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ABSTRACT 

Transcriptomics studies generate enormous amounts of biological information. Nowadays, 

representing this complex data as gene coexpression networks (GCNs) is becoming 

commonplace. Peach is a model for Prunus genetics and genomics, but identifying and 

validating genes associated to peach breeding traits is a complex task. A GCN capable of 

capturing stable gene-gene relationships would help researchers overcome the intrinsic 

limitations of peach genetics and genomics approaches and outline future research 

opportunities. In this study, we created the first large-scale GCN in peach, applying aggregated 

and non-aggregated methods to create four GCNs from 604 Illumina RNA-Seq libraries. We 

evaluated the performance of every GCN in predicting functional annotations using a machine-

learning algorithm based on the ‘guilty-by-association’ principle. The GCN with the best 

performance was COO300, encompassing 21,956 genes and an average AUROC of 0.746. To 

validate its performance predicting gene function, we used two well-characterized genes 

involved in fruit flesh softening in peach: the endopolygalacturonases PpPG21 and PpPG22. 

Genes coexpressing with PpPG21 and PpPG22 were extracted and named as melting flesh (MF) 

subnetwork. Finally, we performed an enrichment analysis of MF subnetwork and compared 

the results with the current knowledge regarding peach fruit softening process. The MF 

subnetwork mainly included genes involved in cell wall expansion and remodeling, with 

expression triggered by ripening-related phytohormones such as ethylene, auxin and methyl 

jasmonates. All these processes are closely related with peach fruit softening and therefore 

related to the function of PpPG21 and PpPG22. These results validate COO300 as a powerful 

tool for peach and Prunus research. COO300, renamed as PeachGCN v1.0, and the scripts 

necessary to perform a function prediction analysis using it, are available at 

https://github.com/felipecobos/PeachGCN. 

 

INTRODUCTION 

The advent of omics technologies has allowed the scientific community to generate enormous 

amounts of biological information. In parallel, increasingly efficient bioinformatic tools help us 

transform this information into structured biological knowledge. To date, more than seven 
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million RNA-Seq libraries are available at the National Center of Biotechnology Information 

(NCBI, https://www.ncbi.nlm.nih.gov/), representing a great opportunity for large-scale 

bioinformatics analysis and biological data integration. Therefore, taking advantage of this 

valuable resource is essential in the age of big data analytics. 

In transcriptomics, representing this complex data as gene coexpression networks (GCNs) is 

becoming a widespread practice. GCNs are usually represented as undirected graphs, where 

nodes correspond to genes and edges correspond to correlations in expression patterns of 

genes. GCNs can be built across multiple experimental conditions (condition-independent 

GCNs) or in specific experimental conditions (condition-dependent GCNs, e.g., tissue specific 

GCNs). They are based on the ‘guilt-by-association’ (GBA) principle (Oliver, 2000), which states 

that genes with related functions share similar expression patterns. Following this principle, 

and using the functional annotation of the genes forming the network, GCNs can be a very 

powerful tool to infer potential gene functions to specific genes or gene families and to 

understand the regulation of specific metabolic pathways. For this reason, GCNs are extremely 

useful in crop species, where most of the bioinformatic and genetic tools are modest and our 

understanding of gene function is still limited (Schaefer et al., 2017). Several studies have 

already created GCNs in the plant model Arabidopsis thaliana (Amrine, Blanco-Ulate, & Cantu, 

2015; Furuya et al., 2021; Liu et al., 2019; Mao, Van Hemert, Dash, & Dickerson, 2009), maize 

(Huang et al., 2017; Ma et al., 2017), rice (Childs et al., 2011; Ficklin et al., 2010), wheat (Lv et 

al., 2020) and grapevine (Orduña et al., 2022; Orduña-Rubio et al., 2023; Wong, 2020; Wong et 

al., 2016). 

Peach [Prunus persica L. (Batsch)] has been used as a model organism for genetics and 

genomics in the Rosaceae, and more specifically in the Prunus genus, which also encompasses 

other crops such as sweet and tart cherry, European and Japanese plum, apricot and almond. 

However, in peach, the validation of genes responsible for breeding traits is a complex task. 

Long intergeneration times and phenological cycles and space constraints due to the large size 

of the individuals under study are some of the hindrances for the work of peach geneticists 

(Aranzana et al., 2019). Moreover, there is a lack of efficient genetic transformation systems 

(Limera et al., 2017; Ricci et al., 2020). As a result of these limitations, only two genes to date, 

DRO1 and TAC1, have been biologically validated based on mutant analysis (Dardick et al., 

2013; Guseman et al., 2017). 

Although small-scale condition-dependent GCNs have been reported in peach and other 
Prunus species (García-Gómez et al., 2020; Jiang et al., 2023; Wang et al., 2023; Wu et al., 
2021; Xi, Feng, Liu, Zhang, & Zhao, 2019; Zhang et al., 2019), these were created ad-hoc to 
study specific biological processes and so cannot be used in other experimental contexts. 
Therefore, a GCN capable of capturing robust gene-gene relationships under different 
experimental conditions, developmental stages and tissues is needed. A GCN with these 
characteristics will help researchers overcome the intrinsic limitations of peach genetics and 
genomics approaches and outline future research opportunities.  

In this study, we present the first large-scale GCN in peach. We constructed four GCNs from 

publicly available RNA-Seq data and evaluated the performance of every GCN using a machine-

learning algorithm based on the GBA principle. The GCN with the best performance was 

validated by predicting gene functions of well-characterized genes. Finally, we provide the 

scripts and data needed for function prediction analyses using the GCN presented in this study. 

These resources can be found at https://github.com/felipecobos/PeachGCN. 
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MATERIALS AND METHODS 

Data compilation 

Forty-nine independent Sequence Read Archive (SRA) Bioprojects, encompassing 608 RNA-Seq 

libraries (Supplementary Material 1) were downloaded from the SRA database (Leinonen et al., 

2011) in the NCBI (Sayers et al., 2022a). These RNA-Seq libraries represented all the libraries 

available in the NCBI to date 09/04/2020. The peach reference genome ‘Lovell’ version 2.1 

(Verde et al., 2013, 2017) and its functional annotation were downloaded from Genome 

Database for Rosaceae (GDR) (Jung et al., 2019). Finally, seven functional gene annotation 

datasets were retrieved using the methods described below. Gene Ontology peach functional 

terms for biological process (GObp), molecular function (GOmf) and cellular component (GOcc) 

(Ashburner et al., 2000; Carbon et al., 2021)) and Pfam database peach classification (Mistry et 

al., 2021) were retrieved using the biomaRt R package (Durinck et al., 2009). Kyoto 

Encyclopedia of Genes and Genomes (KEGG) peach pathway annotations (Kanehisa & Goto, 

2000) were retrieved using the KEGG API (https://www.kegg.jp/kegg/rest/keggapi.html). 

PANTHER HMM peach classifications version 16 (Mi et al., 2021) and MapMan Pathways 

version 4.2 (Thimm et al., 2004) were downloaded from the public repositories. 

Mapping and quality filtering 

We performed a sequencing-quality filtering and adapter removal using Trim Galore! version 

0.6.1 (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Reads with 

terminal Ns were trimmed, then reads with a Phred score lower than 28 or smaller than 35 

nucleotides were filtered. Filtered libraries were quality checked using FastQC version 0.11.5 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). HISAT2 version 2.1 (Kim et al., 

2015) was used to map RNA sequencing libraries to the reference peach genome ‘Lovell’ 

version 2.1 (Verde et al., 2013, 2017) with default parameters. Mapped Binary Alignment Map 

(BAM) files were filtered by alignment quality using SAMtools version 1.9 (Danecek et al., 

2021; Li et al., 2009). Reads with mapping quality lower than 40 were filtered out. After this 

filtering, BAM files with less than 5,000,000 reads were discarded, leaving a total of 498 RNA-

Seq libraries from 43 independent Bioprojects for further analyses. 

Aggregated and non-aggregated GCNs inference 

A raw count matrix was calculated using featureCounts (Liao et al., 2014),  from Subread R 

package version 2.0.0 (http://subread.sourceforge.net/). For the raw count matrix 

construction, we excluded chimeric fragments and we used the coding DNA sequences as 

feature type and gene IDs as attribute type. The raw count matrix was then normalized to 

fragments per Kilobase million (FPKM) mapped fragments (Z. Wang, Gerstein, & Snyder, 2009), 

obtaining a FPKM matrix. We then applied two different methodologies: aggregated and non-

aggregated network inference with two sparsity thresholds set at top 100 (stringent threshold) 

and 300 (relaxed threshold) ranked genes (Supplementary Figure 1). 

For non-aggregated analysis, genes with less than 0.5 FPKM in 50% of the RNA-Seq libraries 

were removed. Pearson’s correlation coefficient (PCC) was calculated for the remaining genes 

and ranked according to descending PCC, giving a PCC matrix. High reciprocal rank networks 

for the top 100 (HRR100) and top 300 (HRR300) were constructed according to the formula:  

��� ��, ��  	  
����
�����, ��, 
�����, ����  
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Whereby rank(x, y) is the descending sorted rank of gene y according to the coexpression list 

of gene x and vice versa for rank(y, x). 

For aggregated analysis, we clustered the samples into 43 different groups according to the 

Bioproject study ID. We filtered Bioprojects with less than six RNA-Seq libraries, leaving 26 

different groups with a total of 450 RNA-Seq libraries. Genes with less than 0.5 FPKM in 50% of 

the libraries within each group were removed and from each filtered FPKM matrix, a high 

reciprocal rank network for the top 100 and top 300 was constructed. Frequency of gene 

coexpression interactions in all groups was calculated and ranked in a co-occurrence matrix. 

Finally, co-occurrence networks for top 100 (COO100) and top 300 (COO300) interactions were 

obtained. 

Networks performance assay 

Networks were evaluated for their ability to connect peach genes sharing functional 

annotations. For this purpose, GBA neighbor voting, a machine learning algorithm based on 

the GBA principle (Ballouz et al., 2017), was assessed over the GObp, GOmf, GOcc, Pfam, 

KEGG, PANTHER and MapMan datasets. Each network was scored by the area under the 

receiver operator characteristic curve (AUROC) across all functional categories annotated for 

the seven datasets. Annotations were limited to groups containing 20-1,000 genes to ensure 

robustness and stable performance when using neighbor voting. The AUROC value threshold 

for an acceptable network functional annotation was set at 0.7. 

We also evaluated the impact of adding individual Bioprojects to the different networks 

created, HRR300, HRR100, COO300 and COO100. For this purpose, we selected five subsets 

each of two Bioprojects computing the top 100 and top 300 HRR and COO GCNs, evaluating 

their AUROC using GObp, GOmf, GOcc and MapMan datasets. We repeated this process 

adding one Bioproject to the initial subset to reach five subsets each with 26 Bioprojects, the 

maximum number of Bioprojects used in this study. The final subsets corresponded to the full 

HRR300, HRR100, COO300 and COO100. 

Network validation 

To validate the performance of COO300 in predicting gene functional annotations, we selected 

two well-characterized genes responsible for fruit flesh softening in peach, the 

endopolygalacturonases PpPG21 and PpPG22, located on chromosome 4 (Table 1) (Cheng et 

al., 2022; Gu et al., 2016; Jiang et al., 2020; Nakano et al., 2020; Qian et al., 2021; Zhu et al., 

2017). Based on the evidence available to date, the variability of flesh softening and stone 

adhesion during fruit ripening is due to the allelic combination of these two homologous 

genes. Both genes, PpPG21 or PpPG22, are associated with the development of melting, non-

melting or non-softening fruits, while PpPG22 is associated with the development of freestone 

or clingstone fruits. 

Genes coexpressed with PpPG21 and PpPG22 were extracted. Since both genes are involved in 

the peach fruit flesh softening process, we selected genes present in both subnetworks. The 

selected subnetwork, named melting flesh (MF) subnetwork, had 238 genes. With an 

enrichment analysis of the MF subnetwork using GObp, GOmf, GOcc and Mapman datasets we 

were able to identify the functional annotations statistically over-represented in each of the 

subnetworks studied. The significance threshold was held at q-value < 0.05. Finally, we 

compared the enriched terms (the functional annotations statistically over-represented) of the 

MF subnetwork with the current knowledge on the peach fruit softening process. In addition, 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2023. ; https://doi.org/10.1101/2023.06.22.546058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.22.546058


as a negative control, we created 20 subnetworks with 238 randomly selected genes from 

COO300 and carried out an enrichment analysis of all negative control subnetworks following 

the steps described above. 

Table 1. Candidate genes selected for network validation. The gene IDs were referred to the peach 

reference genome version 1 and 2.0 (Verde et al., 2013, 2017) and NCBI (Sayers et al., 2022b) while 

genomic coordinates and annotation were referred to the peach reference genome version 2.0 (Verde 

et al., 2017). 

Gene ID Gene name Genomic coordinates Annotation 

Prupe.4G261900 

ppa006839m 

LOC18781156 

PpPG21 

PpPG2 

PpPGM 

Chr04:19046344-

19049605 + 

Involved in fruit ripening. 

Promotes flesh softening. 

Prupe.4G262200 

ppa006857m 

LOC18779267 

PpPG22 

PpPG1 

PpPGF 

Chr04:19081325-

19083984 + 

Involved in fruit ripening. 

Promotes flesh softening and 

stone detaching from mesocarp. 

 

 

RESULTS 

 

Aggregated GCNs had 21,956 genes, 81.7% of the protein-coding genes annotated in the 

peach reference genome 

To understand the differences between the GCNs, we analyzed the general topological 
characteristics of the four GCNs inferred in this study (Table 2). The two aggregated GCNs 
(COO100 and COO300) had 21,956 genes, while the two built by non-aggregated methods 
(HRR100 and HRR300) had 17,505 genes. Of the total number of 26,873 protein-coding genes 
annotated in the peach reference genome, this represented 81.7 % for aggregated and 65.1 % 
for non-aggregated networks. The number of genes conforming the aggregated GCNs 
represented 16.6 % more genes (4,451) from the peach whole-genome annotation than non-
aggregated GCNs. 
 

Table 2. General topological characteristics of non-aggregated and aggregated GCNs with 100 and 300 

top coexpressed genes (HRR100, HRR300, COO100 and COO300). 

GCN 
Number 

of genes 

P. persica genes included 

in the GCN (%) 

Range of node degree 

connectivity (min-max) 

Average node degree 

connectivity 

HRR100 17,505 65.1 649 (100-749) 161 

HRR300 17,505 65.1 1490 (300-1790) 470 

COO100 21,956 81.7 315 (100-415) 149 

COO300 21,956 81.7 785 (300-1085) 442 

 

 
The different methods used not only affected the number of genes included in the network, 
but also the node degree connectivity (number of coexpressed genes by gene) across all nodes 
of the GCN. Average node degree connectivity was higher in networks with relaxed sparsity 
(442 in COO300 and 470 in HRR300) in comparison to stringent sparsity (149 in COO100 and 
161 in HRR100). The range between minimum and maximum node degree connectivity is 
wider in non-aggregated GCNs compared to aggregated GCNs with the same sparsity threshold 
(comparing HRR300 with COO300 and HRR100 with COO100). The minimum node degree 
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connectivity was set by the sparsity threshold in all the networks: 100 for stringent sparsity 
(HRR100 and COO100) and 300 for relaxed sparsity (HRR300 and COO300). The highest node 
degree connectivity was found in HRR300, with a maximum of 1790 coexpressed genes with 
one single gene. In addition, aggregated GCNs showed a bimodal node degree connectivity 
distribution while non-aggregated GCNs had a unimodal distribution (Figure 1). 
 
COO300 was the GCN with the highest AUROC value 

When considering sparsity threshold, both GCNs with relaxed sparsity (HRR300 and COO300) 
had AUROC values over 0.7 for all the databases annotated (Table 3). COO300 was the GCN 
with the highest average AUROC value (0.746), outperforming the other GCNs. COO300 had 
the highest mean AUROC in almost all the datasets, except for Pfam and PANTHER, where the 
performance of HRR300 was better than that of COO300. HRR100 and COO100 had AUROC 
values under 0.7 in almost all the functional annotation databases, except for the GOcc and 
PANTHER datasets. The best functional annotation performance in all the networks was for the 
functional annotation GOcc with an average AUROC value of 0.761, followed by PANTHER 
(0.724), KEGG (0.718), Pfam (0.714), GObp (0.709), Mapman (0.706) and GOmf (0.693). 
 

 

Table 3.  AUROC values for each GCN (COO300, HRR300, COO100, HRR100) performance in the different 

datasets. The best performance by dataset was highlighted with an asterisk. 

GCN GObp GOmf GOcc Pfam KEGG PANTHER MapMan Average 

COO300 0.738* 0.723* 0.788* 0.736 0.750* 0.746 0.741* 0.746* 

HRR300 0.724 0.705 0.773 0.745* 0.728 0.749* 0.732 0.736 

COO100 0.681 0.670 0.733 0.680 0.697 0.688 0.664 0.687 

HRR100 0.692 0.673 0.748 0.695 0.695 0.712 0.686 0.700 

Average 0.709 0.693 0.761 0.714 0.718 0.724 0.706 0.717 

Figure 1. Violin plot of node degree connectivity in each of the aggregated and non-aggregated 

networks with relaxed or stringent sparsity (COO300, COO100, HRR300 and HRR100). Boxplots of 

node degree connectivity were added for each violin plot. 
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The method used for network building also affected its performance, but the effect was not 
consistent. Considering the effect of the sparsity threshold, average AUROC values for relaxed 
sparsity threshold were always higher (VHRR300 and COO300 = 0.741) than for the stringent 
threshold (HRR100 and COO100 = 0.694). When comparing GCNs by aggregation method, at 
relaxed sparsity (HRR300 and COO300), the average AUROC value for the aggregated method 
was higher but comparing at the stringent threshold (HRR100 and COO100), the average 
AUROC value was better for the non-aggregated method. 
 
Finally, we evaluated the effects of adding Bioprojects on the AUROC value in every GCN built 
in this study. Figure 2 shows the correlation between the network AUROC value and the 
number of Bioprojects used. For every combination of GCN building method (aggregated or 
non-aggregated), threshold (top 300 or top 100) and dataset used (GObp, GOmf, GOcc and 
MapMan) we observed similar trends, where the AUROC value increased with the number of 
Bioprojects. This trend was more pronounced for aggregated GCNs than non-aggregated GCNs, 
reaching a plateau after adding 10-12 Bioprojects. In all cases, the standard deviation of 
aggregated GCNs decreased as the number of Bioprojects increased. 
 

Aggregated GCNs showed a positive trend between average node degree connectivity and 

AUROC score of individual functional annotations for GObp, GOmf, GOcc, KEGG and 

Mapman 

To assess the relationship between the AUROC score of individual functional annotations and 
the average node degree connectivity of the genes sharing that annotation we used a Loess 
regression (Figure 3). For example, an individual functional annotation could be GOcc: cell wall, 
we studied if the individual AUROC score of GOcc: cell wall was related to the average number 
of connections of the genes sharing GOcc: cell wall annotation. We then repeated the analysis 
for all the functional annotations within a dataset (GOcc: apoplast, GOcc: extracellular region, 
etc). In the case of aggregated GCNs, there was a positive trend between average node degree 
connectivity and AUROC score of individual functional annotations for GObp, GOmf, GOcc, 
KEGG and Mapman. In the case of non-aggregated GCNs the only dataset with a positive trend 
between average node degree connectivity and AUROC score of individual functional 
annotations was KEGG. The average node degree connectivity had no effect on the AUROC 
score of individual functional annotations in the Pfam dataset in any of the GCNs studied. 
 
 

Figure 2. Boxplots of the AUROC value for every subset of Bioprojects (from 2 to 26) and method 

used. 
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MF subnetwork was enriched in 33 terms 

PpPG21 and PpPG22 were annotated using GObp, GOmf, GOcc, Pfam, KEGG, PANTHER and 

MapMan. Both genes shared several annotations: ‘GOcc: extracellular region’, ‘GOcc: cell wall’, 

‘GObp: metabolic process’, ‘GObp: cell wall organization’, ‘GOmf: hydrolase activity, acting on 

glycosyl bounds’, ‘GOmf: polygalacturonase activity’, ‘Mapman: enzyme classification. 

hydrolases. Glycoxylases’ and ‘Pfam: glycosyl hydrolases family 28’. PpPG22 only had two 

terms not shared with PpPG21, ‘GObp: fruit ripening’ and ‘GObp: carbohydrate metabolic 

process’. 

The PpPG21 and PpPG22 subnetworks were constituted by 485 and 354 genes, respectively. 

Even if PpPG21 and PpPG22 were not coexpressed, both subnetworks shared 238 genes. These 

genes were selected and named the melting flesh (MF) subnetwork (Figure 4; Supplementary 

Material 2). This MF subnetwork was annotated in GObp, GOcc, GOmf and Mapman datasets. 

Of the 238 genes in the MF subnetwork, 136 were annotated in GObp, 123 in GOcc, 156 in 

GOmf and 116 in Mapman (Supplementary Material 2). 

After MF subnetwork annotation, we performed an enrichment analysis. The MF subnetwork 

was enriched in 33 different terms, so 33 terms were significantly over-represented in this 

subnetwork. Of these 33 terms, 12 belonged to the GOmf dataset, nine to Mapman, eight to 

GObp and four to GOcc (Figure 5; Supplementary Material 2). 

Within GOmf, up to 26 genes were annotated as hydrolase activity or as its child term (direct 

descendant), hydrolase activity, acting on glycosyl bonds. The next term was 

‘xyloglucan:xyloglucosyl transferase activity’, with four genes annotated. With three genes 

annotated, we found the terms ‘methyl indole-3-acetate esterase activity’, ‘methyl salicylate 

esterase activity’, ‘methyl jasmonate esterase activity’, ‘oxidoreductase activity, acting on 

paired donors, with oxidation of a pair of donors resulting in the reduction of molecular oxygen 

Figure 3. Scatter plot and Loess regression representation of average node degree connectivity by 

AUROC value for each of the GCNs (COO300, HRR300, COO100 and HRR100) in all the datasets used for 

network annotation (CObp, GOmf, GOcc, Pfam, KEEG, PANTHER and Mapman). 
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to two molecules of water and metal ion transmembrane transporter activity’. Finally, with two 

genes annotated, we found the terms ‘inositol hexakisphosphate binding’, ‘phosphate ion 

transmembrane transporter activity’, ‘protein-disulfide reductase activity’ and ‘acid-amino acid 

ligase activity’. 

Using Mapman as the annotation dataset, 27 genes were annotated as ‘enzyme classification’. 

There were eight genes annotated as ‘glycosyltransferase’, a child term of ‘enzyme 

classification’. The next term, with 17 genes annotated, was ‘phytohormone action’. There 

were four genes annotated as ‘auxin’ or ‘auxin.conjugation and degradation’ and three as 

‘ethylene’, child terms of ‘phytohormone action’. With two genes annotated, we found the 

terms ‘Solute transport.carrier-mediated transport.IT superfamily.phosphate transporter 

(PHO)’, ‘Nutrient uptake.phosphorus assimilation.phosphate uptake.phosphate transporter 

(PHO1)’ and ‘Lipid metabolism.fatty acid biosynthesis.fatty acid desaturation.omega-3/omega-

6 fatty acid desaturase (FAD2/3/6-8)’. 

Within GObp, there were 26 genes annotated as ‘oxidation-reduction process’. Up to 11 genes 

were annotated as ‘metabolic process’. There were nine genes annotated as ‘cell wall 

organization’ and four as ‘cell wall biogenesis’, child terms of ‘cell wall organization or 

biogenesis’. There were four genes annotated as ‘cellular glucan metabolic process’ and its 

child term, ‘xyloglucan metabolic process’, four as ‘jasmonic acid metabolic process’ and three 

as ‘salicylic acid metabolic process’. 

Using GOcc as the annotation dataset, 16 genes were annotated as ‘extracellular region’, 

seven genes as ‘apoplast’, child term of ‘extracellular region’, and up to 13 genes were 

annotated as ‘cell wall’. 

Figure 4. PpPG21, PpPG22 and MF subnetworks. MF subnetwork is highlighted in orange. 
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Among the 20 negative control subnetworks created, the mean number of enriched terms was 
1.35, while the melting subnetwork had 33 enriched terms (Supplementary Material 3). 
 
  
 

DISCUSSION 

 
The GCN topological characteristics are affected by the different algorithms used  
To achieve the best results during gene coexpression networks (GCNs) building, two variables 
were tuned, aggregation method and sparsity threshold. The four GCNs obtained were 
evaluated, with substantial differences in the general topological characteristics of the GCNs 
inferred. 
 
When considering GCN building methods, a major difference between aggregated and non-
aggregated GCNs was the number of genes forming the network. Aggregated GCNs had 21,956 
genes (81.7 % of P. persica genes), while non-aggregated GCNs only had 17,505 (65.1 % of P. 

persica genes). This difference comes from the low-expression gene filtering. In non-
aggregated GCNs all the genes with less than 0.5 FPKM in 50% of the 498 RNA-Seq libraries 
were filtered, while in aggregated GCNs this filtering is independently performed for each of 
the 26 Bioproject groups. That allowed the inclusion in the GCN of genes expressed in more 
specific conditions and therefore involved in more specific processes. This indicates that both 
aggregated and non-aggregated networks were able to capture stable gene-gene relationships 
expressed in most of the RNA-Seq libraries used in the analysis, but only aggregated GCNs 

Figure 5. Lollipop plot of enriched terms found in the MF subnetwork. Enriched terms were sorted by 

the number of genes annotated by each term. 
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were able to detect gene-gene interactions produced in specific conditions. Condition-
independent gene-gene connections could be related to basal metabolic pathways, while 
condition-dependent gene-gene interactions could be associated to specific metabolic 
pathways. 
 
This could explain the difference in the distribution of node degree connectivity between 
aggregated and non-aggregated GCNs. As shown in Figure 1, aggregated GCNs had a bimodal 
distribution of node degree connectivity, while non-aggregated GCNs had a unimodal 
distribution. As mentioned previously, aggregated GCNs may be able to detect genes involved 
in specific and basal metabolic processes. The two modes detected in aggregated GCNs node 
degree connectivity distribution could be associated with these two groups of genes. The 
group with the lower node degree distribution could be associated with genes involved in 
more specific metabolic pathways, coexpressed with a lower number of genes. The group with 
the higher node degree distribution could be associated with genes involved in basal metabolic 
pathways and coexpressed with a higher number of genes. On the other hand, non-aggregated 
GCNs may only detect genes involved in basal metabolic pathways, having only one mode in 
their node degree distribution. 
 
Another factor affecting the topology of the networks was the sparsity threshold selected. 
HRR300 and COO300 had a node degree connectivity higher than HRR100 and COO100. This 
was an expected result, since a higher number of ranked genes allows a higher number of 
connections between genes.  
 
 

Sparsity threshold and the number of Bioprojects determine network performance 

According to the results, sparsity was a key factor affecting network performance. The average 
AUROC of relaxed sparsity threshold networks (HRR300 and COO300) was 0.741, while that of 
stringent sparsity threshold networks (HRR100 and COO100) was 0.694. Applying relaxed 
sparsity threshold during network building represented an increment of 6.3% in the AUROC 
score in comparison to stringent sparsity threshold. 
 
The number of Bioprojects used to build the GCN was a key factor in the case of aggregated 
methods, indicating the minimum number of Bioprojects necessary to reach a sufficiently high 
AUROC score (Figure 1). In every case, aggregated methods had a lower AUROC value than 
non-aggregated methods using a low number of Bioprojects. By increasing this number, 
aggregated methods overtook non-aggregated methods, as found in other studies (Orduña et 
al., 2022; Orduña-Rubio et al., 2023). For future GCNs construction, increasing the number of 
Bioprojects could improve the performance of the GCNs. 
 
Studying the effect of functional annotations average node degree on the AUROC value, we 
found major differences depending on the type of dataset used. There was a positive 
correlation between functional annotations average node degree and functional annotations 
individual AUROC in datasets based on evidence such as GObp, GOmf, GOcc, KEGG and 
Mapman. On the other hand, this correlation was lost with datasets based on domain 
identification by sequence similarity, such as PANTHER and Pfam. These results are in 
agreement with the GBA principle, which states that coexpressed genes share function, and 
not necessarily similar sequences. 
 
COO300 validated as a powerful tool for peach and Prunus research 

In peach, fruit flesh softening has been extensively studied at fruit ripening and postharvest 
due to its implication in fruit shelf life. Fruit softening involves several cellular processes, such 
as the disassembly of the cell wall and the dissolution of the middle lamella. These 
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modifications are the result of hydrolytic changes in the polysaccharides forming the cell wall, 
including celluloses, hemicelluloses (mainly xyloglucan) and pectins. Several terms found in the 
MF subnetwork were associated to this process, such as ‘GOcc: cell wall’, ‘GObp: cell wall 

organization’ and ‘GObp: cell wall biogenesis’, ‘GOmf: hydrolase activity’, ‘GOmf: hydrolase 

activity, actin on glycosyl bonds’, ‘Mapman: enzyme classification.EC_2 transferases.EC_2.4 

glycosyltransferase’ and ‘GOmf: xyloglucan:xyloglucosyl transferase activity’. 
 
Peach flesh softening is a synergistic process triggered by an extensive phytohormone signaling 
network. As a climacteric fruit, cross talk between ethylene and auxin occurs during peach 
ripening (Trainotti, Tadiello, & Casadoro, 2007). Moreover, methyl jasmonates (MeJAs) play an 
important role in slowing down fruit ripening by inhibiting ethylene production and fruit flesh 
softening (Soto, Ruiz, Ziosi, Costa, & Torrigiani, 2012; Wei, Wen, & Tang, 2017). Up to seven 
enriched terms were related to these phytohormones in the MF subnetwork, such as 
‘Mapman: phytohormone action’, ‘Mapman: phytohormone action. Auxin’, ‘GObp: jasmonic 

acid metabolic process’, ‘Mapman: phytohormone action. ethylene', ‘GOmf: methyl indole-3-

esterase activity’, ‘GOmf: methyl jasmonate esterase activity’ and ‘Mapman: phytohormone 

action. auxin. auxin conjugation and degradation’. 
 
We found 25 genes in the MF subnetwork that have previously been reported as associated to 
ripening and softening (Supplementary Material 2). Among them, we identified several genes 
involved in the enzymatic machinery responsible for cell wall disassembly, such as a pectin 
methylesterase (Prupe.7G192800), a pectin methylesterase inhibitor (Prupe.1G114500), a 
pectate lyase (Prupe.4G116600), a β-galactosidase (Prupe.3G050200) and a xyloglucan 
endotransglycosylase hydrolase (Prupe.1G255100). Additionally, we found an expansin, a cell 
wall structural protein (Prupe.6G075100). Related to ethylene, we identified a 1-amino-
cyclopropane-1-carboxylate synthase (PpACS1, Prupe.2G176900) and 1-amino-cyclopropane-1-
carboxylate oxidase (PpACO1, Prupe.3G209900), both genes codifying the key enzymes 
catalyzing the final steps of the ethylene biosynthetic pathway (Tonutti et al., 1997). In fact, 
PpACS1 has been previously reported as a regulator of PpPG21 (Tatsuki et al., 2013). Another 
gene related to ethylene production was an ethylene receptor 2 (PpETR2, Prupe.1G034300). 
The implication of this gene in the ethylene transduction signal has been verified at the 
transcriptional level in the final stages of fruit ripening in melting flesh peaches (Wang et al., 
2017). Regarding genes related to auxin biosynthesis, we found a YUCCA-like auxin-
biosynthesis gene (PpYUC11, Prupe.6G157500) and an IAA amino acid synthase (PpGH3, 
Prupe.6G226100). Both genes have been reported to have the same expression pattern as 
PpACS1 at late ripening stages in response to high auxins levels in melting flesh fruits (Pan et 
al., 2015). 
 
Based on these results, we can affirm that the MF subnetwork is mainly formed by genes 
involved in cell wall organization and biogenesis, with expression regulated by ripening-related 
phytohormones such as ethylene, auxin and MeJA. Moreover, we found 25 genes previously 
reported as involved in softening, some taking part in key steps of these processes. These 
results demonstrate that the MF subnetwork is closely related to peach fruit softening and 
therefore to the function of PpPG21 and PpPG22. Taken together, this validates COO300 as an 
accurate and powerful tool for peach and Prunus research. 
 
Gene coexpression networks as catalysts for Prunus research 

While large-scale GCNs have been unexplored as tools in Prunus research until now, they are 
widely used in the model organism Arabidopsis thaliana and other crop species. Depending on 
the needs of the researcher, GCNs have been exploited in different ways. One of the most 
common is to identify different modules (also known as clusters) within the GCN through a 
clusterization analysis. These gene modules, which represent groups of genes highly connected 
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between them and relatively isolated from the rest of the GCN, are particularly useful to study 
uncharacterized biological processes. For example, Childs et al., 2011 used this approach in 
rice to annotate 13,537 genes, 2,980 of which had no previous annotation. 
 
Another approach that uses group of genes to study specific biological processes is the guide 
gene analysis. In this case, a list of well-characterized genes involved in a specific biological 
process are selected and genes coexpressing with the list of genes of interest are extracted 
from the network. In this way, the selected genes are used as a guide to study the 
transcriptional regulation of the biological process of interest. Huang et al., 2017 successfully 
applied this approach to study the cell wall biosynthesis in maize. Pathway-centered network 
analysis has also been helpful in the identification of members or regulators of secondary 
metabolic pathways (Orduña-Rubio et al., 2023). 
 
GCNs can also be used to study specific gene families, being particularly useful for studying 
transcription factor families. For instance, Wong et al., 2016 developed a MYB-centered GCN 
to study  the potential processes being regulated by this family in grapevine. 
 
Finally, GCNs can be used to infer the function of a gene of interest. This is a situation of 
special interest in peach and Prunus research, where most trait-loci analyses lead to a list of 
candidate genes associated with the trait under study. With poor or no functional information, 
identifying the responsible gene from this list of candidates can be almost impossible. Even 
when a high-confidence candidate gene is identified, the lack of an efficient genetic 
transformation system is still one of the main limitations for functional, mutant, or transgenic 
based validation. Having a tool such as the GCN presented in this study, with which obtaining 
useful information about the biological processes in which a gene is involved, may be of critical 
importance. 
 

CONCLUSIONS 

 

In this study, we performed the widest overview of transcriptomic analysis carried out to date 
in peach or other Prunus species. The GCN inference methods used, aggregated or non-
aggregated, affected the topological characteristics and performance of the GCNs created. 
Using two well-characterized genes in peach, PpPG21 and PpPG22, we were able to validate 
the network with the best performance, COO300. The GCN tool presented in this study will 
help Prunus researchers overcome the intrinsic limitations of working with crop tree species, 
prioritize research lines and outline new ones. COO300, named as PeachGCN v1.0, and the 
scripts necessary to run a function prediction analysis using it, are available at 
https://github.com/felipecobos/PeachGCN. 
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