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Abstract 17 
The cognitive processes supporting complex animal behavior are closely associated with ubiquitous movements 18 
responsible for our posture, facial expressions, ability to actively sample our sensory environments, and other 19 
critical processes. These movements are strongly related to neural activity across much of the brain and are often 20 
highly correlated with ongoing cognitive processes, making it challenging to dissociate the neural dynamics that 21 
support cognitive processes from those supporting related movements. In such cases, a critical issue is whether 22 
cognitive processes are separable from related movements, or if they are driven by common neural mechanisms. 23 
Here, we demonstrate how the separability of cognitive and motor processes can be assessed, and, when separable, 24 
how the neural dynamics associated with each component can be isolated. We establish a novel two-context 25 
behavioral task in mice that involves multiple cognitive processes and show that commonly observed dynamics 26 
taken to support cognitive processes are strongly contaminated by movements. When cognitive and motor 27 
components are isolated using a novel approach for subspace decomposition, we find that they exhibit distinct 28 
dynamical trajectories. Further, properly accounting for movement revealed that largely separate populations of 29 
cells encode cognitive and motor variables, in contrast to the ‘mixed selectivity’ often reported. Accurately isolating 30 
the dynamics associated with particular cognitive and motor processes will be essential for developing conceptual 31 
and computational models of neural circuit function and evaluating the function of the cell types of which neural 32 
circuits are composed. 33 
  34 
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Introduction  35 
Goal-directed behavior follows from an interplay between cognitive and motor processes in the mammalian brain. 36 
For example, while dribbling down the court, a basketball player must track the players around them, decide which 37 
play to run, plan their next move, execute fast and accurate movements, and flexibly adapt those movements 38 
according to the actions of other players. The neural representations of these cognitive and motor processes are 39 
often distributed across many of the same brain areas1–6 and engaged concurrently7–9. For these reasons, 40 
disentangling the neural signatures of specific cognitive and motor processes is challenging.  41 
Many behavioral tasks are designed with this issue in mind, aiming to isolate constituent neural processes by 42 
separating them into discrete temporal epochs. For example, in sensory-guided decision-making tasks, subjects are 43 
often trained to withhold responses while stimuli are presented so that perceptual decision making is isolated in 44 
time from associated actions. Analogous paradigms have been developed to uncover the neural underpinnings of 45 
working memory10–12, motor planning13,14, contextual encoding15,16, reward prediction17,18, and other cognitive 46 
processes19–22. 47 
These paradigms often rely on the assumption that experimental subjects withhold motor output during task epochs 48 
in which instructed responses are absent. However, uninstructed movements not required for task completion – such 49 
as changes in posture, facial expressions, and gaze – are commonly observed in rodents, humans, and non-human 50 
primates during learned behavioral tasks23–29. Importantly, uninstructed movements explain much of the variance 51 
observed in brain-wide neural activity27,30–32 and can be strongly correlated with task variables12,28,33–38.  52 
These observations imply a serious challenge for experimental studies addressing a wide-ranging set of cognitive 53 
processes. If uninstructed movements are correlated with a latent cognitive variable of interest – a stimulus 54 
perceived, a decision made, a memory stored, or a motor plan formed – then the neural dynamics leading to, or 55 
resulting from, uninstructed movements can be easily misconstrued as responsible for that cognitive process. One 56 
common approach to isolate putative cognitive dynamics is to track and ‘regress out’ movements24,30,39–44, but this 57 
approach assumes that cognitive and motor processes are separable - that is, driven by independent neural dynamics. 58 
However, some cognitive processes may be inherently embodied such that their associated neural dynamics are 59 
linked to overt movement45,46. Regressing out neural dynamics associated with embodied movements would lead to 60 
the inadvertent removal of the precise dynamics one wishes to study. Whether cognitive and motor dynamics are 61 
separable remains an open question and likely depends on the brain area, behavior, and cognitive process of interest. 62 
Effective methods both for evaluating separability within specific experimental paradigms and for effectively 63 
dissociating cognitive and motor dynamics, when separable, are lacking.    64 
Here, we address the separability of dynamics associated with cognitive processes and correlated movements. We 65 
developed a behavioral paradigm in which mice perform sensory-guided movements involving multiple cognitive 66 
signals in which they often exhibit idiosyncratic, task-correlated uninstructed movements. We build upon work 67 
demonstrating how different neural processes can be multiplexed in a single brain region39,40,47–50 to develop a novel 68 
method for assessing whether cognitive dynamics can be separated from those associated with movements  –  and 69 
for isolating each component, when they are separable. This approach is simple to adopt and does not require 70 
tracking or segmentation of body parts. It also does not require an explicit choice of models relating neural dynamics 71 
to movement, avoiding common assumptions of linearity. We find that some cognitive signals are separable from 72 
dynamics associated with co-occurring movements while others are largely inseparable. When dynamics are 73 
separable, examining the component of neural dynamics unrelated to movement revealed trajectories that differed 74 
in notable ways from estimates of the same dynamics when corrupted by uninstructed movements. Strikingly, we 75 
found that cognitive and motor dynamics were largely encoded by separate populations of cells when uninstructed 76 
movements were accounted for. Together, these results highlight the importance of critical consideration of the 77 
relationship between cognition and movement to better understand the neural dynamics supporting complex 78 
processes and how they map onto the myriad cell types comprising neural circuits. 79 
Results 80 
Task-switching behavioral paradigm 81 
We first designed a behavioral paradigm associated with multiple cognitive processes. In this paradigm, head-fixed 82 
mice performed two directional licking tasks that alternated block-wise within each behavioral session. These tasks 83 
varied in their cognitive demands but required the same instructed motor output. 84 
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This paradigm employed an established delayed-response task (DR) in which motor planning is temporally 85 
dissociated from movement execution14 (Fig. 1a). In the DR task, an auditory stimulus indicated the location of a 86 
reward. After a brief delay epoch with no auditory stimuli, a separate auditory ‘go cue’ instructed the mouse to 87 
move. If the mouse performed a directional tongue movement to the correct target, a water reward was delivered. 88 
In separate blocks of trials, mice performed a water-cued (WC) task in which all auditory stimuli were omitted. 89 
Instead, a drop of water was presented at a random point in time at a randomly selected reward port. Animals 90 
consumed water upon its presentation. Mice received no explicit cues signaling DR and WC blocks. The DR task 91 
required a perceptual decision that guides the planning of a subsequent motor action. In the WC task, uncertainty 92 
in the timing and location of reward prevented formation of a motor plan prior to reward presentation, and instead, 93 
mice detected reward availability using olfactory and/or vibrissal cues51. This structure required animals to maintain 94 
an internal representation of the current block identity (context) to maintain high task performance.  95 
We examined uninstructed movements in this behavioral paradigm using high-speed video. We tracked movement 96 
of the tongue, jaw, nose, and paws52 and calculated instantaneous motion energy to quantify movement in a feature-97 
agnostic manner31 (Fig. 1d-f). We found that mice performed uninstructed movements that varied in their identity 98 
and timing across both trials and contexts (Fig. 1e and Supplementary Movie 1). 99 
Prior work has established the necessity of the antero-lateral motor cortex (ALM) and tongue-jaw motor cortex 100 
(tjM1) for the planning and execution of tongue movements14,53–56. To assess cortical involvement in the initiation 101 
of instructed movements (directional licking) in both behavioral tasks, we used optogenetic photoinactivation to 102 
inhibit the ALM and tjM1 at the go cue (DR) or water presentation (WC) bilaterally in VGAT-ChR2-EYFP mice 103 
(10 sessions, 4 mice). Simultaneous photoinactivation of both regions at the go cue (DR task) or water drop (WC 104 
task) impaired the initiation of movement in both contexts (Fig. 1b,c; DR trials: 41 ± 20% reduction, mean ± s.d., 105 
p = 1x10-4; DR left trials: 58 ± 19%, p = 4x10-6, DR right trials: 30 ± 28%, p = 7x10-3; All WC trials: 15 ± 20%, p 106 
= 0.04; WC left trials: 23 ± 24%, p = 0.01, WC right trials: 18 ± 23%, p = 0.03; paired t-tests; EDFig. 1c,d). To 107 
assess cortical involvement in the expression of uninstructed movements, and whether these movements might be 108 
controlled by ALM or tjM1 preferentially, we bilaterally silenced the ALM and tjM1 during the delay epoch of DR 109 
trials individually (ALM: 15 sessions, tjM1: 9 sessions, 4 mice). Uninstructed movements were suppressed by 110 
photoinactivation of either area (EDFig. 1b; ALM: ; 53 ± 31% reduction, mean ± s.d., p = 3x10-4; tjM1: 62 ± 24% 111 
reduction, p = 2x10-3, paired t-test) and more strongly suppressed by concurrent photoinactivation of both areas 112 
(Fig. 1g-h; 29 sessions, 4 mice; 73 ± 35% reduction, mean ± s.d., p = 7x10-9, paired t-test), similar to previous 113 
observations34 (but see ref57). In the DR task, delay photoinactivation of both areas led to a significant decrease in 114 
overall performance (Fig. 1i; 22% ± 14% reduction, mean ± s.d., p = 2x10-6 paired t-test; EDFig. 1b) as expected 115 
from the disruption of choice/planning dynamics14, often leading to animals responding consistently to a preferred 116 
side rather than in a manner commensurate with the sensory cue.  These results indicate that both the ALM and 117 
tjM1 are involved in the generation of uninstructed movements and the planning and execution of instructed 118 
directional tongue movements in the two-context paradigm.  119 
Neural dynamics related to task variables 120 
While movement- and task-related information is encoded in both the ALM and tjM1 in the DR task53,58 and other 121 
directional licking tasks55, task variables are more strongly represented in the ALM55,56,59 and so we focused our 122 
subsequent analyses there. We recorded activity extracellularly in the ALM with high-density silicon probes during 123 
the two-context paradigm to track dynamics associated with planning, context, and the execution of movements 124 
(Fig. 2; two-context paradigm: 12 sessions, 6 mice, 522 units including 214 well-isolated single units; an additional 125 
3 mice were trained only on the DR task totaling 25 sessions, 9 mice, 1651 units including 483 well-isolated single 126 
units included in analyses of the DR task only; see EDFig. 2a for per-session statistics). In the DR task, we found 127 
that choice selectivity (right vs. left DR trials) was widespread across all task epochs as expected (sample: 36%; 128 
delay: 42%; response: 58% of 483 single units, 25 sessions, 9 mice, 483 single units; see Methods). Individual units 129 
showed a variety of activity patterns across trial types, including delay epoch preparatory activity preceding 130 
instructed movements, often taken to be a signature of motor planning54,60 (Fig. 2b left). Individual units were also 131 
selective for behavioral context during all task epochs, including during the inter-trial interval (ITI) (39% of single 132 
units, 12 sessions, 6 mice, 214 single units; see Methods), suggesting persistent coding of context (Fig. 2b, right). 133 
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 134 
Figure 1 – Cortical dependence and uninstructed movements during a two-context task. a.  Top, Schematic of the two-context task. In 135 
delayed-response (DR) trials, an auditory stimulus was presented during the sample epoch (1.3 s) instructing mice to lick for reward to the 136 
right (white noise) or left (8 kHz tone).  Mice were trained to withhold their response during a delay epoch (0.9 s) and initiated their 137 
response following an auditory go cue. In WC trials, mice were presented with a water reward at a random port at random inter-reward 138 
intervals. The WC task was introduced once mice became experts in the DR task. Bottom, 20-trial trailing average of correct, error, and 139 
ignore rates for an example session. b.  Performance for an example session separated by trial type (left vs. right), control vs. 140 
photoinactivation trials, and by context. Photoinactivation (1 s) was initiated at the go cue. Blue dots indicate right licks and red dots 141 
indicate left licks. Grey bars, correct trials; black bars, error trials. c.  Percent of trials with correct licks within 600 ms of the go cue on 142 
photoinactivation trials. Colored points represent mean values across animals (n = 4, individual animals connected by dark lines). Light 143 
gray lines denote individual sessions (n = 10). Bars are across-session means. Asterisks denote significant differences (p < 0.05) between 144 
control and photoinactivation trials (All DR trials: p = 0.0001; DR left trials: p = 4.5e-06; DR right trials: p = 0.0074; All WC trials: p = 145 
0.0371; WC left trials: p = 0.0134; WC right trials: p = 0.0316, paired t-test). Error bars denote standard deviation across sessions. d.  146 
Behavior was tracked with high-speed video from side (left) and bottom (right) views. Trajectories of delay epoch uninstructed movements 147 
from an example session overlayed.  e. Uninstructed movements are highly variable across trials and across time. Top, jaw, nose, and paw 148 
speed for an example trial. Bottom, feature overlay for a subset of trials in an example session. At each time bin, t, an [r, g, b] color value 149 
was encoded as [jawt ,noset ,pawt]. f.  Schematic of motion energy calculation. Example frames depicting high and low motion energy are 150 
shown. g-i.  Bilateral motor cortex photoinactivation during the delay epoch. g.  Motion energy on control (top) and photoinactivation 151 
(bottom) trials for an example session. On photoinactivation trials, light was delivered for 0.8 seconds beginning at the start of the delay 152 
epoch. h.  Average delay epoch motion energy on single sessions for control and photoinactivation trials (n = 29 sessions, 4 mice). Red 153 
points indicate left trials and blue points indicate right trials for a single session. i. Performance for control and delay epoch 154 
photoinactivation trials. Mice often defaulted to a right choice following delay epoch photoinactivation. Asterisks denote significant 155 
differences (p < 0.05) between control and photoinactivation trials (n=29 sessions, 4 mice). Black lines and points indicate averages across 156 
sessions for individual animals and light grey lines indicate sessions.  157 
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We next sought to understand how the selectivity patterns observed in individual cells were encoded at the 158 
population level. We examined neural activity in state space, in which the firing rate of each unit represents one 159 
dimension. We defined one-dimensional coding directions (CD) within the high-dimensional state space that best 160 
encoded task variables54,61–63 (Fig. 2c). We first examined putative neural correlates of three cognitive processes – 161 
choice, urgency, and contextual encoding.  162 

We defined a coding direction for left-right trial type, CDchoice , as the direction in state space that best differentiates 163 
activity on left versus right trials during the delay epoch of DR trials. Projections along CDchoice revealed that choice 164 
selectivity in the ALM emerges early in the sample epoch and continues to grow throughout the delay epoch before 165 
decaying at the onset of the response epoch (Fig. 2d). Choice could be reliably decoded from projections along 166 
CDchoice across sessions (EDFig. 2c; AUC: 0.86 ± 0.11 mean ± s.d.). Such preparatory activity is predictive of 167 
animals’ upcoming instructed responses13,54,58,61,64,65 and has been taken to represent a neural correlate of a motor 168 
plan54,60  or choice32,62,66. We next defined CDramp as the direction that captures trial-type independent increases or 169 
decreases in preparatory activity between the onset of the stimulus and the go cue in DR trials61,62,67,68. This non-170 
selective ramping has been thought to represent an urgency or timing signal69–72. Finally, we defined CDcontext, the 171 
direction that best differentiates activity during the inter-trial interval of DR and WC trials (see Methods). 172 
Projections along CDcontext revealed that context is encoded in the ALM throughout each trial (Fig. 2d) with strong 173 
modulation at the onset of the response epoch.  174 
 175 

 176 
Figure 2 – Single cell activity and population dynamics encode task-relevant cognitive and motor processes.  a. Schematic of silicon 177 
probe recordings in the anterolateral motor cortex (ALM). b.  Spike rasters (top) and peri-stimulus time histograms (PSTH; bottom) for four 178 
example units in the ALM. Units show selectivity for trial type (left vs. right) and context (DR vs. WC) during all task epochs. PSTHs for 179 
DR and WC tasks shown on right are averages of equal numbers of left and right trials. c.  Schematic illustrating identification of coding 180 
directions (CD). Coding directions are defined as directions in state space that maximally separate activity between trajectories defined by 181 
trial types (CDchoice, CDaction), context (CDcontext), or time points (CDramp). d.  Projections along each of four defined CDs. Gray shaded 182 
regions indicate time points used for CD estimation. Mean and 95% confidence intervals of bootstrapped distributions shown. 183 
 184 
In addition to neural activity putatively related to these cognitive processes, we also examined neural signals 185 
associated with the execution of movements. We defined an additional coding direction, CDaction, as the direction 186 
that captures trial-type selective changes in neural activity that emerge after the go cue. Projections of neural activity 187 
along CDaction robustly encoded movement direction in the ALM, as expected. Together, these four coding 188 
directions explained 53 ± 11% (mean ± s.d.) of the variance in trial-averaged neural data (EDFig. 2b) We focus our 189 
analyses on these four population-level signals, which putatively encode ALM dynamics associated with cognitive 190 
and motor processes in the two-context task-switching paradigm.  191 
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Uninstructed movements related to preparatory dynamics 192 
We next examined uninstructed movements in the DR task and their correlation with both task variables and 193 
preparatory dynamics (Fig. 3). We found that animals frequently performed uninstructed movements that were 194 
correlated with trial type (Fig. 3a) and time within each trial. On single trials, upcoming choice could be decoded 195 
from uninstructed movements beginning immediately after the presentation of the sample tone, with accuracy 196 
increasing throughout the delay epoch (Fig. 3b).  197 
Not only were uninstructed movements related to the animal’s upcoming actions, but they were highly correlated 198 
with preparatory dynamics on a trial-by-trial and moment-by-moment basis. The onset and magnitude of 199 
uninstructed movements often coincided with the onset and magnitude of choice selectivity and ramping (Fig. 3c,e). 200 
We used cross-validated multiple linear regression to predict projections along CDchoice and CDramp on a trial-by-201 
trial basis from captured kinematic features of movement. Model predictions were often highly correlated with 202 
motor planning signals, indicating a close relationship between animals’ uninstructed movements and preparatory 203 
dynamics (Fig. 3d,f; CDchoice : R2 = 0.41 ± 0.23, mean ± s.d across sessions,  CDramp : R2 = 0.48 ± 0.23, n = 25 204 
sessions), although this relationship was variable across animals and sessions (Fig. 3d,f,i bottom row) and variable 205 
in the kinematic features that were most predictive (EDFig. 3a-c).  This variability is consistent with other studies73 206 
and highlights the need for analytical methods for assessing the relationship between neural signals and related 207 
movements on a session-by-session basis.   208 
To further understand the relationship between uninstructed movements and preparatory dynamics, we trained 209 
additional animals on a randomized delay task in which the timing of the go cue cannot be anticipated65. 210 
Incorporating uncertainty into the length of the delay epoch leads to a qualitative change in population-level choice 211 
selectivity. Selectivity in CDchoice projections emerges earlier than in the standard fixed-delay DR task (Fig. 3h top 212 
right; fixed: 0.61 ± 0.11 s from delay onset, n = 25 sessions; randomized: 0.16 ± 0.19 s, p = 2.4x10-12, n = 19 213 
sessions, two-sided t-test; Fig. 3h, top left), suggesting that motor plans are prepared prior to the earliest possible 214 
go cue time65.  We found that the timing of uninstructed movements, too, shifted in an analogous fashion (Fig. 3h, 215 
bottom; fixed: 0.58 ± 0.43 s from delay onset; randomized: 0.19 ± 0.39 s, p = 0.01, two-sided t-test). Projections 216 
along CDchoice  remained predictable from uninstructed movements on a single-trial level (Fig. 3h; average R2 across 217 
sessions: 0.38 ± 0.20, n = 19 sessions), providing further evidence of the tight link between preparatory dynamics 218 
and uninstructed movements. 219 
Uninstructed movements related to behavioral context 220 
We next compared uninstructed movements across task blocks in the two-context paradigm (Fig. 4). We found that 221 
animals perform qualitatively different uninstructed movements in each behavioral context, despite both contexts 222 
requiring instructed movements to the same targets (Fig. 4a). Context could be decoded from kinematic features of 223 
movement across epochs – including during the ITI, in which external contextual cues were absent (Fig. 4b, 224 
left). The time-course of context decoding from neural population data and from movement kinematics was also 225 
similar (Fig. 4b, right).  226 
We sought to understand whether trial-to-trial variability in the neural representation of context-encoding could be 227 
predicted from uninstructed movements. We again trained a multiple linear regression model to predict single-trial 228 
projections along CDcontext from kinematic features and found that, like putative choice and urgency dynamics, 229 
context-selective signals could be predicted with high fidelity (Fig. 4c,d;  R2 = 0.49 ± 0.22, n = 12 sessions).  230 

Taken together, these findings suggest that dynamics along CDchoice, CDramp, and CDcontext could be associated with 231 
uninstructed movements and/or the cognitive processes related to the anticipation and planning of upcoming 232 
instructed movements and encoding of task context.  233 
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 234 
Figure 3 - Uninstructed movements are tightly linked to putative planning dynamics. a. Choice-dependent uninstructed movements.  235 
Overlayed trajectories from a random subset of DR trials in an example session. In this example, uninstructed movements are prominent on 236 
left, but not right, trials during the delay epoch.  b. Choice (left vs. right) decoding from kinematic features and neural population data.  Gray 237 
lines denote shuffled choice labels. c. Top, average projection onto CDchoice on left (red) and right (blue) trials for the example session 238 
depicted in (a).  Bottom, average motion energy for all correct left and right trials. d. Observed and video predictions of single-trial projections 239 
of neural activity onto CDchoice (see Methods) for the same example session as in (a).  Top, Heatmap of observed and predicted single-trial 240 
projections.  Trials are sorted by the observed average projection magnitude in the late delay, with left and right trials sorted separately.   241 
Middle, trial-averaged CDchoice projections and predictions.  Bottom, scatter plot of the average delay epoch projection of neural data onto 242 
CDchoice versus corresponding video predictions.  Dots denote single trials and dashed line denotes linear fit.  Inset, R² values for all sessions 243 
(n = 25 sessions). Open circle denotes the example session in (a). e. Same as (c) but for CDramp (different example session).  Left and right 244 
hits are grouped (purple). f.  Same as (d) but for CDramp. Same session as (e). g. Schematic of the randomized delay task. The delay epoch 245 
duration was randomly selected from six values (see Methods) with frequencies following an exponential distribution.  h. Differences in 246 
choice selectivity and uninstructed movements between the randomized and fixed DR tasks.  Top left, selectivity in CDchoice projections 247 
averaged across sessions for randomized delay (gray; n = 19 sessions) and fixed delay (purple; n = 25 sessions) tasks.  Vertical lines indicate 248 
time of delay onset (black), go cue for the fixed delay (purple) and or go cue for the randomized delay (gray).  Only trials with a delay 249 
duration of 1.2 s are shown for the randomized delay task for clarity.  Gray bar at the top denotes timepoints where the slopes of the curves 250 
are significantly different (p < 0.05, two-sided t-test). Bottom left, same but for motion energy.  Top right, time relative to delay onset that 251 
selectivity in CDchoice projections reaches 90% of its maximum value. Colored dots, individual sessions; black dots, outlier sessions.  Asterisk 252 
denotes significant difference (p < 0.05, two-sided t-test) between latencies in randomized vs. fixed delay sessions.  Bottom right, same but 253 
for session-averaged motion energy.  i. Same as (d) for an example session of the randomized delay task.  Top, trials with delay durations of 254 
0.3, 0.6, 1.2, and 1.8 s are shown. Middle and bottom, trials with delay duration of 1.2 s only. Lines with shaded regions depict mean and 255 
95% confidence intervals of bootstrapped distributions throughout. 256 
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 257 
Figure 4 - Uninstructed movements are closely related to the neural encoding of context. a. Schematic of tasks (top) and context-258 
dependent uninstructed movements.  Jaw/nose/paw movements on an example trial (middle) and overlayed trajectories of uninstructed 259 
movements across an example session (bottom) for DR task (left) and WC task (right). b. Context decoding from high-speed video (top) and 260 
neural data (bottom) as a function of time across all sessions.  Gray lines denote shuffled context labels. c. Left, heatmap of single-trial 261 
projections of neural data onto CDcontext.  Right, CDcontext projections predicted from video in an example session.  The chronological DR or 262 
WC block within the session is denoted by purple and orange rectangles, respectively, on the left of each plot. d. Left, trial-averaged projection 263 
of neural data onto CDcontext and predictions from video (dotted lines) for the example session illustrated in (c).  Right, scatter plot of average 264 
projection of neural data onto CDcontext during the ITI versus average video prediction.  Dots denote single trials; dashed line, line of best fit.  265 
Inset, R² values for all sessions (n = 12 sessions). Filled circle denotes the example session in (c). Lines with shaded regions depict mean and 266 
95% confidence intervals of bootstrapped distributions throughout. 267 
   268 
Subspace decomposition of neural activity 269 
We next examined whether neural signals encoding task variables could be isolated from movement-related signals, 270 
despite their correlation in time. We hypothesized that if the neural dynamics associated with cognitive and motor 271 
processes are separable, their components in the ALM should be driven by distinct latent signals. 272 
Previous theoretical work demonstrated a simple mechanism that explains how neural activity can vary dynamically 273 
while ensuring that specific variables remain stably encoded50.  In this formalism, a variable of interest may be 274 
decoded from a neural population, perhaps by a downstream circuit, through a linear transformation matrix, W, 275 
which could be taken to follow from a particular pattern of synaptic connectivity.  If the dimensionality of neural 276 
activity is larger than the dimensionality of the output signals decoded (i.e. if W is not square), then W will have a 277 
null space - dimensions along which neural activity can vary without affecting the decoded output50.   278 
Applying this idea to recordings from the primate motor cortex demonstrated that motor planning dynamics are 279 
confined to the null space of a linear transformation between motor cortical activity and muscle activation39, thereby 280 
allowing motor planning signals to evolve dynamically in a manner that is independent of motor output.  The 281 
orthogonal complement to this output-null subspace is the output-potent subspace; changes in activity along output-282 
potent dimensions were then associated with changes in muscle activation39.    283 
Subsequent work identified analogous subspaces of neural activity in the primate motor cortex as the orthogonal 284 
subspaces that capture the most variance in neural activity during the delay and response epochs of a delayed-285 
response task to capture preparatory and movement-related activity, respectively40.  This approach is effective when 286 
preparatory and movement-related dynamics are confined to distinct temporal epochs and when neural activity is 287 
exclusively related to motor preparation and motor execution, respectively, in those epochs.  This approach is 288 
convenient in that it avoids the need to measure muscle activation or any other descriptor of motor output.  289 
Importantly, it also avoids the need to explicitly model the transformation between neural activity and motor output 290 
as a linear transformation.  This transformation is, in general, unknown and can be highly nonlinear, particularly 291 
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for movements directly controlled by central pattern generators, such as those that support much of the behavioral 292 
repertoire of rodents (e.g. locomoting, breathing, whisking, licking, chewing, vocalizing, swallowing, etc.). 293 
We sought to determine if this computational framework could be used to isolate the neural dynamics associated 294 
with instructed and uninstructed movements from dynamics related to the encoding of choice, urgency, and context 295 
in our paradigm. Following the approach of Elsayed et al.40 we identified subspaces that maximally capture variance 296 
in trial-averaged neural activity in the delay and response epochs of our DR trials (Fig. 5a and Methods).  We found 297 
that dynamics within ‘delay’ and ‘response’ subspaces were confined to the delay and response epochs, respectively, 298 
closely resembling results observed in primates40  (Fig. 5b-d). This outcome is expected when trial-averaged 299 
dynamics in different epochs occupy subspaces that are largely orthogonal40.  However, activity within both 300 
subspaces remained highly correlated with uninstructed movements on single trials (Fig. 5b,e,f), suggesting that 301 
movement-related dynamics were not restricted to the 'response’ subspace using this analytical framework. This 302 
follows from the assumption that planning- and movement-related processes are strictly confined to distinct task 303 
epochs, which was not the case in our paradigm. Uninstructed movements were expressed across all task epochs 304 
(Figs. 1,3, and 4).   305 
Subspace decomposition of single-trial neural activity 306 
To avoid these limitations, we modified this analytical approach in two ways.  First, because uninstructed 307 
movements vary considerably from trial-to-trial, we avoided analyses of trial-averaged data and focused on single-308 
trial data.  Second, rather than identifying subspaces capturing variance during the delay (when no movement is 309 
assumed) and response epochs, we instead annotated all time points across a session in which animals were moving 310 
and all time points at which animals were stationary.  This could be straightforwardly achieved using a threshold 311 
on motion energy (calculated as the magnitude of frame-by-frame changes in images captured by video).  We then 312 
found the orthogonal subspaces that best explained variance during all time points across a session at which animals 313 
were stationary and moving (Fig. 5h).  We termed the resulting subspaces ‘movement-null’ and ‘movement-potent’ 314 
subspaces.  The movement-potent subspace contains dynamical patterns typically associated with movement. 315 
Patterns that are observed in the absence of movements – those likely related to cognitive and other ‘internal’ 316 
processes – are contained within the movement-null subspace.  Following this approach, we found that activity 317 
within the two subspaces together explained 72% of the variance in single-trial neural activity (movement-null: 30 318 
± 9.5%, mean ± s.d.; movement-potent: 42 ± 8.7%; n = 25 sessions). Neural dynamics in the movement-potent 319 
subspace were correlated with motion energy on single trials, as might be expected (Fig. 5i,l,m). Naively, 320 
movement-null subspace activity might be expected to be similarly anticorrelated with motion energy because that 321 
subspace is constructed to specifically capture variance during periods of animal stationarity. This outcome was 322 
largely not observed. Rather, movement-null subspace activity did not display a consistent relationship with 323 
movement (Fig. 5i,l,m) suggesting that these ‘internal’ dynamics were not only prominent in the absence of 324 
movement, but persisted during movement as well, in line with the supposition that cognitive processes can persist 325 
during movement. 326 
Uninstructed movements were commonly observed during the delay epoch of DR trials, during motor planning, and 327 
were highly correlated with putative choice and urgency signals (Fig. 3c-h). We examined whether the movement-328 
potent subspace might then inadvertently capture choice or urgency dynamics that are correlated in time with 329 
movements. To examine this possibility, we examined movement-null and movement-potent subspaces estimated 330 
using trials from the WC context only. Here, the movement-potent subspace is determined in a context in which 331 
choice and urgency signals are absent23 (Fig. 2d and EDFig. 4c), precluding the possibility that dimensions of 332 
neural activity related to choice and urgency are inadvertently assigned to the movement-potent subspace due to 333 
their correlation with movement. This approach yielded subspaces that were highly similar (EDFig. 4d-f). In 334 
another control, examining movement-null and movement-potent subspaces estimated only using data recorded 335 
during the response epoch of both tasks, when planning and urgency dynamics should be minimal, again yielded 336 
similar results (EDFig. 4g-i). Finally, we estimated the movement-null subspace as the subspace defined by the top 337 
principal components of activity recorded during periods of stationarity and then determined the movement-potent 338 
subspace as the top principal components of dynamics not already captured in the movement-null subspace.  This 339 
latter procedure, which is highly conservative in avoiding the spurious assignment of internal dynamics to the 340 
movement-potent subspace, again yielded similar results (EDFig4. j-l and Methods). Together, these observations 341 
suggest that the movement-potent subspace indeed captures movement-related signals, and not dynamics related to 342 
internal processes that are somewhat correlated in time with movements.  343 
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We hypothesized that activity in the movement-null and movement-potent subspaces should capture variance in 344 
neural activity across all task epochs. Animals may think and move simultaneously; thus, it follows that internal 345 
dynamics contained in the movement-null space may be present during the response epoch as well. Additionally, 346 
uninstructed movements occur during both the sample and delay epochs, concurrent with stimulus and choice 347 
encoding.  Thus, we should also observe dynamics within the movement-potent subspace during all task epochs. 348 
As expected, activity within movement-null and movement-potent subspaces captured variance across epochs (Fig. 349 
5k). Interestingly, the proportion of units with activity largely confined to the movement-potent subspace was larger 350 
than expected by chance (Fig. 5n and EDFig. 5b; p = 6x10-19, n = 483 single units, see Methods), and larger than 351 
when subspaces were identified from trial-averaged data here (Fig. 5g) and in non-human primates39. This 352 
observation suggests the identification of neuronal populations engaged solely in motor processes that could not be 353 
identified without properly accounting for uninstructed movements. 354 
One of the few parameters associated with this procedure is the choice of the dimensionality of the movement-null 355 
and movement-potent subspaces. We examined whether varying the dimensionality of each subspaces (from four 356 
to 13) influenced these results. We found our results to be largely insensitive to subspace dimensionality (EDFig. 357 
6a-c), again suggesting minimal sensitivity to choice of parameters.  358 
Internal and movement-related dynamics during motor planning 359 
The movement-potent subspace may contain at least three classes of movement-related neural dynamics: (1) motor 360 
commands (and efference copies), (2) sensory feedback related to movements, and (3) internal dynamics that are 361 
present exclusively during periods of movement. That is, if a particular internal process is “embodied,” in the sense 362 
that it is mediated by the same latent dynamics as responsible for associated movements – and thus always observed 363 
in the presence of those movements - then we would expect to find those latent dynamics wholly contained within 364 
the movement-potent subspace (Fig. 6c). Dynamics supporting internal processes which are independent of 365 
movements should be contained within the movement-null subspace (Fig. 6a). Between these extremes, we expect 366 
to observe dynamics within both subspaces when a particular internal process (with associated latent dynamics in 367 
the movement-null subspace) biases the expression of movements (with associated latent dynamics in the 368 
movement-potent subspace) (Fig. 6b).  In that latter case, internal processes may appear correlated with movements 369 
despite being largely mediated by distinct latent dynamics. 370 
To evaluate these possibilities, we examined whether putative cognitive signals (illustrated in Fig. 2) evolved within 371 
the movement-potent and/or movement-null subspaces. We found choice selectivity – dynamics that differentiate 372 
left and right DR trials – in both subspaces.  The existence of choice dynamics in the movement-null subspace 373 
indicates an internal representation of choice that is separable from dynamics related to the execution of choice-374 
related uninstructed movements (see Fig. 6b). The average time courses of choice dynamics in these subspaces 375 
displayed subtle, yet notable, differences, as did their expression on error trials. Selectivity emerged quickly 376 
following stimulus presentation in the movement-null subspace and did not change significantly through the delay 377 
epoch (Fig. 7a; p > 0.05, paired t-test comparing selectivity during last 100ms of sample and delay epochs, n = 25 378 
sessions EDFig. 7c) consistent with an internal representation driven by sensory input. On error trials, selectivity 379 
in the movement-null subspace initially followed the same trajectory as correct trials but decayed following stimulus 380 
offset. In the movement-potent subspace, in contrast, selectivity increased slowly during the sample epoch and 381 
continued to increase monotonically during the delay epoch (p = 3x10-13, paired t-test comparing selectivity during 382 
last 100ms of sample and delay epochs, n = 25 sessions; p = 1x10-5 comparing change in selectivity during the delay 383 
epoch in movement-potent and movement-null subspaces; EDFig. 7b), and no significant movement-potent 384 
subspace selectivity emerged on error trials. These observations suggest that sensory stimuli initially drive 385 
appropriate dynamics within the movement-null subspace on error trials, but that choice is not encoded stably and 386 
does not engage movement-potent dynamics related to uninstructed movements.  387 
Although the trajectories of choice dynamics in each subspace shared some similarities in trial-averaged data (Fig. 388 
7a), the existence of choice dynamics in both subspaces implies that they must differ markedly on single trials. 389 
The onset and magnitude of activity along the component of CDchoice within the movement-potent subspace 390 
tracked trial-type selective motion energy on a moment-by-moment basis (Fig. 7b, c), as expected, while there 391 
was no consistent relationship between motion energy and activity along the component of CDchoice in the 392 
movement-null subspace.  Following the go cue, transient responses accompanying movement initiation were 393 
absent from the movement-null subspace (EDFig. 7a), further suggesting the existence of choice dynamics which  394 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2024. ; https://doi.org/10.1101/2023.08.23.554474doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.23.554474
http://creativecommons.org/licenses/by-nc-nd/4.0/


 395 
Figure 5 – Subspace decomposition of neural activity using trial-averaged and single-trial data. a.  Schematic of the approach for 396 
estimating delay (green) and response (pink) subspaces from trial-averaged neural data.  Delay and response subspaces are determined as the 397 
orthogonal subspaces that maximally contain the variance of neural activity in the delay and response epochs, respectively. Correct trials 398 
from the DR context were used to identify subspaces. b.  Activity during DR trials within each subspace for an example session. Left, motion 399 
energy across trials. Middle, sum-squared magnitude of activity in the response subspace. Right, sum-squared magnitude of activity in the 400 
delay subspace. Trials sorted by average delay epoch motion energy. c.  Sum-squared magnitude of activity in delay and response subspaces 401 
during DR lick-left and lick-right trials for an example session. Mean and standard error across trials shown. d.  Normalized variance 402 
explained of the neural data during DR trials by the activity in the delay and response subspaces during the delay and response epochs.  Delay 403 
and response subspaces selectively capture activity in the delay and response epochs, as expected. Points indicate sessions, bar height 404 
indicates the mean across sessions, and error bars indicate standard deviation across session (n = 25 sessions). e.  Variance explained (R2) of 405 
motion energy by the sum-squared magnitude of activity in the delay and response subspaces using single-trial DR and WC data. Each point 406 
represents the mean across trials for a session (n = 25 sessions). f.  Cross-correlation between motion energy and activity in the delay and 407 
response subspaces using single-trial DR and WC data. Lines indicate mean across sessions and shaded region represents standard error of 408 
the mean across sessions (n = 25 sessions). g. Subspace alignment for single units across all sessions (n = 483 single units, see Methods).  409 
Values closer to 1 indicate that more variance of a unit’s activity is contained within the preparatory subspace.  h.  Schematic of the approach 410 
for estimating movement-null and movement-potent subspaces from single-trial data. Motion energy is used to annotate when an animal is 411 
moving (pink) or stationary (green). These labels are then applied to single-trial neural data. Movement-null and movement-potent subspaces 412 
are determined as the orthogonal subspaces that maximally capture the variance of neural activity during periods of quiescence and 413 
movement, respectively. Trials from both DR and WC contexts were used to identify subspaces. i-n. Same as (b-f) but using the single-trial 414 
approach for estimating movement-null and movement-potent subspaces.  415 
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 416 
Figure 6 – Schematic of potential relationships between internal and movement-related dynamics. a.  Internal and movement-related 417 
dynamics that are independent and separable.  Left,  schematic depicting an internal process (I) and a motor process (M) that are each governed 418 
by separate latent dynamics, L1 and L2, respectively. L1 and L2 evolve within the movement-null (green) and movement-potent (pink) 419 
subspaces, respectively. Right, cartoon time series of separable, independent latent dynamics (L1 and L2) and related processes (I and M). b. 420 
Same as (a) in the case of latent dynamics which are separable but dependent.  I and M may be loosely correlated in time.  c. Same as (a) and 421 
(b) in the case of inseparable processes governed by a single set of latent dynamics (L1).   422 
are separable from ongoing movement dynamics. Importantly, we found that many single units contribute to either 423 
the movement-null or movement-potent subspace representations of CDchoice, but not both (Fig. 7d and EDFig. 6d), 424 
providing additional evidence of dynamics that are not only separable, but encoded by distinct populations of 425 
neurons (Fig. 7d) within the ALM microcircuit. 426 
In contrast, we found that ramping dynamics were mostly confined to the movement-potent subspace (Fig. 7e) – 427 
perhaps surprising given that ramping activity has been interpreted as an internal urgency or timing signal69–72. This 428 
observation remained consistent when estimating movement-null and movement-potent subspaces using only WC 429 
trials or using only the response epoch of WC and DR trials (EDFig. 8a), when ramping dynamics were absent, 430 
confirming that ramping dynamics were not observed in the movement-potent space because of the mis-assignment 431 
of internal ramping dimensions to the movement-potent subspace because of their correlation in time with 432 
movement. We further searched for the existence of movement-null subspace ramping dynamics by explicitly 433 
identifying the dimension within the movement-null and movement-potent subspaces that maximized ramping 434 
dynamics – which could be different than the dimension that maximized ramping within the full activity space – 435 
and again failed to identify a prominent ramping signal in the movement-null subspace (EDFig. 8b). The relative 436 
paucity of ramping dynamics in the movement-null subspace suggests that they are not readily separable from 437 
associated movements in the ALM in our behavioral paradigm (see Discussion). 438 
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 439 
Figure 7 – Subspace decomposition allows for the re-examination of population measures of motor planning. a.  Selectivity (neural 440 
projections on lick-right trials minus lick-left trials) of movement-null (left) and movement-potent (right) subspace activity when projected 441 
along CDchoice. Mean and 5-95% CI of the bootstrap distribution for correct (solid) and error (dashed) trials shown.  Horizontal bars (solid 442 
lines - correct trials; solid lines with black dashes - incorrect trials) above plot indicate when the selectivity trace is significantly different 443 
from zero (p < 0.05, one-sided test, bootstrap). b.  Projections along CDchoice in the movement-potent subspace (middle), but not the 444 
movement-null subspace (right), follow the time-course and magnitude of motion energy (left) on single lick-left and lick-right trials (example 445 
session). c. Variance explained (R2) of motion energy by projections along CDchoice in the movement-null or movement-potent subspace on 446 
single trials. Each point is the average across all trials in a session. d. Distribution of single unit alignment with CDchoice (n = 483 single 447 
units, see Methods). Distribution of movement-potent tuned units (alignment ≤ -0.8) was significantly different than expected by chance (p 448 
= 1x10-13, see Methods). Similarly, distribution of movement-null tuned units (alignment ≥ 0.8) was significantly different than expected by 449 
chance (p = 7x10-12). e. Projection of movement-null (left) and movement-potent (right) subspace activity along CDramp on lick-left and lick-450 
right trials. Mean and 95% CI of the bootstrap distribution for correct trials shown. f-h. Same as (b-d) for CDramp . h. Distribution of single 451 
unit alignment with CDramp (n = 483 single units). Distribution of movement-potent tuned units (alignment ≤ -0.8) was significantly different 452 
than expected by chance (p = 6x10-14). Similarly, distribution of movement-null tuned units (alignment ≥ 0.8) was significantly different than 453 
expected by chance (p = 1x10-12). 454 
 455 
A persistent movement-null subspace representation of context 456 
Next, we examined projections of activity along CDcontext in each subspace (Fig. 8a). We found robust contextual 457 
selectivity in both subspaces, consistent with the interpretation that the ALM contains both an internal 458 
representation of context and activity related to context-dependent movements. The transient, response-epoch 459 
dynamics observed along CDcontext (Fig 2d, far right) were entirely contained within the movement-potent subspace 460 
(Fig. 8a) likely indicative of subtle context-specific differences in instructed movements. We then compared context 461 
selectivity (the difference in projections onto CDcontext on DR vs. WC trials) on trials with high motion energy 462 
during the ITI (‘High move’ trials) and trials with little or no ITI motion energy (‘Low move’ trials). Context 463 
selectivity within the movement-null subspace was indistinguishable in ‘High move’ and ‘Low move’ trials. In 464 
contrast, context selectivity within the movement-potent subspace was reduced by 72% on ‘Low move’ trials (Figs. 465 
8b,c; Full population: selectivity reduced by 0.101 ± 0.092, mean ± s.d., p = 0.003; movement-null: 0.026 ± 0.050, 466 
p = 0.095; movement-potent: 0.098 ± 0.082, p = 1.6x10-3, paired t-test; ∆ selectivity between ‘High move’ and ‘Low 467 
move’ trials in movement-null vs. movement-potent: p = 9.5x10-3, paired t-test).  The magnitude and timing of the 468 
reduction in movement-potent subspace context selectivity mirrored the reduction in motion energy on ‘Low move’ 469 
trials (Fig. 8b, bottom).  Together, these observations demonstrate that the movement-null – but not movement-470 
potent – subspace contains a stable representation of context that is unchanged in the presence of both instructed 471 
and uninstructed movements.  Further, we found that largely distinct populations of single neurons contribute 472 
preferentially to the movement-null and movement-potent representations of context (Fig. 8d). These observations 473 
suggest that the analysis of context-dependent dynamics without subspace decomposition indeed spuriously 474 
conflated separate latent dynamics, encoded by different populations of neurons, likely responsible for internal 475 
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representations of context (contained within the movement-null subspace) and related context-dependent 476 
movements (contained in the movement-potent subspace).  477 
Encoding of tongue kinematics in the movement-potent subspace 478 
Finally, we asked whether trial-type dependent activity following the go cue relates to movement, according to 479 
previous suppositions58,6458,64 (EDFig. 10). Left-right selectivity along CDaction existed within both the movement-480 
null and movement-potent subspaces (EDFig. 10a), although the magnitude of selectivity in the movement-null 481 
subspace was substantially smaller in magnitude. Interestingly, on error trials, activity along CDaction flipped to 482 
resemble that of the other trial type in the movement-null subspace but flipped asymmetrically within the 483 
movement-potent subspace. This asymmetry closely corresponded to an asymmetry in tongue angle, with incorrect 484 
movements directed to less extreme angles when directed to the left, on average (EDFig. 10b,c). The component 485 
of CDaction within the movement-potent subspace also better tracked moment-to-moment changes in tongue angle 486 
during the response epoch (EDFig. 10d,e; p = 2 x10-8, paired t-test between movement-null and movement-potent 487 
variance explained of tongue angle, n = 25 sessions). The similarity between tongue angle, a kinematic feature, and 488 
dynamics only within the movement-potent representation of CDaction is notable, as our analytical approach to the 489 
identification of subspaces does not incorporate any kinematic information. The interpretation of action dynamics 490 
within the movement-null subspace remains unclear but could relate to an internal representation of the motor plan, 491 
or intention of the animal, to respond to one reward port or the other.  492 
 493 
 494 
 495 
 496 
 497 

 498 
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 499 
Figure 8 – A persistent, cognitive representation of context in the movement-null subspace.  a. Projections along CDcontext on DR hit 500 
trials (purple) and WC hit trials (orange) within the full population (top), movement-null subspace (middle), or the movement-potent subspace 501 
(bottom).  Solid lines denote the mean projection across sessions (n = 12 sessions).  Note that transient response epoch dynamics are absent 502 
in the movement-null subspace. b. Top three panels, selectivity in CDcontext projections (DR – WC trials) on ‘high move’ (solid lines) or 503 
‘low move’ (dashed) trials. Lines denote the mean selectivity across sessions (n = 12) in the full space of neural activity (top), activity within 504 
the movement-null subspace (second), and movement-potent subspace (third); Bottom panel, average motion energy across sessions on ‘High 505 
move’ or ‘Low move’ trials.  DR and WC trials are grouped together for each session. Shaded area, 95% CI across sessions. Yellow region 506 
denotes ITI used to define ‘High move’ and ‘Low move’ trials. c. Average CDcontext selectivity during the ITI (yellow shaded region in (b)) 507 
for ‘High move’ (filled bars) vs. ‘Low move’ (open bars) trials.  Dots denote single sessions; bars, mean across sessions (n = 12 sessions). 508 
Asterisks denote significant differences (**, p < 0.01) in CDcontext selectivity (p-values from left to right comparing ‘High move’ vs. ‘Low 509 
move’ trials, Full population: p = 0.003, movement-null: p = 0.095, movement-potent: p = 1.6x10-3; ∆selectivity between ‘High move’ and 510 
‘Low move’ trials in movement-null vs. movement-potent: p = 9.5x10-3, paired t-test). d. Distribution of single unit alignment with CDcontext 511 
(see Methods). Distribution of movement-potent tuned units (alignment ≤ -0.8) was significantly different than expected by chance (p = 512 
2x10-8, see Methods). Similarly, distribution of movement-null tuned units (alignment ≥ 0.8) was significantly different than expected by 513 
chance (p = 9x10-6, n = 84 single units). Lines with shaded regions depict mean and 95% confidence intervals across sessions throughout.  514 
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Discussion 515 
We aimed to understand whether the neural correlates of three cognitive variables commonly examined in 516 
sensorimotor decision-making tasks – choice, urgency, and context – were separable from the neural encoding of 517 
related uninstructed movements in the mouse ALM. We addressed this question by adapting an analytical formalism 518 
in which neural activity is decomposed into orthogonal subspaces – here, a movement-potent subspace containing 519 
dynamics related to the execution of movements and a complementary movement-null subspace containing 520 
dynamics related to cognitive and other internal processes39,40,50. Extending upon this framework allowed us to 521 
consider single-trial neural data recorded in the presence of uninstructed movements that can vary dramatically 522 
across trials in their timing and identity (Fig. 5).  523 
Separability of choice, urgency, and context encoding from movement-dynamics  524 
Using this approach, we demonstrated that the ALM contains neural dynamics related to encoding of choice and 525 
context that could be readily separated from movements, despite both cognitive variables being strongly correlated 526 
with movements in time (Fig. 7 and Fig. 8). Choice-selective signals were present in both movement-null and 527 
movement-potent subspaces (Fig. 7a), consistent with the interpretation that a cognitive representation of choice 528 
within the movement-null subspace biases the probability and identity of uninstructed movements in a choice-529 
selective manner. Supporting this interpretation, movement-null and movement-potent subspace dynamics followed 530 
similar trajectories, on average, but differed on single trials (Fig. 7b). Further, movement-null subspace encoding 531 
of choice exhibited features absent from encoding within the movement-potent subspace. Choice encoding 532 
increased in the presence of external stimuli, while movement-potent subspace encoding continued to increase 533 
monotonically after sensory stimuli were removed, mirroring the temporal evolution of animal’s uninstructed 534 
movements. On error trials, stimulus-driven choice encoding initially evolved correctly – but only within the 535 
movement-null subspace – before decaying prior to the go cue (Fig. 7a). Together, these results suggest choice-536 
related cognitive and motor processes that are governed by separable latent dynamics (Fig. 6b). 537 
Context was stably encoded within the movement-null subspace during all trial epochs and the inter-trial interval 538 
(Fig. 8a-c). Although context was strongly represented in the movement-potent subspace as well, these dynamics 539 
were significantly reduced in the absence of movement and were also modulated by animals’ instructed movements. 540 
These results suggest a persistent internal representation of context in the movement-null subspace in addition to 541 
distinct movement-potent-subspace dynamics related to context-dependent movements, again indicative of related, 542 
but separable, latent dynamics (Fig. 6b). 543 
Surprisingly, ramping dynamics proposed to underlie urgency (or timing)69–72 were principally represented in the 544 
movement-potent subspace (Fig. 7e) indicating the possible absence of an internal representation of urgency that 545 
can be dissociated from movements in the ALM. Although it remains possible that a separable representation of 546 
urgency exists elsewhere in the brain, our results could alternatively imply that urgency is typically embodied, or 547 
inseparable from movement, in our behavioral paradigm74,75. 548 
In contrast to these cognitive variables, encoding of kinematic features of movements, which were not used to 549 
determine subspaces, were confined to the movement-potent subspace (EDFig. 10), consistent with our 550 
interpretation of these subspaces. 551 
Subspace decomposition 552 
The approach to subspace decomposition presented here represents a means for assessing the issue of separability, 553 
and for isolating separable dynamics into movement-related and internal components for further analyses across a 554 
wide range of experimental preparations. This method only requires annotation of when animals are moving and 555 
utilizes a robust analytical approach that does not require fine-tuning of parameters.  556 
A number of alternative methods have been proposed to evaluate neural dynamics associated with cognitive 557 
processes in the presence of movement. The most common approach, which assumes separability of cognitive and 558 
motor dynamics, is to parameterize movements as fully as possible and ‘regress them out.’  However, 559 
parameterization of movement, particularly the orofacial and postural movements that have been associated with 560 
strong, brain-wide neural dynamics30,31,76, can be challenging. Further, this approach typically assumes a linear 561 
relationship between neural activity and kinematic (or electromyographic) variables – an assumption unlikely to 562 
hold for common movements mediated by central pattern generators and other highly nonlinear mechanisms77–79. 563 
Subspace decomposition is straightforward to implement under a range of experimental conditions and is entirely 564 
consistent with complex, nonlinear relationships between neural activity and movement variables, as expected for 565 
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many orofacial movements77 and locomotion. Methods for properly interpreting cognitive signals in the presence 566 
of related movements on single trials will be vital for increasingly common experimental paradigms examining 567 
freely moving animals performing complex, naturalistic behaviors80–90. 568 
Determination of movement-null and movement-potent subspaces as the orthogonal subspaces containing the most 569 
variance in neural activity during periods of stationarity and movement is conservative in the assignment of 570 
dynamics to the movement-null subspace. It is more likely that dynamics associated with cognitive and other 571 
internal processes are misassigned to the movement-potent subspace than vice-versa. For example, dynamics 572 
associated with “embodied” cognitive processes that always occur during periods of movement will only be 573 
represented in the movement-potent subspace (Fig. 6c). Thus, the dynamics within the movement-null subspace are 574 
highly likely to indicate signals related to internal processes. Straightforward variations of this approach can be 575 
used to determine subspaces in a manner that is more conservative in assigning dynamics to the movement-potent 576 
subspace – for example, estimating subspaces from response epoch data (‘instructed’ movements), from WC trials 577 
(where uninstructed movements occur in the absence of choice and urgency signals) or simply through principal 578 
component decomposition of activity recorded during periods of stationarity (EDFig. 4j-l). Nevertheless, the 579 
similarity of results obtained using these analytical variations argue against the possibility that cognitive dynamics 580 
associated with choice and urgency were inadvertently assigned to the movement-potent subspace, due to their 581 
correlation in time with uninstructed movements, in this study.  582 
That many individual units contribute solely to one subspace (Figs. 5n, 7d,h, 8d) suggests that the complementary 583 
subspaces we identify could map to distinct cell types within the underlying cortical circuit63,91. The suggestion that 584 
individual neurons only appear to code for either internal or movement-related variables when uninstructed 585 
movements are accounted for (Figs. 5n, 7d,h, 8d) underscores the importance of properly considering movements 586 
in future work focused on the roles of functionally, anatomically, and/or transcriptomically-defined cell-types in 587 
neural computation.  588 
Our approach to subspace decomposition makes several simplifying assumptions. First, movements of the posterior 589 
torso, hindlimbs, or tail of the animal were not routinely captured via videography. It remains possible, albeit 590 
unlikely, that animals routinely perform movements confined to these portions of the body without concomitant 591 
movement of the forepaws, head, neck, face, or whiskers26. Periods of stationarity were no doubt algorithmically 592 
classified imperfectly and could have contained subtle movements below our threshold for detection. Second, we 593 
did not consider potential time lags between motion energy captured via videography and the dynamics associated 594 
with motor and/or sensory signals73. However, these time lags, on the order of a few tens of milliseconds, should 595 
be much shorter than the timescale of dynamics explored in this study. Third, the set of signals related to movement 596 
and/or cognitive processes may also be better described as occupying nonlinear manifolds rather than linear 597 
subspaces92,93. Subspaces (or manifolds) could also shift dynamically during behavior following changes in the 598 
activation of upstream or downstream brain regions94,95 as a result of changes in context16,48,96. Considering this 599 
additional complexity may improve estimates of the dynamics associated with specific neural processes. 600 
Variable relationships between cognition and movement 601 
The dynamics associated with some cognitive processes and movements may be largely independent (Fig. 6a) – 602 
perhaps in the case of the locomotor patterns of an individual walking down the street while thinking about what 603 
they will cook for dinner. On the other hand, some cognitive processes may be embodied, in the sense that they are 604 
tightly linked to externally observable changes in the body (Fig. 6c), such as the relationship between arousal and 605 
changes in pupil diameter97–99. Between these extremes may be movements which are correlated with - but mediated 606 
by neural dynamics that are separable from - those supporting cognitive and other internal processes. The probability 607 
and identity of uninstructed movements in this study appeared related to choice and context (Fig. 6b), but with a 608 
high degree of trial-to-trial and moment-to-moment variability unlikely to reflect commensurate variability in the 609 
cognitive processes to which they relate. Correlations between cognitive processes and movements may also differ 610 
considerably in trained, head-fixed animals compared to naturalistic settings83,88. This high degree of variability in 611 
these relationships underscores the importance of developing and utilizing tools for assessing whether the neural 612 
activity supporting cognitive processes can be dissociated from those related to movements in particular 613 
experimental paradigms of interest. 614 
The tight link between cognition and movement might suggest that some cognition-associated movements may be 615 
beneficial for behavior. For example, postural adjustments may be highly related to decisions or motor plans, 616 
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enabling faster reaction times and/or more accurate movements76,100. Movements are also essential for some internal 617 
processes – those supporting active sensation of the environment surely facilitate the construction and continual 618 
updating of internal models of the environment30,46. However, just as separability may not be consistent across 619 
movements and cognitive processes, not all cognition-associated movements may have a functional role30,101. A 620 
poker player’s ‘tell’ may be highly related to their cognitive state, yet may not directly aid the player in the game.  621 
Regardless of their functional relationship, understanding the separability of cognitive processes and associated 622 
movements in a wide variety of experimental settings is essential for the interpretation of neural dynamics observed 623 
during behavior. 624 

Methods 625 
Animals 626 
This study used data collected from 17 mice; both male and female animals older than 8 weeks were used. Six 627 
animals were used for the two-context task and were either C57BL/6J (JAX 000664) or VGAT-ChR2-EYFP (-/-). 628 
An additional three animals, either C57BL/6J or VGAT-ChR2-EYFP (-/-) were trained only on the delayed response 629 
task. A separate cohort of four animals were used in the randomized delay task (VGAT-ChR2-EYFP (+/-) or 630 
VGAT-ChR2-EYFP (-/-)). Finally, four VGAT-ChR2-EYFP (+/-) animals were used in optogenetics experiments. 631 
Mice were housed in a 12-hour reverse dark/light cycle room with ad libitum access to food. Access to water was 632 
restricted during behavioral and electrophysiology experiments (see Mouse behavior). Sample sizes were not 633 
determined using any statistical tests.   634 
 635 
Surgical procedures 636 
All surgical procedures were performed in accordance with protocols approved by the Boston University 637 
Institutional Animal Care and Use Committee. For post-operative analgesia, mice were given ketoprofen (0.1 mL 638 
of 1 mg/mL solution) and buprenorphine (0.06 mL of 0.03 mg/mL solution) prior to the start of all surgical 639 
procedures. Mice were anesthetized with 1-2% isoflurane and placed on a heating pad in a stereotaxic apparatus. 640 
Artificial tears (Akorn Sodium Chloride 5% Opthalmic Ointment) were applied to their eyes and a local anesthetic 641 
was injected under the skin (Bupivacaine; 0.1 mL of 5 mg/mL solution) above the skull. The skin overlying the 642 
skull was removed to expose the ALM (AP: +2.5 mm, ML: +1.5 mm), bregma, and lambda. The periosteum was 643 
removed and the skin was secured to the skull with cyanoacrylate (Krazy Glue) around the margins. For 644 
electrophysiology experiments, a headbar was implanted just posterior to bregma and secured with superglue and 645 
dental cement (Jet™). Wells to hold cortex buffer (NaCl 125mM, KCl 5mM, Glucose 10mM, HEPES 10mM, 646 
CaCl2 2mM, MgSO4 2mM, pH 7.4) during electrophysiology recordings were sculpted using dental cement and a 647 
thin layer of superglue was applied over any exposed bone. 648 
 649 
For optogenetics experiments, after headbar implantation, bone overlying frontal cortex was thinned bilaterally with 650 
a dental drill and removed, exposing the frontal cortex. A glass window was then implanted over each hemisphere 651 
and secured to the skull with cyanoacrylate102. Before performing photoinactivation experiments, any bone regrowth 652 
was removed.  653 
 654 
Mouse behavior 655 
Following surgery, mice were allowed to recover for ~1 week and then water restricted, receiving 1.0 mL of water 656 
per day. Behavioral training commenced after animals had been water restricted for 3-4 days. If animals received 657 
less than 1.0 mL during training, they were supplemented with additional water.  658 
All mice used in experiments were first trained on the delayed-response task with a fixed delay epoch until they 659 
reached at least 70% accuracy. At the beginning of each trial, one of two auditory tones lasting 1.3 s were played; 660 
the tone indicating a ‘right’ trial was white noise while the tone indicating a ‘left’ trial was a pure tone (8 kHz 661 
pulses). The delay epoch (0.9 s for 12 mice, 0.7 s for 1 mouse and linearly time warped to 0.9 s) started after the 662 
completion of the sample tone. Following the delay epoch, an auditory go cue was played (swept-frequency cosine 663 
[chirp], 10 ms) after which animals were rewarded with ~3 µL of water for contacting the correct lickport. Lickport 664 
contacts before the response epoch resulted in the current task epoch restarting, ensuring that they could not progress 665 
to the next task epoch until they had stopped licking for the specified length of the current epoch. If the animal did 666 
not respond within 3 s of the go cue, this was considered an ‘ignore’ trial, although responses were typically 667 
registered within 300 ms of the go cue.  668 
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Mice used for the two-context task (Figs. 1,2,4,8 and EDFig. 1-3) were introduced to the water-cued context after 669 
they were fully trained on the delayed-response context and at least two days before the first electrophysiology 670 
recording session. A behavioral session began with ~100 DR trials and was then followed with alternating blocks 671 
of WC and DR trials. Each interleaved block was 10-25 trials, with no fixed block duration. All sessions started 672 
with DR trials.  Pilot sessions beginning with WC trials had to be terminated early due to a high ‘no response’ rate, 673 
likely due to the mouse becoming sated early in the session. In a WC trial, all auditory cues were omitted and a ~3 674 
µL water reward was presented randomly from either lickport. Trials in which the animal contacted the lickport 675 
prior to the reward (‘early lick’) were omitted from analyses. Inter-trial intervals were randomly drawn from an 676 
exponential distribution with mean 1.5 s. There were no explicit cues during the ITI to indicate to the animal which 677 
context block it was in.  678 
For the randomized delay task (Fig. 3g-h), mice were first fully trained on the fixed delay DR task (delay duration 679 
of 0.9 s). The delay epoch length was then randomized – the duration was randomly selected from six possible 680 
values (0.3, 0.6, 1.2, 1.8, 2.4, and 3.6 s). The probability of each delay duration being selected was assigned such 681 
that it resembled a probability density function of an exponential distribution with τ = 0.9 s, as in ref 65. Animals 682 
were trained on this version of the task until they became experts (> 70% accuracy and < 20% early lick rate). 683 
 684 
Videography analysis 685 
High-speed video was captured (400 Hz frame rate) from two cameras (FLIR, Blackfly® monochrome camera, 686 
Model number: BFS-U3-16S2M-CS). One provided a side view of the mouse and the other provided a bottom view. 687 
We tracked the movements of specific body features using DeepLabCut52  (Figs. 1,3,4). The tongue, jaw, and nose 688 
were tracked using both cameras while the paws were only tracked using the bottom view. Position and velocity of 689 
each tracked feature was calculated from each camera. The x and y position of each kinematic feature was extracted 690 
from the output of DeepLabCut. Missing values were filled in with the nearest available value for all features except 691 
for the tongue. The velocity of each feature was then calculated as the first-order derivative of the position vector. 692 
Tongue angle and length were found using the bottom camera. Tongue angle was defined as the angle between the 693 
vector pointing from the jaw to the tip of the tongue and the vector defining the direction the mouse was facing. 694 
Tongue length was calculated as the Euclidean distance from the jaw to the tip of the tongue.  695 
Plots of kinematic feature overlays (Figs. 1e, 3a, 4a and EDFig. 3) were generated by plotting an [r, g, b] value for 696 
each timepoint, t, where the values were specified by [KinFeature1t, KinFeature2t, KinFeature3t]. All kinematic 697 
features (speed or motion energy) were first standardized by taking the 99th percentile across time and trials and 698 
normalizing to this value. 699 
 700 
Motion energy 701 
The motion energy for a given frame and pixel was defined as the absolute value of the difference between the 702 
median value of the pixel across the next 5 frames (12.5 ms) and the median value of the pixel across the previous 703 
5 frames (12.5 ms). Motion energy for each frame was then converted to a single value by taking the 99th percentile 704 
(~700 pixels) of motion energy values across the frame.  Motion energy calculated in this manner was high during 705 
overt movements over small regions of pixel space, such as during whisking, while remaining relatively low during 706 
passive respiration that corresponded to subtle motion across the animal’s body.  A threshold above which an animal 707 
was classed as moving, was defined on a per session basis manually. Motion energy distributions, per session, were 708 
bimodal, showing a large peak with little variance at low motion energy values and a second, smaller peak, with 709 
high variance at large values. The threshold was set as the motion energy value separating these two modes. We 710 
found that this method of setting the threshold captured both short and long duration movements. Alternative 711 
methods, such as defining a baseline period of no movement against which to compare, were less successful due to 712 
the variability in timing of the movements across trials.  713 
 714 
Photoinactivation experiments 715 
Optogenetic photoinactivation was deployed on ~30% of trials selected at random. A ‘masking flash’ (470 mm 716 
LED’s LUXEON REBEL LED) controlled by an Arduino Teensy microcontroller (100 ms pulses, at 10 Hz) was 717 
delivered constantly for the duration of the session to prevent mice from differentiating control and 718 
photoinactivation trials. A 488-nm laser (Coherent OBIS 488 nm LX 150 mW Laser System) was used for all 719 
photoinactivation experiments. ChR2-assisted photoinactivation (Fig. 1b,c,g- and EDFig. 1b-d) was performed 720 
through a cranial window102 (see Surgical Procedures), which replaced bone over the frontal cortex. Light was 721 
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delivered either at the start of the delay epoch, or at the start of the response epoch (only one epoch tested per 722 
session). A power density of 1.5 mW/mm2 was used for all photoinactivation experiments. 723 
For delay epoch photoinactivation (Fig. 1g-i and EDFig. 1b), light was delivered at the onset of the delay epoch 724 
and lasted for 0.6 s followed by a 0.2 s linear ramp down. We targeted one of three regions per session: bilateral 725 
motor cortex (ALM and tjM1), bilateral ALM, or bilateral tjM1. A scanning galvo system (THORLABS GPS011) 726 
was used to simultaneously target both hemispheres by scanning at 40 Hz. The beam (2 mm diameter) was centered 727 
around the following locations: ALM (AP 2.5 mm, ML 1.5 mm), tjM1 (AP 1.75 mm, ML 2.25 mm), motor cortex 728 
(i.e. ALM and tjM1; AP 2.25 mm, ML 1.85 mm). Due to their proximity, when specifically targeting ALM or tjM1, 729 
Kwik-Cast™ (World Precision Instruments) was applied to the surrounding regions to prevent photoinactivation of 730 
other regions. For photoinactivation at the go cue (Fig. 1b,c and EDFig. 1c,d), light was delivered to the motor 731 
cortex for 0.8 s followed by a 0.2 s ramp down beginning at the go cue presentation.  732 
Electrophysiology recordings 733 
Extracellular recordings were performed in the ALM using one of two types of silicon probes: H2 probes, which 734 
have two shanks, each with 32 channels with 25-µm spacing (Cambridge Neurotech) or Neuropixels 1.0103  which 735 
have one shank and allow recording from 384 channels arranged in a checkerboard pattern (IMEC). For recordings 736 
with H2 probes, the 64-channel voltage signals were multiplexed using a Whisper recording system (Neural 737 
Circuits, LLC), recorded on a PXI-8133 board (National Instruments) and digitized at 14 bits. The signals were 738 
demultiplexed into 64 voltage traces sampled at 25 kHz and stored for offline analysis.  739 
At least 6 hours before recording, a small craniotomy (1-1.5 mm diameter) was made over ALM (AP 2.5 mm, ML 740 
1.5 mm). 2-5 recordings were performed on a single craniotomy on consecutive days. After inserting the probes 741 
between 900 and 1100 µm (MPM System, New Scale Technologies), brain tissue was allowed to settle for at least 742 
5 minutes before starting recordings. All recordings were made using SpikeGLX 743 
(https://github.com/billkarsh/SpikeGLX).  744 
Behavioral analysis  745 
All sessions used for behavioral analysis had at least 40 correct DR trials for each direction (left or right) and 20 746 
correct WC trials for each direction, excluding early lick and ignore trials, which were omitted from all analyses. 747 
To assess the impact of ALM photoinactivation on movement initiation, we first calculated the percent of trials with 748 
a correct lick within 600 ms of the go cue/water drop (Fig. 1c). To find the fraction of time with the tongue visible 749 
during the photoinactivation period (EDFig. 1d), for each trial we found the number of time-points within the 1 s 750 
after the go cue/water drop where the tongue was labelled as visible by DeepLabCut and divided that by the total 751 
number of time-points within the photoinactivation period. This was then averaged for all control or 752 
photoinactivation trials for a given session. 753 
To assess the impact of bilateral MC/ALM/tjM1 photoinactivation during the delay epoch, the average motion 754 
energy during the delay epoch was calculated separately for right and left control vs. photoinactivation trials (Fig. 755 
1h and EDFig. 1b).  756 
Electrophysiology recording analysis  757 
JRCLUST104 (https://github.com/JaneliaSciComp/JRCLUST) and/or Kilosort3105 758 
(https://github.com/MouseLand/Kilosort) with manual curation using Phy (https://github.com/cortex-lab/phy) were 759 
used for spike sorting. A unit was considered a well-isolated single unit based on manual inspection of its ISI 760 
histogram, separation from other units, and its stationarity across the session106.  Units that passed manual curation 761 
but had a higher ISI violation rate were called multiunits.  Recording sessions were only included for analysis if 762 
they had at least 10 units (see EDFig. 2 for a distribution of neuron counts across sessions).  For the DR task, we 763 
recorded 1651 units (483 single units) in ALM from 25 sessions using 9 mice. In 12 sessions from 6 mice, animals 764 
performed the two-context task. 522 units (214 well-isolated single units) were recorded in these sessions. Finally, 765 
for the randomized delay task, we recorded 845 units (288 well-isolated single units) in ALM from 19 sessions 766 
using 4 mice. For subspace alignment (Figs. 5g,n, 7d,h, and Fig. 8d) and single-unit selectivity analyses (Fig. 3g 767 
and EDFig. 4c) only well-isolated single units with firing rates exceeding 1 Hz were included. All units with firing 768 
rates exceeding 1 Hz were included in all other analyses. 769 
To find choice-selective neurons, forty trials were subsampled for both right and left correct trials and a ranksum 770 
test was used to compare spike counts for each unit during the sample, delay, or response epochs. Selective units 771 
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were those with significantly different spike counts (p < 0.05) during a given epoch. Context-selective units were 772 
defined in a two-step process to ensure that we were not conflating context selectivity with slow changes in animal 773 
engagement/motivation over each session. First, forty trials each were subsampled for DR and WC trials and spike 774 
counts were compared (p < 0.05, ranksum test) during the ITI (the 300 ms preceding the sample tone onset) when 775 
the animal received no external cues to indicate which context it was in. Because sessions always began with a DR 776 
block and often ended with a WC block, it is possible that differences in firing rates across contexts defined in this 777 
way could be representing time within the session.  To account for this, for each unit identified in the first step, we 778 
calculated the difference in spike rate for each pair of DR and WC blocks (e.g. a session with five blocks, DR-WC-779 
DR-WC-DR, would have nPairs=4 adjacent, overlapping block pairs) and included units as context-selective only 780 
if their preferred context (context with a higher spike rate) was the same for at least nPairs - 1 of the block pairs. 781 
Selectivity in the neural population (EDFig. 4c) was calculated as the difference in spike rate on preferred – non-782 
preferred trials in choice-selective units, with preferred trials referring to the trial type with a higher spike rate for 783 
each unit. 784 
Coding direction analysis 785 
Coding directions (CD) were defined as directions in neural activity state space, defined by firing rates, that 786 
maximally separated trajectories of two conditions.  787 

 CDchoice and CDaction were calculated as: 788 
 789 

𝒗𝒗 =
𝒙𝒙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 −  𝒙𝒙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
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 791 
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  793 
For each unit, the mean spike rate difference between right lick trials, 𝒙𝒙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 , and left lick trials, 𝒙𝒙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, was 794 
calculated in a 400 ms time interval. 𝒙𝒙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡  and 𝒙𝒙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 were then individually baseline subtracted and scaled 795 
by baseline standard deviation before calculating CDs (baseline: -2.4 to -2.2 seconds relative to the go cue, during 796 
the ITI). CDchoice was calculated in the last 400 ms of the delay epoch and CDaction was calculated in the first 400 797 
ms of the response epoch. The vector 𝒗𝒗 was then obtained by normalizing by the square root of the sum of the 798 
variances across conditions. Finally, 𝒗𝒗 was normalized by its L1 norm to ensure projections do not scale with the 799 
length of 𝒗𝒗, the number of units simultaneously recorded.  800 

CDramp was calculated as: 801 
 802 

𝒗𝒗 =
𝒙𝒙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −  𝒙𝒙𝐼𝐼𝐼𝐼𝐼𝐼
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 806 
This calculation was similar to the calculations of CDchoice and CDactionbut incorporated data from all correct DR 807 
trials during the last 400 ms of the delay epoch, 𝒙𝒙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , and during the ITI (300 ms preceding the sample tone 808 
onset), 𝒙𝒙𝐼𝐼𝐼𝐼𝐼𝐼. 𝒙𝒙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  and 𝒙𝒙𝐼𝐼𝐼𝐼𝐼𝐼 were both standardized using the baseline statistics from all correct DR trials.  809 

To find CDcontext, we first calculated a CDcontext p for each pair, p, of DR and WC blocks in a session.  If the session 810 
ended with a WC block, that block was excluded.  CDcontext p was calculated as: 811 
 812 

𝒗𝒗𝒑𝒑 =  
𝒙𝒙𝐷𝐷𝐷𝐷𝑝𝑝 −  𝒙𝒙𝑊𝑊𝑊𝑊𝑝𝑝

�var(𝒙𝒙𝐷𝐷𝐷𝐷𝑝𝑝) + var(𝒙𝒙𝑊𝑊𝑊𝑊𝑝𝑝)
 813 
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 814 
𝐂𝐂𝐂𝐂𝒑𝒑 =

𝒗𝒗𝒑𝒑
∑ |𝒗𝒗𝒑𝒑|

 815 

 816 
 817 
CDcontext was then defined as the average over all CDcontext p in a session.  The calculation of CDcontext p was similar 818 
to the calculation of other CDs but incorporated data from the ITI of correct DR, 𝒙𝒙𝐷𝐷𝐷𝐷𝑝𝑝 , and correct WC, 𝒙𝒙𝑊𝑊𝑊𝑊𝑝𝑝, 819 
trials in a given pair of blocks. 𝒙𝒙𝐷𝐷𝐷𝐷𝑝𝑝  and 𝒙𝒙𝑊𝑊𝑊𝑊𝑝𝑝 were standardized using the baseline statistics from all correct DR 820 
and WC trials.  821 

CDaction was orthogonalized to CDchoice to exclusively capture response epoch selectivity that emerges after the go 822 
cue. CDramp was orthogonalized to CDaction and CDchoice to remove selectivity that may emerge during the response 823 
epoch that is also captured in CDaction . Orthogonalization was performed using the Gram-Schmidt process. 824 

Projections of the population activity, 𝒙𝒙 ∈ ℝ(B*K) × N along the CD were calculated as: 825 
 826 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐂𝐂𝐃𝐃𝑇𝑇 ∗ 𝒙𝒙 827 
 828 
where B is the number of time bins, K the number of trials, N the number of neurons, and T is the transpose operator. 829 

For the randomized delay task, trials with non-1.2 s delay lengths were used to calculate CDchoice (fit trials), always 830 
using the last 600 ms of the delay epoch as the time interval for calculation65. Population activity from trials with 831 
1.2 s delays (test trials) were then projected along the CDchoice (Fig. 3h, top left and Fig. 3i, middle). For 832 
visualization purposes, trials with all delay lengths (including fit trials) were projected along CDchoice in Fig. 3i, 833 
top.  834 

Reliability of choice decoding from CDchoice  835 
An ROC-AUC analysis was performed to estimate the reliability of choice decoding from projections along CDchoice 836 
on a single session basis (EDFig. 2c). For each session, equal numbers of correct left and rick lick trials were split 837 
into a training (70%) and testing set (30%). CDchoice was calculated from the activity of the neural population using 838 
training trials as described above. Activity from testing trials was projected along CDchoice and provided as input to 839 
a logistic regression model (fitglm() in MATLAB with distribution=’Binomial’, link=’logit’). The model was 840 
optimized to predict the animal’s choice on a particular trial from the delay epoch CDchoice activity. The model 841 
output was then passed into MATLAB’s perfcurve() function to obtain a receiver operating curve (ROC). Reliability 842 
of decoding was measured as the area under the ROC (AUC), shown in the inset of EDFig. 2c.  843 
 844 
Choice/context decoding from neural population or kinematic features 845 
We trained logistic regression models to predict either animal choice (Fig. 3b) or behavioral context (Fig. 4b) from 846 
either kinematic features or single trial neural activity. The kinematic regressors were made up of the x and y 847 
positions and velocities of DeepLabCut-tracked features (tongue, jaw, and nose), as well as the tongue length, angle, 848 
and motion energy. The neural regressors were the firing rates of the units simultaneously recorded within each 849 
session. Equal numbers of correct left and right lick trials were used for this analysis. A separate model was trained 850 
at each time bin for both neural and kinematic decoding. Models were trained with ridge regularization and 4-fold 851 
cross-validation with 30% of trials held out for testing. Chance accuracy was obtained by shuffling choice/context 852 
labels across trials. Accuracy of the prediction was defined as: 853 
 854 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 855 

 856 
Emergence of CDchoice selectivity/motion energy in randomized vs. fixed delay tasks 857 
To find selectivity within the CDchoice projection (Fig. 3h, top left) we found the difference between the trial-858 
averaged projection on right and left trials for each session.  We then found the maximum selectivity value prior to 859 
the go cue and identified the first time point, relative to delay onset, for the selectivity trace to exceed 90% of the 860 
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maximum value (Fig. 3h, top right).  The same metric was found using session-averaged motion energy in Fig. 3h, 861 
bottom panels.    862 
 863 
Predicting projections along coding directions from kinematic features 864 
We trained support vector machines (SVMs) to predict projections along CDchoice, CDramp, and CDcontext. Correct 865 
DR trials were used for predicting CDchoice and CDramp projections; correct DR and WC trials were used for 866 
predicting CDcontext . For predicting CDcontext , the regressors were made up of the x and y positions and velocities 867 
of DeepLabCut-tracked features (multiple points on the tongue, jaw, and nose taken from two camera angles), as 868 
well as the tongue length, angle, and motion energy (totaling 60 regressors). Only the sample and delay epoch were 869 
considered when predicting CDchoice and CDramp projections; because of this, any tongue-related metrics were not 870 
included as regressors in these analyses (totaling 55 regressors). Projections and kinematic features were first mean-871 
centered and scaled to unit variance before input to the regression model. The previous B time bins of kinematic 872 
data were used to predict the current bin’s neural data (B=6, each bin is 5 ms). Models were trained with ridge 873 
regularization and 4-fold cross-validation. The models were tested on held-out testing data (40% of trials for 874 
CDchoice and CDramp; tested on 30% of trials for CDcontext). To assess the prediction quality between projections and 875 
model predictions, we calculated the variance explained as: 876 
 877 

     𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑡𝑡−𝑦𝑦�𝑡𝑡)2𝑡𝑡
∑ (𝑦𝑦𝑡𝑡−𝑦𝑦)2𝑡𝑡

 878 
 879 
where yi is the value of the projection at time t, ŷt is the prediction, and ȳ is the mean of the projection across all 880 
time.  881 

When predicting projections along CDchoice during the randomized delay task, unregularized models were used 882 
(Fig. 3h). This was due to the small numbers of trials for each delay length which precluded the partitioning of data 883 
into 3 separate sets (training, validation, and testing trials). Instead, models were trained with linear regression and 884 
4-fold cross-validation and tested on held-out data from each cross-validation fold. For assessing prediction quality 885 
between projections and model predictions, trials with 1.2 s delay epochs were used. 886 

To understand which groups of kinematic features were most informative for predicting projections along CDchoice, 887 
or CDcontext (EDFig. 3), the absolute value of the beta coefficients for each kinematic regressor in the trained model 888 
was first obtained. For each feature group (jaw, nose, motion energy), the average beta coefficient across all 889 
regressors belonging to this kinematic feature group (8*B for jaw, 6*B for nose, and 1*B for motion energy; for 890 
example, the x and y positions and velocities for one point on the jaw on each camera totals 8 jaw regressors for 891 
each time bin, B) was calculated. The average beta coefficient for each feature group was then expressed as a 892 
fraction of the total of all beta coefficients.  893 
Subspace identification (trial-averaged data) 894 
Delay and Response subspaces were identified following the general approach described in ref40. For identifying 895 
subspaces using trial-averaged data (Fig. 5a), neural activity was first trial-averaged separately for correct left and 896 
right trials. Activity across trial types was then concatenated, to produce a matrix X ∈ ℝ(B*C) × N, where B is the 897 
number of time bins, C the number of trial types, and N the number of units. Trial-averaged neural activity was 898 
soft-normalized (normalization factor=5) as described in ref40 and subsequently baseline subtracted (baseline: -2.4 899 
to -2.2 s before go cue, during the ITI) The matrix, X, was further divided into two matrices, Xdelay and Xresponse. Xdelay 900 
contained activity from [-1,0] seconds relative to the go cue, and Xresponse contained activity from [0,1] seconds 901 
relative to the go cue. Delay and response subspaces were then identified by solving the following optimization 902 
problem:  903 
 904 
�𝑸𝑸�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑸𝑸�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�905 

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑸𝑸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑸𝑸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�   
1
2

 
𝑇𝑇𝑇𝑇�𝑸𝑸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑇𝑇 𝑪𝑪𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑸𝑸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�

∑ 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑖𝑖=1 (𝑖𝑖)

+  
1
2

 
𝑇𝑇𝑇𝑇�𝑸𝑸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇 𝑪𝑪𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑸𝑸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�

∑ 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑖𝑖=1 (𝑖𝑖)

 906 

 907 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡   𝑸𝑸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑇𝑇 𝑸𝑸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0, 𝑸𝑸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇 𝑸𝑸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐼𝐼, 𝑸𝑸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇 𝑸𝑸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐼𝐼 908 
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  909 
 910 
where Cdelay and Cresponse are the covariances of Xdelay and Xresponse, 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  are the singular values of 911 
Cdelay and Cresponse, and ddelay and dresponse are the dimensionality of the subspaces. This optimization problem jointly 912 
identifies the subspaces that maximally contain the variance in neural activity during the delay and response epochs. 913 
The dimensionality of each space was chosen to be half the number of simultaneously recorded neurons, or twenty, 914 
whichever was smaller. Therefore, the dimensionality of the full population was equal to the dimensionality of the 915 
delay or response subspaces for sessions containing forty or fewer neurons. Optimization was performed using the 916 
manopt107 toolbox for MATLAB.  917 
Subspace identification (single-trial data) 918 
For identifying subspaces using single-trial data (Fig 5h), single-trial neural activity was first binned in 5 ms 919 
intervals and smoothed with a causal Gaussian kernel with a half width of 35 ms. Each trial’s activity was subtracted 920 
by the average baseline activity across trials and scaled by the standard deviation across trials (baseline: -2.4 to -2.2 921 
s before go cue, during the ITI). Xmoving ∈ ℝB_p × N

 and X stationary ∈ ℝB_n × N were defined using the single trial neural 922 
activity when the animal was moving or stationary (see Motion Energy), respectively. B_n was the number of time 923 
bins during which the animal was annotated as stationary and B_p the number of time points annotated as moving. 924 
All correct and error trials from DR and WC contexts were used unless specified otherwise. Once the data was 925 
partitioned into moving and stationary time points, subspace identification was carried as described for trial-926 
averaged data in the preceding paragraph: 927 
 928 

�𝑸𝑸�𝑚𝑚𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑸𝑸�𝑚𝑚𝑚𝑚𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝�929 

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑸𝑸𝑚𝑚𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑸𝑸𝑚𝑚𝑚𝑚𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝�   
1
2

 
𝑇𝑇𝑇𝑇�𝑸𝑸𝑚𝑚𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑇𝑇 𝑪𝑪𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑸𝑸𝑚𝑚𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�
∑ 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1 (𝑖𝑖)

930 

+  
1
2

 
𝑇𝑇𝑇𝑇�𝑸𝑸𝑚𝑚𝑚𝑚𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇 𝑪𝑪𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑸𝑸𝑚𝑚𝑚𝑚𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝�

∑ 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖=1 (𝑖𝑖)

 931 

 932 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡   𝑸𝑸𝑚𝑚𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑇𝑇 𝑸𝑸𝑚𝑚𝑚𝑚𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝 = 0, 𝑸𝑸𝑚𝑚𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑇𝑇 𝑸𝑸𝑚𝑚𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐼𝐼, 𝑸𝑸𝑚𝑚𝑚𝑚𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇 𝑸𝑸𝑚𝑚𝑚𝑚𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐼𝐼 933 
  934 
We quantified the normalized variance explained in a subspace as in refs40,108 (Fig. 5d,k): 935 
 936 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑇𝑇𝑇𝑇(𝑸𝑸𝑇𝑇𝑪𝑪𝑪𝑪)
∑ 𝜎𝜎𝑑𝑑
𝑖𝑖=1 (𝑖𝑖)

 937 

 938 
where Q is the subspace, C is the covariance of neural activity, and σ are the singular values of C. This normalization 939 
provides the maximum variance that can be captured by d dimensions.  940 
Unit activity was reconstructed from movement-null and movement-potent subspaces according to the following 941 
equation: 942 

𝑿𝑿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑿𝑿𝑸𝑸𝑇𝑇 943 
 944 

𝑿𝑿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑿𝑿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑸𝑸 945 
 946 
where Xrecon is the reconstructed neural activity, Xsubspace is the projected neural activity within the movement-null 947 
or movement-potent subspace, X is either single-trial or trial-averaged firing rates and Q is either the movement-948 
null or movement-potent subspace. 949 
Bootstrapped distributions of coding directions within the movement-null and movement-potent subspaces were 950 
obtained through two separate methods. For Fig. 7 and EDFig. 7a,c, we first estimated movement-null and 951 
movement-potent subspaces per session and reconstructed neural activity from each subspace. Then, we performed 952 
the hierarchical bootstrapping procedure as described in Hierarchical bootstrapping. For each iteration, we used 953 
the original neural activity to estimate the coding directions and then projected the reconstructed neural activity 954 
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onto the coding directions. For EDFig. 5b, for each bootstrap iteration, the reconstructed neural activity itself was 955 
used to estimate the coding directions. Activity within each subspace was then projected along the respective coding 956 
directions. For Fig. 7b,f, coding directions were directly identified from the reconstructed neural activity, Xrecon, for 957 
the individual example sessions.   958 
Subspace alignment for an individual unit was calculated as: 959 
 960 

𝐴𝐴 =  
𝑉𝑉𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑉𝑉𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝
𝑉𝑉𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑉𝑉𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝

 961 

 962 
where VE is the variance explained of each individual unit by the movement-null or movement-potent subspace, or 963 
by the activity along a coding direction within the movement-null or movement-potent subspace. VE for a single 964 
unit was calculated as: 965 
 966 

𝑉𝑉𝑉𝑉 = 1 −
∑ (𝒙𝒙𝑡𝑡 − 𝒙𝒙�𝑡𝑡)2𝑡𝑡
∑ (𝒙𝒙𝑡𝑡 − 𝒙𝒙)2𝑡𝑡

 967 

 968 

where xt is the trial-averaged firing rate, 𝒙𝒙� is the reconstructed trial-averaged firing rate, and t is the time bin. 969 
To ask if the number of single units observed to be aligned to either the movement-null or movement-potent 970 
subspace was different than expected by chance, we compared the distributions to those obtained from randomly 971 
sampled subspaces as described in ref 40. Each element comprising a subspace was randomly sampled from a normal 972 
distribution with zero mean and unit variance but was biased by the covariance structure of the neural activity for a 973 
given session. Biasing the randomly sampled subspaces by the covariances controls for the unbalanced variance 974 
between stationary and moving time points (or between delay and response epochs). That is to say that the shuffled 975 
distributions take into account the relative amount of movement tuning across the neural population. 976 
We sampled random subspaces, vmov-null and vmov-pot as follows: 977 

𝒗𝒗𝒎𝒎𝒎𝒎𝒎𝒎−𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 = 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐�
𝑼𝑼𝒎𝒎𝒎𝒎𝒎𝒎−𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏�𝑺𝑺𝒎𝒎𝒎𝒎𝒎𝒎−𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒗𝒗

�𝑼𝑼𝒎𝒎𝒎𝒎𝒎𝒎−𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏�𝑺𝑺𝒎𝒎𝒎𝒎𝒎𝒎−𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒗𝒗�𝟐𝟐
� 978 

𝒗𝒗𝒎𝒎𝒎𝒎𝒎𝒎−𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐�
𝑼𝑼𝒎𝒎𝒎𝒎𝒎𝒎−𝒑𝒑𝒑𝒑𝒑𝒑�𝑺𝑺𝒎𝒎𝒎𝒎𝒎𝒎−𝒑𝒑𝒑𝒑𝒑𝒑𝒗𝒗

�𝑼𝑼𝒎𝒎𝒎𝒎𝒎𝒎−𝒑𝒑𝒑𝒑𝒑𝒑�𝑺𝑺𝒎𝒎𝒎𝒎𝒎𝒎−𝒑𝒑𝒑𝒑𝒑𝒑𝒗𝒗�𝟐𝟐
� 979 

Where U and S are the left and right singular vectors of their associated covariance matrices, Cstationary and Cmoving, 980 
and v is a matrix whose elements are independently drawn from a normal distribution with zero mean and unit 981 
variance. As described above, covariance matrices Cstationary and Cmoving are defined by neural activity during 982 
stationary and movement time points for single trial data. orth(A) computes the orthonormal basis of a matrix A. 983 
Neural activity from each session was projected along the randomly sampled subspaces and alignment indices were 984 
calculated. This procedure was repeated 1000 times to generate null distributions, which represents the alignment 985 
indices of our data with random subspaces (EDFig. 5). To generate p-values associated with Fig. 5n, Fig. 7d,h, 986 
and Fig. 8d, on each iteration, we computed the proportion of strongly tuned units (alignment ≥ 0.8 and alignment 987 
≤ -0.8). This provided two distributions, one for alignment ≥ 0.8 and another for alignment ≤ -0.8. These chance 988 
distributions were separately fit with gaussian distributions using the fitgmdist() function in MATLAB. Then, p-989 
values were computed as the probability of observing the proportion of tuned units we observe in the data from the 990 
fitted distributions.  991 
Subspaces were identified using data from DR and WC correct and error trials (Fig. 5,7, and 8). Control analyses 992 
were performed using separate sets of trials to assess if the movement-potent subspace erroneously contained 993 
movement-null-subspace dynamics. First, we estimated subspaces using WC trials only (EDFigs. 4 and 8). Second, 994 
we estimated subspaces using DR and WC trials, but restricted time points used to those in the response epoch only 995 
(EDFigs. 4 and 8). Both controls allowed us to estimate movement-null and movement-potent subspaces in the 996 
presence of uninstructed movements, but in the absence of planning dynamics. These controls thus allowed us to 997 
measure the degree to which the movement-potent subspace erroneously captured movement-null dynamics.  998 
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In a further attempt to validate that the movement-potent subspace is not inadvertently capturing movement-999 
correlated internal dynamics, we identified movement-null and movement-potent subspaces using a two-stage PCA 1000 
approach (EDFig. 4). The movement-null subspace was first identified as the dominant principal components (first 1001 
5 PCs) of the single-trial firing rates when mice are not moving. Second, the activity within the movement-null 1002 
subspace was removed from single-trial firing rates. Then, the movement-potent subspace was calculated as the 1003 
first 5 PCs of the single-trial residuals: 1004 
 1005 

𝑿𝑿𝑚𝑚𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑿𝑿𝑸𝑸𝑚𝑚𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑇𝑇  1006 

 1007 
𝑿𝑿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑿𝑿𝑚𝑚𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑸𝑸𝑚𝑚𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  1008 

 1009 
𝑸𝑸𝑚𝑚𝑚𝑚𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑃𝑃𝑃𝑃𝑃𝑃(𝑿𝑿 −  𝑿𝑿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 1010 

 1011 

𝑿𝑿𝑚𝑚𝑚𝑚𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑿𝑿𝑸𝑸𝑚𝑚𝑚𝑚𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇  1012 

 1013 

X ∈ ℝ(B*K) × N is the single-trial firing rates where B is the number of time points, K the number of trials, and N the 1014 
number of units. Qmov-null is the first 5 PCs of the single-trial firing rates when animals are stationary, and Xmov-null is 1015 
the projection along those PCs. Xrecon,mov-null is the reconstructed neural activity obtained from the multiplication of 1016 
activity within the movement-null subspace, Xmov-null, and the movement-null subspace, Qmov-null. PCA(Z) indicates 1017 
computing the PCs of the matrix Z. Qmov-pot is the first 5 PCs of the single-trial residuals obtained from subtracting 1018 
Xmov-null from the single-trial firing rates, X. Finally, Xmov-pot is obtained from projecting single-trial firing rates onto 1019 
Qmov-pot. Xrecon,mov-null contains activity that is explainable by the first 5 PCs in the absence of movement and, 1020 
therefore, the residuals contain movement-related neural dynamics. Thus, performing PCA on these residuals 1021 
provides a movement-potent subspace that is orthogonal to the movement-null subspace. This approach ensures 1022 
dynamics observed during stationarity are contained within the movement-null subspace prior to assigning any 1023 
dynamics to the movement-potent subspace. Therefore, it is more conservative in avoiding the mis-assignment of 1024 
movement-correlated internal dynamics to the movement-potent subspace. 1025 
CDcontext selectivity on ‘High move’ and ‘Low move’ trials 1026 
For each session, DR and WC trials were first separated into ‘High move’ and ‘Low move’ trials. ‘High move’ 1027 
trials were those where the average motion energy in the ITI was greater than the movement threshold for that 1028 
session (see Motion energy). ‘Low move’ trials were the remaining trials. The last 40 trials in each session were 1029 
excluded from analysis to account for the decrease in uninstructed movements that are observed towards the end of 1030 
behavioral sessions as animals become sated and disengaged. CDcontext was calculated from the full population or 1031 
from neural activity reconstructed from either subspace.  Population activity from ‘High-move’ and ‘Low-move’ 1032 
trials was then projected along CDcontext. Selectivity was defined as the trial-averaged projection along CDcontext on 1033 
DR trials minus the projection along CDcontext on WC trials (Fig. 8b,c).          1034 

Hierarchical bootstrapping 1035 
Projections along coding directions were obtained via a hierarchical bootstrapping procedure109,110 (Figs. 2, 7 and 1036 
EDFigs. 7, 8 and 10). Pseudopopulations were constructed by randomly sampling with replacement M mice, 2 1037 
sessions per sampled mouse, 50 correct trials of each type, 20 error trials of each type, and 20 neurons. M is the 1038 
number of mice in the original cohort. Bootstrapping was repeated for 1000 iterations. In each iteration, data derived 1039 
from some individual mice (and sessions, trials, and neurons) will be overrepresented and some will be omitted. 1040 
Average effects driven by small subsets of animals, sessions, trials, and/or units will be accompanied by large 1041 
confidence intervals. For all results obtained through this bootstrapping procedure, mean and 95% confidence 1042 
intervals (shaded area) of the bootstrap distribution are shown, except for selectivity (Fig. 7a and EDFig. 7a), where 1043 
5-95% confidence intervals are shown to indicate where projections significantly differ from zero (p < 0.05, one-1044 
sided test, bootstrap).  1045 
Statistics 1046 
No statistical methods were used to determine sample sizes. All t-tests were two-sided unless stated otherwise. 1047 
 1048 
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 1297 
 1298 
Extended Data 1299 

 1300 
Extended Data Fig. 1 – Region-specific photoinactivation of ALM and tjM1. a. Percentage of time spent moving (see Methods) in a 1301 
session determined by video recordings using the side view, bottom view, and both views. Points indicate each of the 12 randomly selected 1302 
sessions used for this analysis. b. Effect of delay epoch photoinactivation on behavioral performance (middle column) and uninstructed 1303 
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movements (right column) when photoinactivation was directed to the MC (ALM + tjM1; top row; same data as Fig. 1g-i, n = 14 sessions, 1304 
2 mice), the ALM (middle row, n = 15 sessions, 2 mice), and the tjM1 (bottom, n = 9 sessions, 2 mice). Photoinactivation of ALM and tjM1 1305 
led to similar behavioral impairment and reduction in uninstructed movements, with larger effects observed with MC (ALM + tjM1) 1306 
photoinactivation.  c. Tongue length during control and go cue photoinactivation trials for delayed-response (left) and water-cued (right) 1307 
contexts. Blue traces indicate right lickport contacts, red traces indicate left contacts, and black traces indicate no contact. Vertical dashed 1308 
line indicates go cue or water drop onset. Blue shaded region indicates photoinactivation period. d. Percentage of time with tongue visible 1309 
during photoinactivation period for DR trials (left) and WC trials (right). Each colored point indicates mean value for an animal (n = 4 1310 
animals), individual animals are connected by black lines. Light gray lines denote individual sessions (n = 10 sessions). Bars are the mean 1311 
across all sessions. Asterisks denote significant differences (p < 0.05) between control and photoinactivation trials (Percent reduction on all 1312 
DR trials: 19 ± 7%, mean ± s.d., p = 1.6e-05; DR left trials: 20 ± 8%, p = 3.0e-05; DR right trials: 20 ± 7%, p = 1.6e-05; All WC trials: 4 ± 1313 
8%, p=0.154; WC left trials: 1% ± 9%, p=0.702; WC right trials: 7% ± 5%, p=0.002; paired t-test, n=10 sessions). Error bars indicate standard 1314 
deviation across sessions.  In WC trials, tongue protrusion was only significantly impaired on one trial type, while ability to successfully 1315 
contact the lickport was impaired in all conditions (see Fig. 1c). 1316 

 1317 
Extended Data Fig. 2 – Session-by-session statistics. a. Number of recorded single- and multi-units per session for the fixed delay task 1318 
(left) or the randomized delay task (right). Left, Purple shaded region indicates sessions in which animals only performed presented with DR 1319 
trials. Green and blue bars underneath plots indicate the probe type used for a given session b. Variance explained of trial-averaged neural 1320 
activity by each coding direction. The coding directions were calculated using neural activity from individual sessions (n=25). Bar height 1321 
represents the mean across sessions and error bars indicate standard deviation across sessions. c. Receiver operating curves (ROC) 1322 
demonstrating choice decoding accuracy from delay epoch CDchoice projections across all individual sessions (see Methods). Inset: area 1323 
under the ROC curve (AUC). Bar height represents the mean across sessions and points indicate sessions.  1324 
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Extended Data Fig. 3 - Session-by-session variability in the relationship between kinematic features and putative cognitive dynamics. 1325 
a. Regression weights for each group of kinematic predictors of CDchoice projections, as a fraction of all predictor coefficients (see Methods). 1326 
Sessions are sorted in descending order by motion energy fraction. Outlined bars indicate example sessions shown in (b) and (c). b. Example 1327 
session where motion energy made up the largest fraction of regression weights for predicting CDchoice projections. Top, overlayed jaw/nose 1328 
speed or motion energy for a subset trials. Bottom, two example trials of kinematic feature trajectories. c. Same as (b) but for an example 1329 
session where jaw and nose features made up a larger fraction of regression weights. d. Same as (a) but for predicting CDcontext projections. 1330 
e, f. Same as (b) and (c) but for two example sessions with different regression weight fractions for predicting CDcontext projections. 1331 
 1332 
 1333 
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1334 
Extended Data Fig. 4 – Control analyses for subspace decomposition. a,b. Movement-null and movement-potent subspaces estimated as 1335 
in Fig. 5g-l using DR and WC trials. a. Variance explained (R2) of motion energy by the sum squared magnitude of activity in the movement-1336 
null and movement-potent subspaces on single trials. Each point is the mean across trials for a session. b. Left, motion energy on single trials 1337 
for an example session. Middle, sum-squared magnitude of activity in the movement-potent subspace. Right, sum-squared magnitude of 1338 
activity in the movement-null subspace. Trials sorted by average delay epoch motion energy. c. Selectivity (left vs. right) of the neural 1339 
population during WC trials. Mean and 95% CI across sessions shown. d,e. Same as (a,b) but estimating movement-null and movement-1340 
potent subspaces using WC trials only. f. Normalized magnitude of activity in the movement-null subspace (left) movement-potent subspace 1341 
(right) when estimated using DR and WC trials as in (a,b), versus when estimated using WC trials only as in (d,e). Circles are average activity 1342 
per trial for an example session. g,h. Same as (a,b), but estimating movement-null and movement-potent subspaces using data restricted to 1343 
the response epoch of DR and WC trials. i. Magnitude of activity in the movement-null subspace (left) or movement-potent subspace (right) 1344 
when estimated using DR and WC trials as in (a,b) versus when estimated using data from only the response epoch of DR and WC trials as 1345 
in (g,h). Circles are average activity per trial for an example session. j,k. Same as (a,b), but estimating the movement-null and movement-1346 
potent subspaces using a two-stage PCA approach (see Methods). This approach is conservative in avoiding the mis-assignment of cognitive 1347 
dynamics that correlate in time with movement to the movement-potent subspace. j. Magnitude of activity in the movement-null subspace 1348 
(left) or movement-potent subspace (right) when estimated using DR and WC trials as in (a,b) versus when estimated using the two-stage 1349 
PCA approach as in (j,k). Circles are average activity per trial for an example session. 1350 
 1351 
 1352 
 1353 
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1354 
Extended Data Fig. 5 – Alignment of single-units to random subspaces.  Random subspaces were constructed by independently and 1355 
identically drawing from a normal distribution with zero mean and unit variance. Each random subspace was then biased towards the 1356 
covariance structure of the actual data (see Methods). a. Null distributions of alignment indices for trial-averaged data. b. Null distributions 1357 
of alignment indices for single-trial data. Null alignment distributions are skewed towards the movement-potent subspace due to the 1358 
unbalanced variance between delay and response epochs (a) or between stationary and movement time points (b), reflecting the strong 1359 
movement tuning of many units. 1360 
 1361 
 1362 
 1363 
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 1364 
Extended Data Fig. 6 – Varying dimensionality of subspaces. Analyses were repeated while varying the dimensionality of movement-null 1365 
and movement-potent subspaces.  Each subspace was constrained to be 4 (left), 6 (middle left), 8 (middle right), or 13 dimensions (right). A. 1366 
Cumulative variance explained of the neural activity by the activity in movement-null and movement-potent subspaces. Bold lines and points 1367 
indicate mean across sessions. Thin lines represent single sessions b. Normalized variance explained of neural activity during the delay or 1368 
response epoch by the activity in movement-null and movement-potent subspaces. Points indicate sessions, bar height indicates mean across 1369 
sessions, and error bars indicate standard deviation across sessions (n=25 sessions). c-e. Subspace (c), CDchoice (d), and CDramp (e) alignment 1370 
distributions when varying dimensionalities of each subspace.  1371 
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 1372 
Extended Data Fig. 7 – Projections along movement-null and movement-potent components of CDchoice. a. Same data as in Fig. 7a 1373 
except all time in trial shown to highlight activity during the response epoch. Selectivity (projections onto CDchoice on lick-right trials minus 1374 
projections on lick-left trials) of movement-null (left) and movement-potent (right) subspace activity. Mean and 5-95% CI of the bootstrap 1375 
distribution for correct (solid) and error (dashed) trials shown. b. Change in selectivity between the last 100ms of the delay epoch and the 1376 
last 100ms of the sample epoch in movement-null and movement-potent components of projections along CDchoice (Movement-potent: 2.25 1377 
± 1.57, mean ± s.d., Movement-null: 0.76 ± 0.8, p=1 x10-5, paired t-test, n = 25 sessions). Points indicate individual sessions, bar height 1378 
indicates mean across sessions, and error bars indicate standard deviation across sessions. c. Three example sessions from three different 1379 
mice depicting selectivity along CDchoice as in Fig. 7a. Solid lines denote the mean projection on correct trials and dashed lines denote the 1380 
mean projection error trials. 1381 
 1382 
 1383 
 1384 
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1385 
Extended Data Fig. 8 – Within-subspace CD projections using variations on procedure to determine subspaces. a. Projections of 1386 
movement-null and movement-potent subspace activity along CDramp for each of three analytical variations. Movement-null and movement-1387 
potent subspaces were identified using both DR and WC trials (left), WC trials only (middle), and the response epoch of DR and WC trials 1388 
(right). Mean and 95% CI of bootstrap distribution shown.. b. Projections along movement-null (left) and movement-potent (right) 1389 
components of CDramp when determined from activity within each subspace individually, rather than from the full neural population. Mean 1390 
and 95% CI of bootstrap distribution shown.  1391 
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 1403 
Extended Data Fig. 9 – Encoding of context in both the null and potent subspaces tracks block-wise task structure. a. Heatmap of 1404 
single-trial projections of null and potent subspace activity along CDcontext for an example session. The chronological DR or WC block within 1405 
the session is denoted by differently shaded purple and orange rectangles, respectively, on the right of each plot.  b. Same as (a) but for 1406 
another example session, from a different animal. 1407 
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 1422 
Extended Data Fig. 10 – Relationship between tongue angle and neural activity in the movement-null and movement-potent 1423 
subspaces. a. Projections along movement-potent (top) and movement-null (bottom) components of CDaction. Correct trials shown in solid 1424 
lines and error trials shown in dashed lines. b. Tongue angle for an example session for correct and error trials Black values indicate tongue 1425 
not visible. c. Tongue angle on correct and error right and left trials. Tongue angle was linearly time warped to allow for averaging over trials 1426 
and sessions. Mean and s.e.m. across sessions shown. d. Tongue angle (left) and predictions from the full population neural activity (middle 1427 
left), null subspace activity (middle right), and potent subspace activity (right) for an example session. e. Variance explained (R2) of tongue 1428 
angle by prediction from movement-null (green) and movement-potent (pink) subspaces. Asterisks denote significant differences between 1429 
predictions from null and potent subspaces (p=2 x10-8, paired t-test, n=25 sessions). 1430 
 1431 
Supplementary Movie 1 – Uninstructed movements vary in their identity and timing. Example trials in which uninstructed movements 1432 
vary in their identity (across rows) and timing (across columns). Traces represent the y-position of the feature within the video frame. All 1433 
example trials taken from the same mouse and session. 1434 
 1435 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2024. ; https://doi.org/10.1101/2023.08.23.554474doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.23.554474
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Task-switching behavioral paradigm
	Uninstructed movements related to preparatory dynamics
	Uninstructed movements related to behavioral context
	Subspace decomposition of neural activity
	Internal and movement-related dynamics during motor planning
	Separability of choice, urgency, and context encoding from movement-dynamics
	Subspace decomposition
	Variable relationships between cognition and movement
	Predicting projections along coding directions from kinematic features
	CDcontext selectivity on ‘High move’ and ‘Low move’ trials
	Extended Data


