multigenerational experiment \citep{conner2002genetic}. This is in line with our results, where the genetic correlations of floral traits with relative stronger developmental constraints are relatively robust to changing conditions (Fig. \ref{fig:5}). Therefore, we posit that disentangling genetic correlation with developmental constraint may afford us more power to interpret the results of genetic integration and modularity across studies and contexts, both of which have complex histories with respect to conceptualization and quantification. 
 
 
 
%Related results Kelly effect size distribution

% Pleiotropy was not generally consistent, either between QTLs or with the genetic background. Shifts in allele frequencies at either QTL are predicted to result in substantial changes in the G-matrix.




% If the direction of pleiotropy is variable across QTL, selection can even change the sign of CA[x,y], that is a positive genetic correlation can become negative and vice versa. With this kind of pleiotropy, CA[x,y] is a net balance between QTLs contributing positively and contributing negatively. As selection alters allele frequencies, this balance shifts. Variable pleiotropy has been documented in QTL mapping of interpopulation crosses (e.g., Hall et al. 2006; Albert et al. 2008) and is also likely to be prevalent for intrapopulation variation (Mackay 1996). Given the central importance of variability among QTL in their respective contributions to (co)variation, I outline a series of simple tests of â��QTL consistencyâ�� in the section Hypothesis Testing section of this essay.



% local genetic correlation: https://www.biorxiv.org/content/10.1101/2022.04.02.486791v1
% Genetic correlation hides a lot of complexity in terms of underlying causal pathways. Here's an eg from our lab for Alanine and Glutamine. Overall correlation positive, but the most relevant pathways actually negative! 


% Effective trait dimension. 
% https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.0014-3820.2005.tb01041.x
 
 
%  Robertson (1967) argued that
% this distribution of effects is likely to be exponential, with a
% few major QTL segregating along with a great many relatively
% minor loci. In the short term under directional selection, allele
% frequency changes at major QTL are likely to have the most
% pronounced effect on the G-matrix (Agrawal et al., 2001).



% Our approach is based on the recognition that genetic
% (co)variances are aggregate functions of QTL allele frequencies
% and effects (Turelli, 1988b; Phillips & McGuigan, 2005)



%evolutionary implication 



% Our analytical framework to quantify developmental constraint allows us to generate myraid testable hypotheses in evolutionary biology. For example, can mixed results on whether \textbf{G} matrix changes be explained by the strength of developmental constraints \citep{wood2015environmental, chakrabarty2020comparative,walter2018evolution,eroukhmanoff2011evolution}? In addition, one of the presumptions of developmental constraints is that it defines accessible regions and the feasibility of the system before other factors come into play. One could imagine that a strong developmental constraint influences not only the covariance structure upon natural genetic perturbations but also other factors such as environmental perturbations. Indeed, our empirical analysis illustrated that a stronger developmental constraint inevitably leads to a higher environmental correlation (Fig. \ref{fig:2}A-C). Accordingly, we speculate that strong developmental constraints, as a congruent cause, will result in a similar structure of covariance in response to genetic, mutational, and environmental perturbation. This speculation possibly provides explanations with respect to why in some conditions the genetic covariance can be approximated by phenotypic covariance, while others can not -- so called `Cheverud's conjecture'\citep{watanabe2021statistics,cheverud1988comparison,roff1995estimation}, and also, why in some condition and for some traits, phenotypic plastic responses are aligned with the major axis of genetic covariance \citep{noble2019plastic,lind2015alignment}







% The additive effect does not actually reflect true effect size. Penalized multivariate regression is implemented. For future studies, genomic intervention CRISPR can isolate the effect of single effect. Which will be complement to our current work. We anticipate that the developmental constraint is suitable to predict the minor effect mutational matrix. 

%Quantitative trait locus (QTL) mapping studies do not adequately address the mechanisms of within-population genetic correlations because they rely on crosses between distinct species, inbred lines or selected lines (see ref. 5), and they cannot distinguish moderate linkage disequilibrium from pleiotropy because they commonly rely on only one or two episodes of recombination


%G matrices are population statistics. These quantities summarize variation in the genotypic values of individuals randomly sampled from some reference population. 

 %From a network perspective, the major disadvantage of this approach is that it is often difficult to infer the normal functioning of the system from disruptions that completely remove a gene. Although perturbations with less drastic effects can be identified through traditional genetics (2), they are the norm among the alleles that contribute to natural variation. In the past, this has been considered a disadvantage of natural variation: that the genetic variation occurs at multiple loci, each making only a small contribution to the complex trait. However, for understanding the dynamics of a system, these smaller dispersed effects can become a major advantage. Linking genetic changes to small perturbations in the network may allow us to understand how tuning of the network can produce different outcomes
 
 

%In the absence of controls for trait number, dimensionality, homology, development and function, it is difficult, or even impossible, to compare integration indices across organisms or traits. 
 
% simply blur the causes and consequences of phenotypic integration
 

 
%  Leamy, Larry J., Eric J. Routman, and James M. Cheverud. "Quantitative trait loci for early-and late-developing skull characters in mice: a test of the genetic independence model of morphological integration." The American Naturalist 153.2 (1999): 201-214.
 




%Linking macro- to microevolution is one of the fundamental challenges in evolutionary theory. Population and quantitative genetics provide precise predictions for the short-term dynamics of allele frequencies and phenotypes, but how far can these predictions be extrapolated? It is customary to distinguish two extreme positions. The first is the extrapolationist view that macroevolution is microevolution writ large, or simply that macroevolution can be fully understood by use of concepts and parameters from quantitative genetic theory (e.g. [1â��6]). The alternative extreme is that macroevolution is decoupled from microevolution in such a way that microevolutionary theory is largely irrelevant, and different conceptual tools must be used when studying the two levels (e.g. [7â��10]). Most biologists, including those cited above, would probably agree that the truth is somewhere in between these extremes, but exactly how far microevolutionary models can be extended remains an open question

%The research paradigm in evolutionary quantitative genetics initiated by Lande and Arnold (e.g. [12,13]) is a good illustration of the extrapolationist view. The fundamental assumptions of this approach include the view that quantitative genetic parameters such as the additive genetic, or at least the mutational, variance parameters remain stable over long stretches of time, allowing rather simple extrapolations of single-generation responses to selection. On this basis, predictions have been derived for patterns of among-species variation based on a variety of models from life-history theory, sexual selection, behavioural ecology or neutral theory 

 

\section*{Materials and Methods}

Sophisticated tools in the field of quantitative genetics have been developed to identify genetic loci which statistically explain phenotypic variance in quantitative traits to regions of chromosomes, so-called quantitative trait loci (QTLs). One of the fundamental metrics of quantitative genetics is the additive effect of a QTL, which represents the change in the average phenotype produced by substituting one allele for another \citep{lynch1998genetics,falconer1996introduction}. To better illustrate what we could exploit through the additive effect distribution, bivariate effect size distribution under two scenarios are shown (Fig. \ref{fig:1}a,b), where both of two pairs of traits are affected by a major pleiotropic locus. In contrast, the consistency of pleiotropic effect throughout genome is different. This illustrative example may be extreme, but it implies that only analyzing the summary statistics such as genetic correlation or statistically significant loci in a genetic association study may lose information behind the genetic architecture. Such hidden information could be valuable when assessing the strength of developmental bias $r_D$: If two traits are correlated because of developmental or physiological constraint, these two traits should be correlated regardless of which specific variant is causing the effect. i.e., there is consistency of the pleiotropic effect across genetic background (Fig. \ref{fig:1}a). On the other hand, if two traits are genetically correlated simply because of several major pleiotropic loci for a given population, those small loci can have inconsistent effect between traits (Fig. \ref{fig:1}b). We term such consistency of pleiotropy as developmental bias $r_D$ and those loci with effect deviated from overall trend throughout the genome as horizontal pleiotropic (HP) loci.

Our conceptualization of developmental bias is similar to the definition of vertical pleiotropy or mediated pleiotropy \cite{geiler2020extent}. Indeed, the high consistency of pleiotropic effect implies vertical or mediated pleiotropic nature of loci. Yet, we here define the developmental bias as a trait-level metric, whereas the vertical or mediated pleiotropy most often refers to the effects of variants on traits. In vertical pleiotropy, the traits themselves are biologically related, such that a variantâ��s effect on trait A inevitably causes the effect on trait B. Likewise, horizontal pleiotropy is defined as a variant or mutation causing an effect on two traits that are otherwise independent. Another distinction between developmental bias and vertical pleiotropy is that vertical pleiotropy frequently refers to a part of causal cascade, as exemplified by low-density lipoprotein (LDL) cholesterol levels causing the risk of heart disease \citep{geiler2020extent}. Developmental bias, on the other hand, depicts the correlational structure among traits since many traits (e.g., morphological traits) do not necessarily exhibit direct causal relationships. We thus apply the term vertical pleiotropy to variants that share the effect for inherently related traits without considering the causal direction.

 % Our metric is not intended to be a summary statistic of constraint in general. Obviously, a crucial aspect of constraint is the amount of genetic variation; adaptation will be constrained if traits have little or no genetic variation. Our metric does not address whether individual traits have particularly high or low levels of genetic variation




% Multiple studies have identified loci that contribute to GÃ�E [several of which are reviewed in Josephs (2018)]

% Josephs EB. Determining the evolutionary forces shaping G x E. New Phytol. 2018;219(1):31â��36

% But the G-matrix itself is not constant, as GÃ�E at underlying loci may impact trait variation and covariation among traits (Wood and Brodie 2015). 

\subsection*{Numerical simulations}


To simulate multiple pairs of traits within a population, first genotypes were simulated through the function \textit{simulateGenotypes} in PhenotypeSimulator \citep{meyer2018phenotypesimulator} with 226 SNPs (mimicking the actual number of loci in an empirical dataset; \citet{geiler2020extent}) and 500 individuals, where the allele frequencies are either sampled from 0.05, 0.1, 0.2, and 0.5 or constant value 0.3 for a mapping population. For each pair of traits, the additive effect for each SNP is sampled from a bivariate exponential distribution (bivariate Laplace distribution) with $\mu = (0,0)$ and $\Sigma = \begin{bmatrix} 1 & \rho \\
\rho & 1  \end{bmatrix}$. $\rho$ is drawn from the uniform distribution $(-1,1)$. A shape parameter $\gamma$ determines the distribution, where a smaller $\gamma$ represents genetic architecture approximating one or a small number of large-effect loci (Mendelian genetic architecture, high kurtosis for effect size distributions) while a larger $\gamma$ trends towards a polygenic infinitesimal model (low kurtosis for effect size distributions). We used $\gamma$ of 1.0 and 0.5 in Fig. \ref{fig:2} left and right, respectively. Under horizontal pleiotropy scenario, $n$ randomly selected SNPs ($0 < n < 10$) are forced to have horizontal pleiotropic effect (either concordant to or antagonistic with the rest of loci). The genetic correlation, $r_G$, between traits $M$ and $N$ was calculated as the Pearson correlation $\rho_{(X \beta_{[M]}^\intercal,  X \beta_{[N]}^\intercal)}$, where $\beta_{[M]}$ and $\beta_{[N]}$ represents the effect size for trait $M$ and trait $N$ across genome, and $X \beta_{[M]}^\intercal$ and $X \beta_{[N]}^\intercal$ represent the genotypic values of trait $M$ and trait $N$, respectively. The developmental bias, $r_D$, is calculated as the Pearson correlation coeffecient of effect size for traits $M$ and $N$, where summations are taken over all loci except those assigned as horizontal pleiotropic SNPs ($n$ loci):


\begin{equation}
   D_{\beta[M,N]} =  \frac{cov(\beta_{[M]}, \beta_{[N]})}{\sigma_{\beta_{[M]}}\sigma_{\beta_{[N]}}}=\frac{n\sum \beta_{i[M]} \beta_{i[N]} - \sum \beta_{i[M]} \sum \beta_{i[N]}}{\sqrt{n \sum \beta_{i[M]}^2 - (\sum \beta_{i[M]})^2} \sqrt{n \sum \beta_{i[N]}^2 - (\sum \beta_{i[N]})^2}}
\end{equation}


To account for linkage disequilibrium (LD), simulating trait pairs with actual genotype information, the additive effect size of 226 SNPs are simulate similarly as above except that there are no horizontal pleiotropic loci. The effect size is then propagated through the LD block defined by $r > 0.5$.  

\subsection*{Dataset retrieval and genetic correlations $r_G$}

Two empirical datasets were used. The first dataset comprises single cell morphology data for budding yeast \textit{Saccharomyces cerevisiae} where, for each of 374 recombinant strains of yeast cells, approximately 800 fixed, stained cells were imaged using high-throughput microscopy \citep{geiler2020extent}. 167 morphological features were estimated, including these representative examples: cell size, bud size, bud angle. Analysis of the original dataset assessed both genetic (between-strain) and environment (within-strain) correlation using a multilevel correlation partitioning method \citep{bliese2013multilevel}. The authors found that using this approach to estimate correlations has similar results as compared to a linear mixed model and variance component analysis. The second dataset contains phenological, floral, and vegetative traits for a recombinant inbred population of \textit{B. rapa L.} created from a cross between yellow sarson, R500, and the rapid cycling IMB211 inbred lines \citep{brock2010floral}. The QTL mapping was conducted with 223 markers in 131 individuals (field condition) and 132 individuals (greenhouse condition). Eleven phenotypes were included, here, as we excluded branch length in the field and leaf width in the greenhouse, which were not measured in both conditions. When calculating $r_D$, we use either all genome-wide variants or an LD-pruned subset of variants. During LD pruning, we removed within-choromosome QTLs to $r < 0.5$ for both datasets.



\subsection*{Horizontal pleiotropic loci identification and empirical calculation of $r_D$}



If we ignore dominance, epistasis, and linkage disequilibrium, and assume two alleles per locus, the covariance components of a \textbf{G} matrix can be written as \citep{kelly2009connecting}:

\begin{equation}
    C_{\alpha{[M,N]}} = \sum_i 2q_i(1-q_i)\alpha   _{i[M]}\alpha_{i[N]}
\end{equation}



where $C_{\alpha{[M,N]}}$ is the additive genetic covariance between trait $M$ and trait $N$. $q_i$ is the frequency of first allele at loci $i$ within a given population; $\alpha_{i[M]}$ and $\alpha_{i[N]}$ are the additive effects of that allele on trait $M$ and $N$, respectively; summations are taken over all loci. Accordingly, a large effect QTL for trait $M$ (high  $\alpha_{i[M]}$) can make a minor contribution to the genetic covariance structure if allele frequency $q_i$ is small. 

We developed an approach to evaluate the horizontal pleiotropy and calculate $r_D$ empirically. In brief, our method has three components: (a) detection of horizontal pleiotropic loci; (b) calculating $r_D$ through effect size correlation excluding horitonal pleiotropy; (c) testing pairs with significant difference after outlier removal, identified as horizontal trait pairs.

We use the following procedures to identify horizontal pleiotropic loci: first calculate the normalized, demeaned, and element-wise product of outcome for each locus \citep{steiger1980testing}: 


\begin{equation}
  \frac{(\alpha_{i[M]} - \overline{\alpha_{[M]}}) (\alpha_{i[N]} - \overline{\alpha_{[N]}})}{\sigma_{\alpha_{i[M]}} \sigma_{\alpha_{i[N]}}} 
\end{equation}

where $\overline{\alpha_{[M]}}$ and $\overline{\alpha_{[N]}}$ are the mean genome-wide additive effect size for trait $M$ and $N$, respectively, and $\sigma_{\alpha_{i[M]}}$ and $\sigma_{\alpha_{i[N]}}$ are standard deviations of additive effect size for trait $M$ and $N$, respectively. The horizontal pleiotropic loci are defined as loci with the product falling outside 1.5 times the interquartile range above the upper quartile and below the lower quartile. The Pearson correlation coefficient is equal to the above average element-wise product of two measured traits. In other words, the outliers of these element-wise products represent the outliers when calculating the correlation, substantially deviating from the overall trend of bivariate effect size distribution. 


Second, developmental bias ($r_D$) is calculated as the Pearson correlation coefficient among the rest of loci written by: 

\begin{equation}
   r_{D_{\alpha[M,N]}} =  \frac{cov(\alpha_{[M]}, \alpha_{[N]})}{\sigma_{\alpha_{[M]}}\sigma_{\alpha_{[N]}}}=\frac{n\sum_{i} \alpha_{i[M]} \alpha_{i[N]} - \sum \alpha_{i[M]} \sum \alpha_{i[N]}}{\sqrt{n \sum \alpha_{i[M]}^2 - (\sum \alpha_{i[M]})^2} \sqrt{n \sum \alpha_{i[N]}^2 - (\sum \alpha_{i[N]})^2}}
\end{equation}


 The additive effect size $\alpha$ estimated empirically from inbred line crosses and experimental mapping populations is calculated as: for the trait $M$, $\alpha = \frac{\overline{M_{AA}} - \overline{M_{BB}}}{2}$ \citep{falconer1996introduction}, where $A$ and $B$ are two alleles of a locus. The summations of equation (4) are taken across all loci (with equal probabilities) excluding major horizontal pleiotropic loci. 


Finally, to test the significant difference of effect size correlation before and after outlier removal, we use a cutoff of 1\% FDR for all pairs of traits included in the yeast dataset. Those trait pairs significantly deviating from the mean are identified as the horizontal trait pair, indicating that horizontal pleiotropic loci may contribute to the genetic correlation $r_G$. 

\section*{Data Availability}

Data and code have been deposited in Github (\url{https://github.com/haorancai/developmentalbias})
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 \begin{figure}[h]
    \centering
    \includegraphics[width = 1\textwidth]{Figure/Fig1.png}
    \caption{Conceptual framework for distinguishing between developmental bias and horizontal pleiotropy as drivers of genetic correlation ($r_G$) between two traits. \textbf{a.} and \textbf{b.} Bi-plots showing the correlation of effect sizes of ten genetic loci on hypothetical traits 1 and 2. \textbf{a.} Strong developmental bias and low horizontal pleiotropy, as seen by coherent and consistent pleiotropic effect on the two traits across the sampled loci. \textbf{b.} One large-effect pleiotropic locus appears to drive the genetic correlation between traits 1 and 2, showing a strong horizontal pleiotropic (HP) effect.  \textbf{c.} and \textbf{d.} Suggest genetic mechanisms for the observed effect correlations in \textbf{a} and \textbf{b}. \textbf{c.} A developmental bias $r_D$, where each locus that affects one trait will inevitably affect the other trait, suggesting that the traits are inherently correlated regardless of the type and directions of genetic perturbation. \textbf{d.} Horizontal pleiotropy (HP), where a locus can have a direct effect on the two traits. A third cause of genetic correlation is linkage disequilibrium (LD; not shown), where two loci, each determining a trait, are physically so closed that they are associated within a population more often.}
    \label{fig:1}
\end{figure}
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\begin{figure}[h]
    \centering
    \includegraphics[width = 1\textwidth]{Figure/Fig2.pdf}
    \caption{}
    \label{fig:2}
\end{figure}

\begin{figure}[t]
  \contcaption{Simulations showing the relationship between developmental bias, $r_D$, and genetic correlation, $r_G$. We simulated 2,000 pairs of traits using an exponential model, with varying $\sigma$ among the plots shown. $\sigma$ describes the correlation of effect size when generating effect sizes for each trait pair. A second parameter of the exponential model, $\gamma$, indicates regimes of varying kurtosis of the effect size distribution: large $\gamma$ represents low kurtosis while smaller $\gamma$ represents a regime with high kurtosis, as shown in \textbf{a.}. Two regimes of genetic architecture are considered, with $\gamma$ equals 1.0 (plots \textbf{b.}, \textbf{d.}, and \textbf{f.}) and 0.5 (plots \textbf{c.}, \textbf{e.}, and \textbf{g.}) Three scenarios are simulated. \textbf{b.} and \textbf{c.} Under the first scenario, no horizontal pleiotropy (HP) and linkage disequilibrium (LD), the pattern does not change with the kurtosis and $r_G$ nearly perfectly represents $r_D$. \textbf{d.} and \textbf{e.} Under the second scenario, to introduce HP,  0 to 10 randomly chosen SNP are introduced for each trait pair, with a shared pleiotropic effect for two traits, regardless of the pleiotropic effect of remaining loci. \textbf{f.} and \textbf{g.} For the third scenario, we used actual genotypes from a yeast mapping population to account for LD, without introducing any horizontal pleiotropic loci.  To simulate trait pairs with actual genotype information, effect sizes are first generated, as above, but are propagated through the LD block defined by $r > 0.5$. Note that the correlation of effect size is then calculated by excluding those `repeated' loci within LD blocks. }% Continued caption
\end{figure}
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 \begin{figure}[h]
    \centering
    \includegraphics[width = 1\textwidth]{Figure/Fig3.pdf}
    \caption{Empirical examples under two scenarios in Fig. \ref{fig:1} demonstrating how estimated $r_D$ can differentiate two trait pairs with similar $r_G$ in yeast. These two trait pairs with similar strength of $r_G$ (0.766 and 0.745) exhibit difference in $r_D$ (0.435 and 0.827). \textbf{a.} The $r_G$ between nuclear stain brightness and bud nucleus brightness is marginally higher than the \textbf{b.} $r_G$ between nucleus foci-to-cell center and nucleus center-to-cell center. However, $r_D$ between nuclear stain brightness and bud nucleus brightness is lower than $r_D$ between nucleus foci to cell center and nucleus center to cell center (0.435 vs 0.827), suggesting a higher developmental bias and inherent correlation between nucleus center-to-cell center and nucleus foci-to-cell center. Each point represents the additive effects for a single locus on each of two traits shown. Data are from \citep{geiler2020extent}}
    \label{fig:3}
\end{figure}



\begin{figure}[h]
    \centering
    \includegraphics[width = 1\textwidth]{Figure/Fig4.pdf}
    \caption{ Re-analysis of 374 recombinant strains of yeast cells \citep{geiler2020extent} identifies horizontal pleiotropic trait pair. Each point in \textbf{b.} represents a trait pair from this empirical dataset. We consider three settings, summarized in \textbf{a.} and \textbf{b.}. \textbf{a.} Distribution of effect size correlations under three settings. Under the default setting, we included genome-wide markers to calculate correlations of effect sizes. LD pruned results include only the loci to the $r < 0.5$ within a chromosome. For outlier corrected effect size correlation, we excluded those outlier horizontal loci when calculating the correlation coefficient. \textbf{b.} The effect size correlation under default versus outlier corrected settings. Yellow dots denote trait pairs that are significantly affected by outliers correction (p-value \textless 0.025). \textbf{c.} Conceptual figure showing where in the scatterplot \textbf{b} trait-trait effect size correlations have more contribution from horizontal pleiotropy.   }
    \label{fig:4}
\end{figure}
\clearpage



 \begin{figure}[h]
    \centering
    \includegraphics[width = 1\textwidth]{Figure/Fig5.pdf}
    \caption{\textbf{a} Conceptual representation showing how high $r_D$ could lead to stability of $r_G$. Many morphological traits are measured in a yeast biparental population using single cell phenotyping  \citep{geiler2020extent}. These data are used to estimate $r_G$ and $r_D$ between traits. A subset of the yeast population is subjected to three levels of drug concentrations, representing three environmental conditions, and $r_G$ is calculated for traits expressed in each of these treatments. We ask whether $r_D$ is an indicator of $\Delta$$r_G$ by using a multivariable linear model: $\Delta r_G$ $\sim$ $r_D$ + $r_G$. We include $r_G$ as a predictor because $r_G$ itself can reflect its own plasticity. \textbf{b.} Scatter plots showing how $r_G$ plasiticity in response to different drug concentration relates to $r_D$. The color bar indicates $r_G$ in control condition.}
    \label{fig:5}
\end{figure}
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% Please add the following required packages to your document preamble:
% \usepackage{booktabs}
\begin{table}[]
\centering
\caption{Details of horizontal trait pairs and nearest markers of driver loci}
\begin{tabular}{@{}llllll@{}}
\toprule
Phenotype1 & Phenotype2 & rG & rD\_outlier\_corrected & rD\_default & \begin{tabular}[c]{@{}l@{}}Nearest marker \\ for the biggest outlier\end{tabular} \\ \midrule
D14.3\_A1B & D15.3\_A1B & 0.458  & 0.127  & 0.663  & L15.9 \\
D15.3\_A1B & D175\_A1B  & 0.447  & 0.193  & 0.701  & L15.9 \\
D15.3\_A1B & D178\_A1B  & 0.448  & 0.166  & 0.702  & L15.9 \\
D15.3\_A1B & D181\_A1B  & 0.372  & 0.087  & 0.607  & L15.9 \\
C13\_C     & C103\_C    & -0.332 & 0.017  & -0.388 & L13.7 \\
C13\_C     & C118\_C    & -0.087 & 0.092  & -0.29  & L13.7 \\
C13\_C     & D109\_C    & -0.215 & 0.017  & -0.44  & L13.7 \\
C13\_C     & D131\_C    & -0.23  & -0.055 & -0.442 & L13.7 \\
D15.1\_C   & D17.1\_C   & 0.188  & -0.052 & 0.431  & L15.9 \\
D15.1\_C   & D17.2\_C   & -0.038 & -0.023 & 0.407  & L15.9 \\
D15.1\_C   & D182\_C    & 0.218  & 0.097  & 0.529  & L15.9 \\
D15.3\_C   & D17.1\_C   & 0.106  & -0.15  & 0.352  & L15.9 \\
D15.3\_C   & D188\_C    & 0.111  & 0.096  & 0.542  & L15.9 \\
D17.1\_C   & D117\_C    & -0.379 & -0.049 & -0.523 & L15.9 \\
D17.1\_C   & D169\_C    & -0.307 & 0.035  & -0.408 & L15.9 \\ \bottomrule
\end{tabular}
\end{table}
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%Technically, if the allele frequencies for all loci are 0.5, the correlation of effect sizes will be the same as the genetic correlation 

% \section*{Supplementary Note 1: Changes of allele frequency can affect genetic correlation despite constant developmental bias}

% In outbred populations, the variance explained by each polymorphic locus is affected by the allele frequencies at that locus and what the strength of the allele in an individual \citep{benfey2008genotype, falconer1996introduction}. 
% Unlike genetic correlation, the developmental bias we estimated is independent on the allele frequency in a population in theory (See Materials and Methods). Therefore, the estimated developmental bias is likely unchanged across conspecific populations due to selection. Here, the simulation first generates multiple pairs of traits with varying levels of developmental bias (with a major concordant model). For each pair of traits (fixing developmental bias), we randomly generate many populations with different allele frequencies. Our results imply that the allele frequency is essential variable in shaping the genetic correlation in a population, as with a certain level of developmental bias the genetic correlation can vary in a wide range when allele frequencies are changed (Fig. \ref{fig:S2}). Note that under a polygenic model, where traits are controlled by many genes each of small effect, changes in the frequency of any one allele would have a negligible effect on the patterns of genetic correlation. Accordingly, we speculated that the developmental bias estimated via the correlation of effect size may be more conserved than genetic correlation across populations, especially with the presense of major pleiotropic effect gene. The presense of major pleiotropic effect genes during evolution are often expected \citep{agrawal2001possible,orr1998population,bradshaw1998quantitative,orr1992genetics,hall2006pleiotropic,wessinger2014identification}).




\section*{Supplementary Note 1: Distinctions between linkage disequilibrium and tight linkage}


Our simulation and analyses account for LD, defined as linkage disequilibrium between markers in a genetic mapping study. Another form of linkage, which is the tight linkage in a genomic context (i.e., perfect linkage, no recombination within pairs of linked loci), is implicitly accounted for when removing major horizontal pleiotropic loci as outliers. We are not able to distinguish between tight linkage and pleiotropy (though these two architectures may differ in maintaining genetic correlation, see \citet{chebib2021pleiotropy}). These major horizontal pleiotropic loci are either caused by LD within the marker, or by pleiotropy. With respect to distinguishing between LD and horizontal pleiotropy with small effect size loci,  polygenic trait correlations have been suggested to be unlikely to arise from chance LD events, as well as several individual horizontal pleiotropic loci \citep{saltz2017trait}. Therefore, in essence, our metric dissects the genetic correlation by accouting for allele frequency, linkage equilibrium, as well as horizontal pleiotropy, providing an approach to explore the role of developmental constraint (trait-trait relationship) and vertical pleiotropy (developmental bias in a variant level).


\section*{Supplementary Note 2: Additional dataset exhibit qualitatively similar results with yeast morphology dataset}


We analyzed an additional data set consisting of vegetative and floral traits measured in a population of \textit{B. rapa L.} in the field and in a greenhouse \citep{brock2010floral}. We present results of this analysis based on outlier corrected subset of variants (LD pruned). Fig. \ref{fig:S6} shows $r_D$ against $r_G$. We find that most trait pairs with high $r_G$ also exhibit high $r_D$, as expected since those trait pairs with high $r_G$ are mostly floral morphological traits, which have long been assumed under developmental integration \citep{ashman1999quantitative,ashman2006genetic}. However, we still found a few exceptions: trait pairs that exhibit low $r_D$ but high $r_G$. Specifically, for instance, petal length and petal width have a $r_G$ comparable to midpoint length and filament length, petal length and ovary length. However, petal length and petal width have relatively low $r_D$. This is in contrast to two other pairs of traits, who exhibit higher $r_D$. Notably, very few length traits appear to have significant $r_G$ with petal width in this dataset \citep{brock2010floral}. \citet{juenger2005quantitative} also found that, in Arabidopsis, sets of floral organ lengths (petal length, sepal length, long stamen length, pistil length) or organ widths (petal width, sepal width) were highly correlated, while $r_G$ between length and width measures were generally not significant except petal length - petal width. Therefore, we speculate that, instead of $r_D$ as a general cause of $r_G$, LD or horizontal pleiotropic loci play a critical role in shaping $r_G$ between floral organ lengths and widths. Furthermore, in line with the analyses of yeast morphological data, traits with higher $r_D$ tend to be more conserved in their $r_G$ between conditions: large changes in $r_G$ are more likely to occur for those pairs with lower $r_D$(Fig. \ref{fig:S7} and  Fig. \ref{fig:S8}). 

% Other analogous examples include filament length and anther length, midpoint length and anther length. 

% Since the sample size does not allow us to assess the genetic correlation ($r_G$) change for a given trait pair, we thus calculated the distribution difference in two environments. As shown, $\Delta r_D$ appears to have different patterns compared to $r_G$ in response to the environmental change (Fig. \ref{fig:6}b, Kolmogorov-Smirnov test p-value = 8.923e-07). Surprisingly, the \textbf{G} matrix element has a significant shift (Wilcoxon signed-rank test, p-value = 2.184e-5) while distribution of \textbf{D} matrix elements does not (Wilcoxon signed-rank test, p-value = 0.8373). 
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\begin{figure}[h]
    \centering
    \includegraphics[width = 1\textwidth]{Figure/Fig_S2.pdf}
    \caption{To simulate a pair of traits across populations with different allele frequencies, the additive effects of 1,000 SNPs are simulated using a bivariate normal distribution to generate effect sizes for each locus, with one randomly chosen SNP as a `major' pleiotropic (additive) locus, and 999 SNPs as `small' (additive) effects loci which are sampled from a bivariate normal distribution with $\mu = (0,0)$ and $\Sigma = \begin{bmatrix} 1 & \rho \\ 
    \rho & 1  \end{bmatrix}$. Here, we use a major concordant model, where the effect of major pleiotropic locus in genetic correlation is concordant with the rest of the loci. Next, genotypes of a 100-individual population are generated 100 times with changing allele frequency. Each time, we calculate the genetic and effect size correlation (note that the effect size correlation remains the same). Then, we vary the covariance of bivariate normal distribution and repeat the above step to exhaustively sample different levels of developmental bias.}
    \label{fig:S2}
\end{figure}
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\begin{figure}[h]
    \centering
    \includegraphics[width = 1\textwidth]{Figure/Fig_S1.pdf}
    \caption{Reproduces the scatter plot between developmental bias ($r_D$) and genetic correlation ($r_G$) in Fig. \ref{fig:2}, but here using a bivariate normal distribution to generate effect sizes for each loci. Each point represents a pair of traits. Given a population, we simulated 3,000 pairs of traits using a model under which each trait pair consists of one randomly chosen SNP with a `large' pleiotropic (additive) effect, and 999 SNPs with `small' (additive) effects which are sampled from a bivariate normal distribution with $\mu = (0,0)$ and $\Sigma = \begin{bmatrix} 1 & \rho \\ 
    \rho & 1  \end{bmatrix}$. $\rho$ is sampled from a uniform distribution $(-1,1)$.  \textbf{a.} simulations under a concordant model, where effect of the large pleiotropic loci on genetic correlation is concordant with the rest of genetic background. \textbf{b.} simulations without concordant assumption, where large pleiotropic loci has either concordant or antagonistic effect with the genetic background. From left to right, effect size of the large pleiotropic loci increases.}
    \label{fig:S1}
\end{figure}
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 \begin{figure}[h]
    \centering
    \includegraphics[width = 1\textwidth]{Figure/Fig4_S1.pdf}
    \caption{ The relationship between $r_D$ and $r_G$ from our re-analysis of phenotypes measured in 374 recombinant strains of yeast cells \citep{geiler2020extent}. Each dot in the scatter plot represents, for a given pair of traits in the yeast dataset which consists of 167 traits, the correlation of additive effect (on the $x$ axis) and the genetic correlation ($r_G$, on the $y$ axis).  We consider three settings, summarized in Fig. \ref{fig:4}. \textbf{a.} All loci across the genome. \textbf{b.} LD pruned variants. \textbf{c.} Outlier corrected variants. In \textbf{a.} and \textbf{b.}, effect size correlations are stronger than genetic correlations (Wilcoxon signed-rank test, p-value $<$ 2.2e-16). Conversely, in \textbf{c.}, effect size correlations are not stronger than genetic correlations (Wilcoxon signed-rank test, p-value = 0.8875) and the bulk of data are more evenly distributed around the unity line)}
    \label{fig:4S1}
\end{figure}
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 \begin{figure}[h]
    \centering
    \includegraphics[width = 1\textwidth]{Figure/Fig_S3.pdf}
    \caption{Two example trait pairs in the yeast morphology dataset \citep{geiler2020extent} showing exceptionally strong $r_D$ between traits. Each point represents additive effect for a single locus. These trait pairs demonstrate strong inherent redundancy.}
    \label{fig:S3}
\end{figure}
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\begin{figure}[h]
    \centering
    \includegraphics[width = 1\textwidth]{Figure/Fig5_S1.pdf}
    \caption{Statistical test showing developmental bias ($r_D$) can predict the changes of genetic correlation ($r_G$). \textbf{a} Linear regression results for $\Delta r_G$ $\sim$ $r_D$ + $r_G$. Estimates of coefficient and their 95\% confidence intervals under four conditions for $r_D$ and $r_G$ are shown. The environmental conditions are three concentrations of geldanamycin (GdA) plus an aggregated condition with all three concentration data. GdA is a small-molecule inhibitor that binds the ATP-binding site of the chaperone Hsp90, thus rendering it unable to perform its cellular function.  \textbf{b} Since $r_G$ and $r_D$ are highly correlated, which might cause multi-colinearity problems during regressions, we perform additional analyses by simulating a null model (black dots): $\Delta r_G$ $\sim$ $r_n$ + $r_G$, where $r_n$ is sampled from the bivariate normal distribution with covariance 0.939, conditioning on $r_G$. The coefficient estimates of $r_D$ (red dots) in \textbf{b} under all conditions are at the tail of distribution in null expectation towards stronger slope estimates, suggesting $r_D$ provides additional information in predicting $\Delta r_G$.}
    \label{fig:S4}
\end{figure}
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\begin{figure}[h]
    \centering
    \includegraphics[width = 1\textwidth]{Figure/Fig5_S2.pdf}
    \caption{Statistical test showing developmental bias ($r_D$) can predict the changes of genetic correlation ($r_G$), similarly with Fig. \ref{fig:S4}b. Estimates of coefficient and their 95\% confidence intervals under four conditions for $r_D$ and $r_G$ in a linear regression $\Delta r_G$ $\sim$ $r_D$ + $r_G$ are shown in red dots.
    Since $r_G$ and $r_D$ are highly correlated, which might cause multi-colinearity problems during regressions, we perform additional analyses by simulating a null model (black dots): $\Delta r_G$ $\sim$ $r_n$ + $r_G$, where $rn$ is generated by $r_G$ with Gaussian noise. Qualitatively similar results with (Fig. \ref{fig:S4}b) are observed}
    \label{fig:S5}
\end{figure}
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 \begin{figure}[h]
    \centering
    \includegraphics[width = 1\textwidth]{Figure/Fig_S6.PDF}
    \caption{A \textit{Brassica} dataset with 11 floral, vegetative, and phenology traits \citep{brock2010floral} was analysed similarly to Fig. \ref{fig:3}, under two environmental conditions (field and greenhouse). The loci used to calculate the effect size correlation are LD pruned and outlier corrected. Green dots denote pairs of traits that are both floral. }
    \label{fig:S6}
\end{figure}
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\begin{figure}[h]
    \centering
    \includegraphics[width = 1\textwidth]{Figure/Fig_S7.pdf}
    \caption{A \textit{Brassica} dataset with 11 floral, vegetative, and phenology traits \citep{brock2010floral} under two environments (field and greenhouse) was analysed. Trait pairs with stronger $r_D$ exhibit more stable genetic correlations across two environmental conditions. The $x$ axis is the averaged developmental bias across two environments. $y$ axis shows the absolute difference of genetic correlation for a given pair. }
    \label{fig:S7}
\end{figure}
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\begin{figure}[h]
    \centering
    \includegraphics[width = 1\textwidth]{Figure/Fig_S8.pdf}
    \caption{A \textit{Brassica} dataset with 11 floral, vegetative, and phenology traits \citep{brock2010floral} under two environments (field and greenhouse) was analysed. Trait pairs with stronger $r_D$ exhibit more stable genetic correlations across two environmental conditions.The $x$ axis is the developmental bias in two environments, respectively. $y$ axis shows the absolute difference of genetic correlation for a given pair.}
    \label{fig:S8}
\end{figure}
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