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Abstract

The linear mixed model (LMM) has become a standard in genetic association studies to

account for population stratification and relatedness in the samples to reduce false positives.

Much recent progresses in LMM focused on approximate computations. Exact methods re-

mained computationally demanding and without theoretical assurance. The computation is

particularly challenging for multiomics studies where tens of thousands of phenotypes are

tested for association with millions of genetic markers. We present IDUL and IDUL† that

use iterative dispersion updates to fit LMMs, where IDUL† is a modified version of IDUL

that guarantees likelihood increase between updates. Practically, IDUL and IDUL† produced

identical results, both are markedly more efficient than the state-of-the-art Newton-Raphson

method, and in particular, both are highly efficient for additional phenotypes, making them

ideal to study genetic determinants of multiomics phenotypes. Theoretically, the LMM like-

lihood is asymptotically uni-modal, and therefore the gradient ascent algorithm IDUL† is an

asymptotically exact method. A software package implementing IDUL and IDUL† for genetic

association studies is freely available at https://github.com/haplotype/IDUL.

1 Introduction

Genome-wide association studies (GWAS) play a pivotal role in identifying genetic variants

associated with diverse traits and diseases. A key challenge in these studies is controlling

for population stratification and relatedness in the sample, confounding factors, which, if

unaddressed, can lead to false-positive associations. To tackle this issue, the linear mixed model

(LMM) has emerged as the standard analytical approach. Earlier work focused on feasibility,

as exemplified by TASSEL (Yu et al., 2006) and EMMA (Kang et al., 2008). Later works
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focused on improving efficiency, as exemplified by EMMAX (Kang et al., 2010), P3D (Zhang

et al., 2010), FaST-LMM (Lippert et al., 2011), and GEMMA (Zhou and Stephens, 2012).

More recent work, such as BOLT-LMM (Loh et al., 2015) and fastGWA (Jiang et al., 2019),

aimed to make the computation feasible for large biobank datasets. One particular setting

that requires high efficiency in fitting the linear mixed model is multiomics analysis, where

tens of thousands of phenotypes are tested for association with millions of genetic markers.

There are two ways to improve efficiency, one is approximate computation. EMMAX

and P3D fit LMM under the null and used parameters estimated from the null model for

all SNPs without fitting LMM for each SNP. Svishcheva et al. (2012) approximated a SNP-

specific weight with a so-called GRAMMAR-Gamma factor that is shared between SNPs,

which effectively performed genomic control internally. Since the factor can be computed

efficiently, this approach reduces the computation of score test from quadratic to linear (in

sample sizes). BOLT-LMM framed the standard LMM in a Bayesian whole genome regression,

and used a variational approximation to fit Bayesian linear regressions with Gaussian mixture

priors (Loh et al., 2015). FastGWA (Jiang et al., 2019) combined three approximations: one

involves fitting the LMM once under the null and using it for all SNPs; the second adopts

the GRAMMAR-Gamma approach in computing score test statistics; and the third uses hard

thresholding to make the kinship matrix sparse, which allows fast evaluation of the likelihood

function that paves the way for a grid-search method to fit the LMM. All these approximations

produced different ranking of test statistics compared to the exact computation and hence a

potential power loss (more details below).

Another way to improve efficiency is through algorithmic innovation while maintaining

exact computation. (Here exact means without aforementioned approximations; it is also

short for asymptotically exact, to be discussed below.) Exact computation removes the need

to consider which approximate computation works best for a given dataset (Zhou and Stephens,

2012). As an exact method, FaST-LMM first rotates the genotypes and phenotypes according

to eigenvectors of the genetic relatedness matrix so that the rotated data become uncorrelated,

and then optimizes a single parameter in the variance component using Brent’s method. The

rotation reduces computation complexity in optimization. Another exact method GEMMA

also rotates genotypes and phenotypes during optimization, but it does so implicitly. The

innovation of GEMMA is its ability to evaluate the second derivatives, so that the Newton-

Raphson method can be used for optimization, which converges faster than Brent’s method.

The comparison between FaST-LMM and GEMMA can be found in Zhou and Stephens (2012).

The Newton-Raphson method suffers from inconsistency when the initial values are distant

from the optimum, to overcome this inconsistency, GEMMA starts its optimization iterations

with Brent’s method and then switches to the Newton-Raphson method.
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In this paper, we present IDUL and IDUL† that use an iterative dispersion update to fit

LMMs in genetic association studies, where IDUL† is designed to be a gradient ascent algorithm

by insisting on a likelihood increase between IDUL updates. We demonstrate that IDUL

and IDUL† are consistent and much more efficient than the state-of-the-art Newton-Raphson

method in fitting LMMs, and that both are highly efficient for additional phenotypes, and

thus well suited to study genetic determinants of multiomics phenotypes. Most importantly,

we show that the LMM likelihood is asymptotically unimodal, and consequently IDUL†, a

gradient ascent algorithm by design, is asymptotically exact.

2 Results

2.1 The model and the rotation

Consider a standard linear mixed model

y = Wa+ xβ + Zu+ e

u ∼ MVNn(0, τ
−1 ηK)

e ∼ MVNn(0, τ
−1 In)

(1)

where W contains conventional covariates such as age and sex, including a column of 1, x

contains genetic variant(s) to be tested for association, u is the random effect with Z as its

loading matrix and kinship K as its covariance (both Z and K are known), MVNn denotes an

n-dimensional multivariate normal distribution, In is n-dimensional identity matrix. Denote

X = (W,x) and b = (a, β), then Xb is the fixed effect, and we assume X has a full rank c. In

genetic association studies, the random effect Zu is a nuisance term that absorbs part of the

phenotype y that is attributable to population stratification and relatedness. We aim to find

the maximum likelihood estimate (MLE) of η, which is the ratio between two dispersion terms

(random effect u and random noise e), and conditioning on η̂ we can test the null hypothesis

β = 0.

Denote G = ZKZt and its eigen decomposition QDQt (such that QQt = In) where j-th

column of Q is an eigenvector whose corresponding eigenvalue is the j-th diagonal element of

the diagonal matrix D. Rotate both sides of (1) by multiplying Qt to get

yQ ∼ MVNn(XQb, τ−1H) (2)

where XQ = QtX, yQ = Qty, and H = ηD+ In is a diagonal matrix.
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2.2 The IDUL algorithm

The iterative dispersion update for linear mixed model (IDUL) algorithm follows:

S0 Initialize η and specify a desired precision threshold ϵ.

S1 For a given η compute H = ηD + In, fit (2) using weighted least squares with weight

H−1 to obtain residual r, and compute t̂ = 1
n

∑
j r

2
j/Diag(H)j .

S2 Fit r2 ∼ MVNn(µ+Diag(D)γ, τ−1H2) using weighted least squares with weight H−2 to

obtain γ̂ and µ̂, and compute η† = γ̂/t̂+ (1− µ̂/t̂ )η.

S3 If |η† − η| < ϵ, goto S4. Otherwise, update η ← η†, and goto S1.

S4 Finish and output η.

Intuitively, the update is mostly informed by the different level of dispersion of the residual r,

and hence the name of the algorithm. IDUL is easy to implement; both rotation and iterative

updates require only several lines of code in R (Appendices).

2.3 Analytic update of the IDUL

IDUL is equivalent to the following analytical update:

η† = η +
2η2

nV
f ′
ml(η), (3)

where V = tr(H−2)/n− tr(H−1)2/n2 is a function of η and 0 < V < 1, and f ′
ml(η) is the first

derivative of the log-likelihood and can be computed analytically (Data and Methods). Note

Equation (3) is derived here to study the analytic properties of the IDUL algorithm, not meant

to replace step S2 in the algorithm. We make the following observations on update (3). First,

when f ′
ml(η) > 0 IDUL increases η, and when f ′

ml(η) < 0 IDUL decreases η, until it converges

to f ′
ml(η) = 0, which is a local optimum. Second, Taylor expansion of the log-likelihood at η

to get

fml(η
†)− fml(η) =

2η2

nV
f ′
ml(η)

2

(
1 +

1

2
f ′′
ml(ξ)

2η2

nV

)
.

Although the factor
(
1 + 1

2f
′′
ml(ξ)

2η2

nV

)
is likely to be positive (Data and Methods), there is no

guarantee.

2.4 The IDUL† algorithm

We therefore modify the algorithm and only update η ← η† when the likelihood increases, and

if likelihood decreases, we successively halve the step size until the likelihood increases. This
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technique, successive over-relaxation, is often used in iterative methods (c.f. Zhou and Guan,

2019).

R0 Initialize η and specify a desired precision threshold ϵ.

R1 With input η, compute H = η†D+I, fit (2) using weighted least squares with weight H−1

to obtain residual r, compute t̂ = 1
n

∑
j r

2
j/Diag(H)j and l(η) = −

∑
j log(Diag(H)j) −

n log t̂.

R2 Fit r2 ∼ MVNn(µ+Diag(D)γ, τ−1H2) using weighted least squares with weight H−2 to

obtain γ̂ and µ̂, and compute η† = γ̂/t̂+ (1− µ̂/t̂ )η.

R3 If |η†−η| < ϵ goto R4; otherwise, do R1 with input η† and obtain l(η†), and if l(η†) > l(η),

update η ← η†, goto R2; otherwise update η† ← 1
2(η

† + η), goto R3.

R4 Finish and output η.

The IDUL† algorithm is a gradient ascent algorithm by design. Since the likelihood is

bounded and the sequence of the likelihood is non-decreasing, by the standard Monotone

Convergence Theorem, the IDUL† algorithm must converge to a local optimum η∗ such that

f ′
ml(η

∗) = 0. IDUL† is also easy to implement in R (Appendices).

2.5 Asymptotically uni-modal

At an optimum such that f ′
ml(η) = 0, the second derivative can be simplified to the following

form

f ′′
ml(η) =

n

2η2
[−V + ϵn] , (4)

where V is defined in (3) and both mean and variance of ϵn varnish linearly (proportional to

1/n) as n increases (details in Data and Methods). In other words, at the local optimum,

f ′′
ml(η) < 0 asymptotically almost sure, or with probability 1. This asymptotically local con-

caveness implies that with a sufficiently large sample size, the log-likelihood fml(η) attains

its unique global maximum at f ′
ml(η) = 0. If to the contrary there are at least two local

maxima, then owing to smoothness of the likelihood function Equation (5) and its derivative

Equation (7), there must exist a minimum η∗ such that f ′
ml(η

∗) = 0 but with f ′′
ml(η

∗) > 0,

which produces a contradiction. (Intuitively, there must be a valley between two locally con-

cave peaks, and the valley violates local concaveness.) Therefore, the likelihood function is

unimodal asymptotically almost sure (or with probability 1).
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2.6 Asymptotically exact

The notion that “an iterative method cannot be exact” (a much appreciated feedback from a

reader) is false. For example, the Euclidean algorithm, used to find greatest common divisor

between two integers, is an iterative algorithm, and it is exact. Another example is the Banach

fixed-point-theorem, which guarantees that, when certain conditions are satisfied, fixed-point

iterations always converge to a fixed point, no matter where the iteration starts. A convergence

sequence is precise to an arbitrary precision and thus exact. The IDUL† is a gradient ascent

algorithm, and if the likelihood is unimodal, then IDUL† updates produce an convergence

sequence, and therefore IDUL† is exact. Since the likelihood is asymptotically almost sure

unimodal, so IDUL† is asymptotically exact.

2.7 Connection with Newton-Raphson

With a sufficiently large number of samples and η near the optimum, ϵn in Equation (4) can be

safely ignored. The analytic update of the IDUL then becomes η† = η− f ′
ml(η)/f

′′
ml(η), which

is the Newton-Raphson method. And the IDUL† becomes Newton-Raphson with successive

over-relaxation. But IDUL and IDUL† require no computation of the second derivative, which

are expensive, and outside the neighborhood of the optimum, where the Newton-Raphson

method is known to be numerically unstable (Burden and Faires, 2010), IDUL and IDUL† are

stable and consistent (below).

2.8 Consistency of IDUL

Since IDUL† is asymptotically exact, it is consistent over different starting points. We numeri-

cally study IDUL’s consistency and compare it with that of the Newton-Raphson method. The

genotype and phenotype datasets we used for comparison are described in Data and Methods.

For each phenotype, we fitted LMM using IDUL and Newton-Raphson with the same sets of

initial values. To generate initial values, we chose four non-overlapping segments from the

unit interval, namely, V1 = (0.01, 0.25), V2 = (0.25, 0.5), V3 = (0.5, 0.75), and V4 = (0.75, 0.99),

and for each phenotype we drew h0 uniformly from each segments to produce initial value

η0 = h0/(1− h0).

It takes IDUL on average 7.3 iterations to converge for each combination of phenotype

and initial value, compared to 12.5 for Newton-Raphson. We compare the consistency of

fitted η̂ when initial values η0 were drawn from different V segments. IDUL had perfect

consistency among four sets of initial values (Figure 1 lower triangle); Newton-Raphson did

not (Figure 1 upper triangle). Taking IDUL estimates as the truth, Newton-Raphson made

one error when initial values were generated from V1, 19 errors from V2, 58 errors from V3, and

6

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 26, 2024. ; https://doi.org/10.1101/2023.10.25.563975doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.25.563975


bb[, 1]

V1

0.0 0.4 0.8

0.
0

0.
4

0.
8

aa[, 2]

aa
[, 

1]
0.0 0.4 0.8

0.
0

0.
4

0.
8

aa[, 3]

aa
[, 

1]

0.0 0.4 0.8

0.
0

0.
4

0.
8

aa[, 4]

aa
[, 

1]

0.0 0.4 0.8

0.
0

0.
4

0.
8

bb[, 1] bb[, 2]

aa
[, 

2]

V2

0.0 0.4 0.8

0.
0

0.
4

0.
8

aa[, 3]

aa
[, 

2]
0.0 0.4 0.8

0.
0

0.
4

0.
8

aa[, 4]

aa
[, 

2]
0.0 0.4 0.8

0.
0

0.
4

0.
8

bb[, 1]

0.0 0.4 0.8

0.
0

0.
4

0.
8

bb[, 2]

bb
[, 

3]

bb[, 3]

aa
[, 

3]

V3

0.0 0.4 0.8

0.
0

0.
4

0.
8

aa[, 4]

aa
[, 

3]

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.0 0.4 0.8

0.
0

0.
4

0.
8

bb
[, 

4]

0.0 0.4 0.8

0.
0

0.
4

0.
8

bb
[, 

4]

aa
[, 

4]

V4

Figure 1: Consistency of IDUL and Newton-Raphson w.r.t different initial values. IDUL
and Newton-Raphson were run on the same sets of initial values. For each phenotype,
four initial values were generated with seeds randomly selected from four segments. So
both IDUL and Newton-Raphson produced 4 columns of estimates each with 79 rows.
The pairwise plots of the four columns of IDUL estimates were in the lower-triangle and
colored in red. Those of Newton-Raphson estimates were in the upper-triangle and in
black. The four diagonal plots (in gray) showed consistency or lack of it between IDUL
and Newton-Raphson for different set of initial values. Estimates η̂ were transformed to
ĥ = η̂/(1+ η̂) for plotting so that different panels are on the same scale. Points are jittered
slightly by adding random noises for clarity.
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70 errors from V4 (Figure 1 Diagonal). The erroneous estimates were either 0 or 1 and the

proportion of 1 increases as the initial values increase (Figure 1 Diagonal). These observations

are consistent with Newton-Raphson’s dependence on good initial values and that a long near

flat likelihood tend to fail Newton-Raphson. Similar patterns of inconsistency of Newton-

Raphson were also observed with phenotypes simulated from diverse populations in the 1000

Genomes project (Supplementary Figure S1). To overcome the inconsistency, implementing

the Newton-Raphson method to fit LMM requires multiple runs from different starting points.

As a comparison, IDUL and IDUL† only need to run once for each model fitting, each run

takes fewer iterations, and each iteration requires less computation.

2.9 Efficiency of IDUL and IDUL†

We implemented IDUL and IDUL† into a software package IDUL that fits the LMMs and

computes test statistics, and compared with results from GEMMA, a software package that

fits LMMs using the Newton-Raphson method primed by the Brent’s method. The datasets

we used for comparison were described in Data and Methods. We compared the likelihood

ratio test (LRT) and the Wald test p-values between different methods, where the LRT requires

maximum likelihood estimates of η and the Wald test requires REML estimates of η (Data and

Methods). For both the LRT and the Wald test p-values, IDUL, IDUL†, and GEMMA reached

almost perfect agreement (Supplementary Figures S2 and S3). Since IDUL† is asymptotically

exact, these results suggested that both IDUL and GEMMA are practically exact methods.

Both IDUL and IDUL† are much more efficient than GEMMA (Table 1). For a single phe-

notype, GEMMA with maximum 112 threads used about 76.5 minutes for the LRT, compared

with 13.6 to 15.3 minutes of IDUL and IDUL† with either 32 and 64 threads. So for LRT,

IDUL and IDUL† are at least five times as efficient as GEMMA. GEMMA with maximum 112

threads used 98.9 minutes for Wald test, compared with 13.4 to 15.7 minutes for IDUL and

IDUL† with either 32 or 64 threads. So for Wald test, IDUL and IDUL† is six or seven times

as efficient as GEMMA.

Most remarkably, IDUL and IDUL† are highly efficient for additional phenotypes. Taking

LRT and 64 threads as an example, IDUL and IDUL† only spent about one extra minute (about

8% of time spent for the first phenotype) to compute like ratio test for additional 9 phenotypes,

and less than six extra minutes (about 40% of time spent for the first phenotype) for additional

78 phenotypes. Similar high efficiency for additional phenotypes was also observed with the

Wald test and with 32 threads (Table 1). Also note that doubling the number of threads

used by IDUL/IDUL† resulted in a small improvement in speed for a single phenotype, but

a larger improvement with additional phenotypes. The high efficiency for extra phenotypes

makes IDUL/IDUL† ideal to study genetic determinants of multiomics phenotypes.
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LRT Methods Wald
p = 1 10 79 Algo Threads p = 1 10 79
76.5 - - GEMMA 112 98.9 - -
13.6 14.9 19.3 IDUL 64 13.4 16.8 24.5
13.9 14.7 19.2 IDUL† 64 13.9 16.5 24.6
15.3 16.4 23.8 IDUL 32 15.7 18.8 31.9
14.9 15.9 25.2 IDUL† 32 15.1 19.7 33.0

Table 1: Times (minutes) used for IDUL/IDUL† (version 0.81) and GEMMA (version
0.98.5) to process 1, 10, and 79 phenotypes. GEMMA used maximum 112 threads and
IDUL/IDUL† used 64 and 32. LRT: likelihood ratio test, which requires maximum like-
lihood estimates of η. Wald: Wald test, which requires REML estimates of η. Taking
multiple phenotypes to analyze one by one was not implemented in GEMMA, and its wall
time for 10 and 79 phenotypes are missing.

2.10 Exact vs approximation

The IDUL† is an asymptotically exact method. Zhou and Stephens (2012) classified methods

into approximate methods and (practically) exact methods and demonstrated that 1) among

exact methods available at the time, GEMMA is most efficient, outperforming FaST-LMM,

which in turn outperforms EMMA by an order of magnitude; and 2) approximate method

such as EMMAX, which uses the parameter estimated under the null to compute test statistics

for all SNPs, evidently biased test statistics in some dataset. A recent approximate method,

fastGWA by (Jiang et al., 2019), in addition to other approximations, applied hard thresholding

on kinship matrix K in Equation (1) to make it sparse and exploited the sparsity in fitting the

linear mixed model and computing test statistics. The approximation makes fastGWA capable

of analyzing large datasets such as UK Biobank. For multiomics datasets such as that of the

Framingham Heart Study, however, the hard thresholding approach appears less satisfactory,

presumably due to closer relatedness between samples and larger effect sizes in multiomics

dataset. Figure 2 shows a comparison of test statistics of four protein phenotypes between

exact computation and hard thresholding approximation. The inconsistency can be rather

pronounced for some phenotypes, suggesting potential difficulty with approximate methods in

multiomics data for closely related samples such as in the Framingham Heart Study.

3 Discussion

In this paper we documented two novel methods IDUL and IDUL† to fit linear mixed model

in the context of genetic association studies. IDUL†, a modification of IDUL, is a gradient
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Figure 2: Comparison between exact and approximate method. The test statistics are
− log10 p-values, with the exact statistics on x-axis, and the approximate statistics on
y-axis. The genomic control values for the exact methods are 0.998, 0.997, 1.013, 1.045 vs
1.036, 1.007, 1.043, 1.066 for the approximate method.
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ascent algorithm by design. Both IDUL and IDUL† are much more efficiency than the state-

of-the-art Newton-Raphson method. The fundamental contribution of the paper, however,

is that the log-likelihood of the linear mixed model is asymptotically locally concave at the

optimum (we hypothesized that the same is true for REML likelihood, see Data and Methods).

Consequently, the likelihood of the standard linear mixed model is asymptotically uni-modal.

Therefore, IDUL†, a gradient ascent algorithm , is an asymptotically exact method.

We demonstrated that IDUL and IDUL† are much more efficient than the Newton-Raphson

method in fitting the standard LMM. We would like to point out that IDUL and IDUL† are

specialized algorithms that take advantage of a specific dispersion structure only available in

limited settings such as the LMMs. Newton-Raphson, on the hand, is a general method that

can be applied in many settings. In addition, our theoretical analysis relies on the assumption

of normality of the phenotypes. Although the assumption can perhaps be relaxed to having

finite first and second moments, such as binary phenotypes, it is prudent to examine phenotypes

and perform quantile normalization when they show severe departure from normality.

When there are population structures among the samples, such as in the simulation studies

using 1000 Genomes datasets, IDUL and IDUL† updates oscillate like a damping pendulum.

The algorithms still converge, but the oscillation increases the number of iterations from several

to several dozen. This oscillation can be resolved by controlling for leading eigenvectors (such

as top three PCs). It can also be resolved by making IDUL and IDUL† lazy. Specifically, the

update η† = γ̂/t̂ has a step size that is a fraction (specifically tr(H−1)/n) of the step size of

that IDUL update η† = γ̂/t̂ + (1 − µ̂/t̂ )η. We can take an average of the two updates to get

η† = γ̂/t̂+ (1− µ̂/t̂ )η/2 (more details in Appendices), and this lazy update brings oscillation

to a quick stop (Supplementary Figure S4).

IDUL is designed with genetic association with multiomics data in mind, where the same

set of genotypes are tested against thousands or tens of thousands phenotypes for association,

where rotation of genotype vectors (left multiplying Qt) only needs to be done once for all

phenotypes. Suppose in a study we have n sample, m SNPs, p phenotypes, and c covariates,

then the total complexity is O(n3 + (m+ p+ c)n2 + tmp(nc2 + c3)), where O(n3) is for eigen

decomposition, O((m + p + c)n2) is for rotation, and O(tmp(nc2 + c3)) is for model fitting

of all SNP-phenotype pairs, where O(nc2 + c3) is the complexity of linear regression, and we

assume IDUL converges on average in t iterations. For a typical study where m > p > n≫ c,

the dominate term in total complexity is O(tmpnc2), which is linear in the size of the study,

namely, n,m, and p. IDUL† has the same complexity as IDUL, with a slightly larger equivalent

t for extra computation to evaluate likelihood. The Newton-Raphson method also has the

same complexity, but it tends to have a much larger equivalent t than IDUL and IDUL†

because essentially it needs to run multiple times to compensate for its lack of consistency,
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each run takes more iterations to converge, and each iteration takes more computation because

it requires second derivatives. Table 1 in fact confirmed this intuition.

This strategy of reusing intermediate computation of each genetic variant for multiple

phenotypes was also a feature in Regenie (Mbatchou et al., 2021), a whole genome regression

(WGR) approach to the linear mixed model that is comparable to BOLT-LMM. Compare to

WGR, the standard linear mixed model is more flexible in its applications. For example, in

testing for parental origin effect and/or controlling for local ancestry, the standard model only

needs to add extra variates and covariates, while the rest of the computation remains the same.

But WGR has to change model and priors, and perhaps the details on computation, to make

it happen. Strictly speaking, WGR is not a standard linear mixed model. For example, the

standard linear mixed model can incorporate different estimates of genetic relatedness matrix

such as the one estimated by Kindred (Guan and Levy, 2024), while WGR is stuck with sample

correlation as its equivalent genetic relatedness matrix.

In our application, the random effect was treated as a nuisance parameter and our goal is

testing fixed effect. Under this context, the MLE is preferred over the REML estimate, because

ML estimate of the fixed effects are unbiased (West et al., 2014). REML estimates, however, is

preferred when the interest is the variance component, such as in estimating trait heritability,

because it produces unbiased estimate of the variance component (i.e, η). IDUL can be adapted

to obtain REML estimate based on its analytical update (Data and Methods). The standard

software package to estimate heritability is GCTA (Yang et al., 2011), which employs the

Average Information REML for model fitting (Gilmour et al., 1995). The software has trouble

dealing with modestly small sample sizes. Using an Australian height dataset (Yang et al.,

2010), we performed down-sampling at 90%, 70%, and 50% of total 3925 samples 100 times

each, obtain REML estimates using IDUL for different estimates of kinship matrices without

any issue (Supplementary Figure S5). As a comparison, the Average Information REML

implemented in GCTA had difficulty even with 90% down-sampling and produced untenable

results.

4 Data and Methods

4.1 Data sets

We used datasets from the Framingham Heart Study (FHS) to conduct numerical comparisons

between IDUL and the Newton-Raphson method. Funded by the National Heart, Lung, and

Blood Institute (NHLBI), the FHS includes many independent three generational pedigrees,

nuclear families, trios, duos, and singletons (Kannel et al., 1979). We used 5757 samples
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with whole genome sequencing data through NHLBI’s TOPMed program (Taliun et al., 2021)

and who also have protein immunoassays obtained through the NHLBI’s Systems Approach

to Biomarker Research in Cardiovascular Disease (SABRe CVD) Initiative (Ho et al., 2018).

With 79 phenotypes, this dataset represents a mini example of multiomics data.

We also used genotype data from the 1000 Genomes project (Auton et al., 2015) with

simulated phenotypes to demonstrate the effectiveness of our method for diverse populations.

Finally, Australia height data from Queensland Institute of Medical Research was used for

down-sampling study to demonstrate the robustness of IDUL with small sample sizes.

4.2 Likelihood and the derivatives

Following notations in Equations (1) and (2), define projectionsP0 = XQ(Xt
QH−1XQ)−1Xt

QH−1

and P = In−P0. Denote Px = H−1P. The marginal log-likelihood function for η for model 2

is

fml(η) =
n

2
log(

n

2π
)− n

2
− 1

2
log |H| − n

2
log
(
yt
QPxyQ

)
(5)

Because H is diagonal and Equation 17, fml(η) can be evaluated efficiently. For log-restricted

likelihood is

fre(η) =
n− c

2
log(

n− c

2π
)− n− c

2
− 1

2
log |H|

− n− c

2
log
(
yt
QPxyQ

)
+

1

2
log |Xt

QXQ|

− 1

2
log |Xt

QH−1XQ|.

(6)

The first and second derivatives of the log-likelihood function are

f ′
ml(η) = −

1

2
tr(H−1D) +

n

2

yt
QPxDPxyQ

yt
QPxyQ

, (7)

f ′′
ml(η) =

1

2
tr(H−1DH−1D)

− n

2

(2yt
QPxDPxDPxyQ)(yt

QPxyQ)−
(
yt
QPxDPxyQ

)2
(yt

QPxyQ)2
.

(8)

Since we work with the rotated system (2), the only matrix calculus identity needed to derive

these is dA−1

dx = −A−1 dA
dxA

−1 where matrix A is a function of a scalar x. For log-restricted

likelihood we have

f ′
re(η) = −

1

2
tr(PxD) +

n− c

2

yt
QPxDPxyQ

yt
QPxyQ

, (9)
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f ′′
re(η) =

1

2
tr(PxDPxD)

− n− c

2

(2yt
QPxDPxDPxyQ)(yt

QPxyQ)−
(
yt
QPxDPxyQ

)2
(yt

QPxyQ)2
.

(10)

These likelihood and derivatives are in the same form as those in (Zhou and Stephens, 2012).

4.3 Evaluation of the first derivatives

We simplify the directive of likelihood functions using residuals from S1 of the IDUL.

Proposition 1. Let r = PyQ, the following hold:

f ′
ml(η) =

1

2η

(
tr(H−1)− n

rtH−2r

rtH−1r

)
,

f ′
re(η) =

1

2η

(
tr(H−1P)− (n− c)

rtH−2r

rtH−1r

)
.

(11)

Proof of Proposition 1 is deferred to Appdendices. Because H is diagonal, evaluation of

f ′
ml has a complexity of O(n). To evaluate f ′

re note tr(H−1P) = tr(H) − tr(HP0), while

tr(HP0) = tr(H−1X(XtH−1X)−1XtH−1) = tr(X
tH−2X

XtH−1X
). Since XtH−1X is c × c, its inverse

has complexity O(c3). Therefore the complexity of evaluating f ′
re is O(n+ nc+ c3).

4.4 IDUL update in an analytical form

To study the theoretical property of IDUL, we derive its analytic form by computing η† =

γ̂/t̂+ (1− µ̂/t̂ )η in S2 of the IDUL.

Lemma 2. The update of IDUL for maximum likelihood estimate is

η† = η +
2η2

nV
f ′
ml(η), (12)

where V = tr(H−2)/n − tr(H−1)2/n2 > 0 and is bounded, and f ′
ml(η) is the derivative of the

log-likelihood evaluated at η.

Proof of Lemma 2 is deferred to Appendices. The Taylor expansion of fml at η is fml(η +

x) = fml(η) + f ′
ml(η)x + 1

2f
′′
ml(ξ)x

2, for some ξ ∈ (η − x, η + x). Let x = η† − η, we get

fml(η
†) − fml(η) =

2η2

nV f ′
ml

2(η) + 1
2f

′′
ml(ξ)|η† − η|2. Substitute η† − η = 2η2

nV f ′
ml(η) back in, we

have

fml(η
†)− fml(η) =

2η2

nV
f ′
ml

2
(η)

(
1 +

1

2
f ′′
ml(ξ)

2η2

nV

)
. (13)
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When η is near the optimal, we have fml(η
†)−fml(η) > 0 for large n by virtue of Equation 15.

But when η is not near optimal, there is no guarantee that the likelihood always increase. Thus

we modify IDUL by evaluating and comparing likelihood to guarantee the likelihood increase

between updates.

4.5 From MLE to REML

With maximum likelihood update (12) at hand, we can obtain REML estimate by substituting

S2 in IDUL and R2 in IDUL† with

η† = η +
2η2

nV
f ′
re(η). (14)

Of course, for IDUL† the likelihood in R1 needs to be revised to REML likelihood.

4.6 Asymptotically locally concave at optimum

Finally, we quantify the second derivative of the log-likelihood function to show it is asymp-

totically locally concave at the local optimum.

Theorem 3. Let η be an optimum of log-likelihood function such that f ′
ml(η) = 0, then

f ′′
ml(η) =

n

2η2
[−V + ϵn] , (15)

where V = tr(H−2)/n − tr(H−1)2/n2 > 0 and is bounded, and both mean and variance of ϵn

decreases linearly O( 1n). Thus, at a local optimum such that f ′
ml(η) = 0, we have f ′′

ml(η) < 0

asymptotically almost sure.

Proofs of Theorem 3 is deferred to Appendices. Owing to the similarity of expression

between f ′′
re(η) and f ′′

ml(η), we believe the following conjecture can be proved by exploring

the connections between eigenvalues of H−1P and H−1, evidenced by that H−1PPv = λPv

implies H−1Pv = λPv.

Corollary 4. Let η be an optimum of REML-likelihood function such that f ′
re(η) = 0, then

f ′′
re(η) =

n− c

2η2
[−V + ϵn] , (16)

where V = tr(H−1PH−1P)/(n−c)−tr(H−1P)2/(n−c)2 > 0, and both mean and variance of ϵn

decreases linearly O( 1n). Thus, f ′′
re(η) < 0 almost sure, or with probability 1, for a sufficiently

large n.
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4.7 Computing association p-values

With maximum likelihood estimate and REML estimate of η, we can compute p-values for

association. To test the null hypothesis β = 0, we computed the likelihood ratio test (LRT)

p-values using maximum likelihood estimates as suggested by (Yu et al., 2006) and Wald test

p-values using REML estimates as suggested by (Kang et al., 2008). Both test statics were

described in clean detail in Supplementary of (Zhou and Stephens, 2012).
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8 Appendices

8.1 R code for IDUL and IDUL†

eG=eigen(G); #G=ZKZ^t;

D=ifelse(eG$values < 0, 0, eG$values);

xQ=t(eG$vectors) %*% cbind(W, x); #rotate covariates W and genotype x;

yQ=t(eG$vectors) %*% y; #rotate phenoytpe y;

idul=function(xQ,yQ,D,eta,epsilon) {

repeat {

H = eta * D + 1;

r2 = lm(yQ~xQ, weights=1/H)$residuals^2;

tauinv = mean(r2/H);

fit2 = lm(r2~D, weights=1/H/H);

param=fit2$coefficients;

eta1 = max(0,param[2]/tauinv+(1-param[1]/tauinv)*eta);

print(c(eta,eta1),digits=6);

if(abs(eta1-eta) < epsilon) {break;}

eta = eta1;

};

return(eta);

}
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idul_plus=function(xQ,yQ,D,eta,epsilon) {

H = eta * D + 1;

r2 = lm(yQ~xQ, weights=1/H)$residuals^2;

tauinv = mean(r2/H);

like = -sum(log(H)) - length(D) *log(tauinv);

repeat {

fit2 = lm(r2~D, weights=1/H/H);

param=fit2$coefficients;

eta1 = max(0, param[2]/tauinv+(1-param[1]/tauinv)*eta);

while(abs(eta1-eta)>epsilon){

H1= eta1 * D + 1;

r2 = lm(yQ~xQ, weights=1/H1)$residuals^2;

tauinv1 = mean(r2/H1);

like1 = -sum(log(H1)) - length(D)*log(tauinv1);

if(like1 >= like) {break;}

eta1 = (eta1+eta)/2;

}

print(c(eta,eta1, like, like1));

if(abs(eta1-eta) < epsilon) {break;}

eta = eta1; H=H1; like=like1; tauinv=tauinv1;

};

return(eta);

}

8.2 Proof of Proposition 1

Proof. We first simplify two expressions

yt
QPxyQ = rtH−1r

yt
QPxDPxyQ =

1

η
(rtH−1r− rtH−2r)

(17)

1) By PP = P and r = PyQ, we have yt
QPxyQ = yt

QH−1PyQ = yt
QH−1PPyQ =

yt
QPtH−1PyQ = rtH−1r. 2) Recall H = ηD + In, so D = 1

η (H − In), then by direct com-

putation we have yt
QPxDPxyQ = yt

QPtH−1DH−1PyQ = rtH−1DH−1r = 1
ηr

tH−1(H −
In)H

−1r = 1
η (r

tH−1r− rtH−2r). With these two reduced expressions, the first derivatives can
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be transformed as following:

f ′
ml(η) = −

1

2
tr(H−1D) +

n

2

yt
QPxDPxyQ

yt
QPxyQ

= −1

2

1

η
tr(H−1(H− In)) +

n

2

1

η

rtH−1r− rtH−2r

rtH−1r

=
1

2η
(−n+ tr(H−1) + n− n

rtH−2r

rtH−1r
)

=
1

2η

(
tr(H−1)− n

rtH−2r

rtH−1r

)
,

(18)

and

f ′
re(η) = −

1

2
tr(PxD) +

n− c

2

yt
QPxDPxyQ

yt
QPxyQ

= −1

2

1

η
tr(PtH−1(H− In)) +

n− c

2

1

η

rtH−1r− rtH−2r

rtH−1r

=
1

2η
(tr(P) + tr(H−1P) + (n− c)− (n− c)

rtH−2r

rtH−1r
)

=
1

2η

(
tr(H−1P)− (n− c)

rtH−2r

rtH−1r

)
,

(19)

where the last equality holds because tr(P) = tr(In)− tr(P0) and P0 is a projection with rank

c thus tr(P0) = c.

8.3 Proof of Lemma 2

Proof. Step 1 is a weighed linear regression, we can compute r = PyQ. Step 2 is also a weighted

linear regression with two covariates, so that its solution can be directly computed. Let vector

d be the diagonal elements of D and 1 is the vector of 1 and s is component wise square of r,

we have
(γ̂, µ̂)t = ((d,1)tH−2(d,1))−1(d,1)tH−2s

=

(
dtH−2d dtH−21

1tH−2d 1tH−21

)−1

(d,1)tH−2s

=
1

∆

(
1tH−21 −dtH−21

−1tH−2d dtH−2d

)(
dtH−2s,1tH−2s

)t
=

1

∆

(
1tH−21 · dtH−2s− dtH−21 · 1tH−2s

−1tH−2d · dtH−2s+ dtH−2d · 1tH−2s

)
.

(20)
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Since H and D are diagonal, we have

γ̂ =
1

∆

(
1tH−21 · dtH−2s− dtH−21 · 1tH−2s

)
=

1

∆

(
tr(H−2) · rtDH−2r− tr(DH−2)rtH−2r

)
=

1

∆

1

η

(
tr(H−2) · rt(H− In)H

−2r− tr((H− In)H
−2)rtH−2r

)
=

1

∆

1

η

(
tr(H−2) · rtH−1r− tr(H−2) · rtH−2r− tr(H−1)rtH−2r+ tr(H−2)rtH−2r

)
=

1

∆

1

η

rtH−1r

n

(
n tr(H−2)− tr(H−1) n

rtH−2r

rtH−1r

)
,

and

µ̂ =
1

∆

(
−1tDH−21 · rtDH−2r+ 1tD2H−21 · rtH−2r

)
=

1

∆

1

η2
(
−1tH−2(H− I)1 · rt(H− I)H−2r+ 1t(H− I)2H−21 · rtH−2r

)
=

1

∆

1

η2
(
−tr(H−1 −H−2) · rt(H−1 −H−2)r+ tr(In − 2H−1 +H−2) · rtH−2r

)
=

1

∆

1

η2
(
−tr(H−1)rtH−1r+ nrtH−2r+ tr(H−2)rtH−1r− tr(H−1)rtH−2r

)
=

1

∆

1

η2
rtH−1r

n

[
n tr(H−2)− tr(H−1) n

rtH−2r

rtH−1r
− n

(
tr(H−1)− n

rtH−2r

rtH−1r

)]
,

(21)

where
∆ =dtH−2d · 1tH−21− dtH−21 · 1tH−2d

=tr(D2H−2) · tr(H−2)− tr(DH−2)2

=
1

η2
(
tr((H− I)2H−2)tr(H−2)− tr((H− I)H−2)2

)
=

1

η2
(
n tr(H−2)− tr(H−1)2

)
.

(22)

Note t̂ = rtH−1r
n and 2ηf ′

ml(η) = tr(H−1)− nrtH−2r
rtH−1r

, we have

γ̂/t̂ =
1

∆η

(
n2V + tr(H−1)2ηf ′

ml(η)
)
, (23)

and

µ̂/t̂ =
1

∆η2
(
n2V + [tr(H−1)− n]2ηf ′

ml(η)
)
. (24)
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Putting together and plug in ∆ = n2V
η2

to get

η† = γ̂/t̂+ (1− µ̂/t̂ )η = η +
2η2

nV
f ′
ml(η) (25)

Alternatively, note

η† = γ̂/t̂ = η
n tr(H−2)− tr(H−1) n rtH−2r

rtH−1r

n tr(H−2)− tr(H−1)2

= η

[
1 +

tr(H−1)2 − tr(H−1) n rtH−2r
rtH−1r

n tr(H−2)− tr(H−1)2

]

= η +
2η2

n
f ′
ml(η)

1

V (H−1)
· tr(H

−1)

n

= η +
2η2

nV
f ′
ml(η) ·

tr(H−1)

n

(26)

has a fractional step size with fraction being tr(H−1)
n , so that we can combine updates (26) and

(25) to get a lazy update

η† =
1

2

(
γ̂/t̂+ (1− µ̂/t̂ )η

)
+

1

2
γ̂/t̂ = γ̂/t̂+

1

2
(1− µ̂/t̂ )η

= η +
2η2

nV
f ′
ml(η)

1 + tr(H−1)/n

2
.

(27)

Finally, note that H = ηD+ In and since η > 0 and Dj > 0 so Hj > 1. Denote hj the j-th

diagonal element of H−1, we have

n2V = n tr(H−2)− tr(H−1)tr(H−1)

=
∑
ij

h2i −
∑

hihj

=
1

2

∑
ij

(h2i + h2j )−
∑
i,j

2hihj


=
∑
i,j

(hi − hj)
2 > 0.

(28)

On the other hand,

V =
1

n
tr(H−2)− 1

n2
tr(H−1)tr(H−1)

<
1

n
tr(H−2)

< 1.

(29)
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8.4 Proof of Theorem 3

Proof. We first simplify a long term yt
QPxDPxDPxyQ. Using D = 1

η (H− In) twice, we get:

yt
QPxDPxDPxyQ = yt

QH−1PDPxDH−1PyQ

= rtH−1DPxDH−1r

=
1

η2
rtH−1(H− In)Px(H− In)H

−1r

=
1

η2
(
rtPxr− rtPxH

−1r− rtH−1Pxr+ rtH−1PxH
−1r
)

=
1

η2
(
rtH−1r− 2rtH−2r+ rtH−1PxH

−1r
)
,

(30)

where in the last equality, we used rtPxH
−1r = rtPtH−1H−1r = rtH−2r. Combing this and

17 and the assumption that f ′
ml(η) = 0 to get

f ′′
ml(η) =

1

2
tr(H−1DH−1D)− n

1

yt
QPxDPxDPxyQ

yt
QPxyQ

+
n

2

(yt
QPxDPxyQ)2

(yt
QPxyQ)2

=
1

2η2
tr(H−2(H− In)

2)− n

η2
rtH−1r− 2rtH−2r+ rtH−1PxH

−1r

rtH−1r
+

n

2η2

(
rtH−1r− rtH−2r

rtH−1r

)2

=
1

2η2
tr(In − 2H−1 +H−2) +

n

2η2

(
−1 + 2

rtH−2r

rtH−1r
− 2

rtH−1PxH
−1r

rtH−1r
+

(
rtH−2r

rtH−1r

)2
)

=
1

2η2

(
tr(H−2)− 2n

rtH−3r

rtH−1r
+ n

(
rtH−2r

rtH−1r

)2

+ 2n
rtH−1H−1P0H

−1r

rtH−1r

)
− 1

η
f ′
ml(η)

=
n

2η2

[(
1

n
tr(H−2)− 1

n2
tr(H−1)2

)
+

(
2

(
rtH−2r

rtH−1r

)2

− 2
rtH−3r

rtH−1r

)
+ 2

rtH−1H−1P0H
−1r

rtH−1r

]
.

(31)
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We examine three terms in the square bracket in turn. Denote hj the j-th diagonal element

of H−1, with reference to Equation 28 the first term can be transformed to

1

n
tr(H−2)− 1

n2
tr(H−1)2 =

1

2n2

∑
i,j

(hi − hj)
2

=
1

2n2

∑
ij

(hi − θ + θ − hj)
2

=
1

2n2

∑
ij

(hi − θ)2 +
1

2n2

∑
ij

(θ − hj)
2 +

1

n2

∑
ij

(hi − θ)(hj − θ)

=
1

n

∑
i

(hi − θ)2,

(32)

where θ = 1
n

∑
i hi so that 1

n2

∑
ij(hi−θ)(hj−θ) = 0. This is the average of the squared errors

and we denoted it by V (H−1).

The second term can be transformed to

2

(
rtH−2r

rtH−1r

)2

− 2
rtH−3r

rtH−1r
=2

(
rtH−2r · rtH−2r− rtH−3r · rtH−1r

rtH−1r · rtH−1r

)

= 2

∑
i,j

(
h2ih

2
jr

2
i r

2
j − h3ihjr

2
i r

2
j

)
∑

i,j hihjr
2
i r

2
j

= 2

∑
i,j

(
hihjr

2
i r

2
j (hihj − h2i )

)
∑

i,j hihjr
2
i r

2
j

=

∑
i,j

(
hihjr

2
i r

2
j (2hihj − h2i − h2j )

)
∑

i,j hihjr
2
i r

2
j

= −
∑

i,j(hi − hj)
2s2i s

2
j∑

i,j s
2
i s

2
j

= −
∑

i,j(hi − θ + θ − hj)
2s2i s

2
j∑

i,j s
2
i s

2
j

= −
∑

i,j

[
(hi − θ)2 + (θ − hj)

2 + 2(hi − θ)(θ − hj)
]
s2i s

2
j∑

i,j s
2
i s

2
j

= −2
∑

i(hi − θ)2s2i∑
i s

2
i

+ 2

∑
i(hi − θ)s2i∑

i s
2
i

∑
j(hj − θ)s2j∑

j s
2
j

,

(33)

where we denote s2i = r2i hi. To this end, the term −2
∑

i(hi−θ)2s2i∑
i s

2
i

can be seen as a stochastic

average of squared errors, note s2i ∼ χ2
1, and s2i /

∑
i s

2
i ∼ Beta(12 ,

n−1
2 ) with mean 1

n and

variance 2(n−1)
n2(n+2)

. Therefore, the mean of the term is −2V (H−1), and the variance of the term
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is < 2
n2

∑
i(hi − θ)4 < 2

n2

∑
i(hi − θ)2 = 2

nV (H−1), which goes to 0 as n increases.

Identifying the second term as a square of sum of random variables, and we apply central

limit theorem to show it’s a square of a normal random variable whose mean and variance

both vanish as n increases. Let Zi =
(hi−θ)s2i∑

i s
2
i

= (hi − θ)Bi, where Bi ∼ Beta(12 ,
n−1
2 ),

V ar(Zi) ≈ (hi − θ)2 2
n2 . Denote Z =

∑
i Zi and V ar(Z) =

∑
i V ar(Zi) = 2

nV (H−1). We

are to apply Lyapunov central limit theorem, so let us check that Lyapunov’s condition holds:

E(Zi) = (hi− θ)/n and E[|Zi− (hi− θ)/n|3] = |hi− θ|3E(|Bi− 1
n |

3) = |hi− θ|3O( 1
n3 ), so that∑

iE[|Zi − (hi − θ)/n|3] = O( 1
n2 ), and

1
V ar(Z)

∑
iE[|Zi − (hi − θ)/n|3] = O( 1n), which satisfy

Lyapunov’s condition. Then by Lyapunov central limit theorem 1
V ar(Z)

∑
i(Zi − E(Zi)) →

N(0, 1), and equivalently Z ∼ N(0, 2
nV (H−1)). Thus, the second term has mean E(Z2) =

2
nV (H−1) = O( 1n), and variance (computed via scaled χ2

1) is V ar(Z2) = 2( 2nV (H−1))2 =

O( 1
n2 ), which go to 0 as n increases.

The third term can be transformed to

2
rtH−1H−1P0H

−1r

rtH−1r
= 2n

rt(H−1 − θIn)H
−1P0(H

−1 − θIn)r

rtH−1r

= 2
rt(H−1 − θIn)H

− 1
2UΛU tH− 1

2 (H−1 − θIn)r

rtH−1r

= 2

∑c
j=1(r

t(H−1 − θIn)H
−1/2u·j)

2

rtH−1r

= 2

∑c
j=1

(∑
i rih

1/2
i (hi − θ)uij

)2∑
i r

2
i hi

= 2

∑c
j=1w

2
j∑

i r
2
i hi

< 2F

(34)

where F ∼ χ2
c

χ2
n
. The first equality holds because r = (In − P0)yQ and rtH−1P0v = 0 and

vH−1P0r
t = 0 for any v (or in other words, we add terms equal to 0); the second equality holds

because P2 = H−1/2XQ(Xt
QH−1XQ)−1Xt

QH−1/2 is also a projection, and P2 is symmetric

and has the same rank and trace as P0, therefore P2 = UΛU t where U is orthonormal; the

third equality holds because Λ has c eigenvalues 1 and n− c eigenvalues 0; the fourth equality

holds by definition; in the fifth equality, we define wj =
∑

i(rih
1/2
i (hi − θ)uij), and because

rih
1/2
i is standard normal, wj is a weighted sum of normal random variables, and itself a normal

with mean 0 and variance vj =
∑

i(hi − θ)2u2ij < maxi(hi − θ)2
∑

i u
2
ij = maxi(hi − θ)2 < 1,

which gives the last inequality. (Note that u·j is an orthonormal basis, and
∑

i u
2
ij = 1.)

Finally, F ∼ χ2
c

χ2
n
, and n

cF follows F-distribution with d.f. c and n (c << n), whose mean and

variance is O(1), and thus F = O( 1n) goes to 0 as n increases.
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Putting together,

f ′′
ml(η) =

n

2η2
[
−V (H−1) + ϵn

]
, (35)

with both mean and variance of ϵn decreases linearly O( 1n). Thus, f ′′
ml(η) < 0 asymptotically

almost sure, or with probability 1, at where f ′
ml(η) = 0.
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